[1] S. Afrooz, Ph.D. thesis, 2014, Ahvaz.
[2] S. Afrooz, F. Azarpanah and O. A. S. Karamzadeh, Goldie dimension of rings of fractions of C(X), Quaest. Math. 38 (2015), no. 1, 139--154.
[3] A. R. Aliabad, F. Azarpanah and M. Namdari, Rings of continuous functions vanishing at infinity, Comment. Math. Univ. Carolin. 45 (2004), no. 3, 519--533.
[4] A.R. Aliabad and M. Badie, Fixed-place ideals in commutative rings, Comment. Math. Univ. Carolin. 54 (2013), no. 1, 53--68.
[5] A. V. Arkhangel'skiĭ, Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992.
[6] C. Aull (ed.), Rings of Continuous Functions, Lecture Notes in Pure and Appl. Math., Marcel Dekker Inc. New York, 1985.
[7] F. Azarpanah, Essential ideals in C(X), Period. Math. Hungar. 31 (1995), no. 2, 105--112.
[8] F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997), no. 7, 2149--2154.
[9] F. Azarpanah, On almost P-spaces, Far East J. Math. Sci. Special Volume, Part I, (2000) 121--132.
[10] F. Azarpanah, Sum and intersection of summand ideals in C(X), Comm. Algebra 27 (1999), no. 11, 5549--5560.
[11] F. Azarpanah and D. Esmaeilvandi, Regular sequences in the subrings of C(X), Turkish J. Math. 44 (2020), no. 2, 438--445.
[12] F. Azarpanah, D. Esmaeilvandi and A. R. Salehi, Depth of ideals of C(X), J. Algebra 528 (2019) 474--496.
[13] F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterizations of some disconnected spaces, Ital. J. Pure Appl. Math. 12 (2002) 155--168.
[14] F. Azarpanah, O. A. S. Karamzadeh and A. R. Aliabad, On z◦-ideals in C(X), Fund. Math. 160 (1999), no. 1, 15--25.
[15] F. Azarpanah, O. A. S. Karamzadeh and S. Rahmati, C(X) vs. C(X) modulo its socle, Colloq. Math. 111 (2008), no. 2, 315--336.
[16] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra 28 (2000), no. 2, 1061--1073.
[17] F. Azarpanah, O. A. S. Karamzadeh, Z. Keshtkar and A. R. Olfati, On maximal ideals of Cc(X) and the uniformity of its localizations, Rocky Mountain J. Math. 48 (2018), no.2, 345--384.
[18] F. Azarpanah, F. Manshoor and R. Mohamadian, Connectedness and compactness in C(X) with the m-topology and generalized m-topology, Topology Appl. 159 (2012), no. 16, 3486--3493.
[19] F. Azarpanah, F. Manshoor and R. Mohamadian, A generalization of the m-topology on C(X) finer than the m-topology, Filomat 31 (2017), no. 8, 2509--2515.
[20] F. Azarpanah, and T. Soundararajan, When the family of functions vanishing at infinity is an ideal of C(X), Rocky Mountain J. Math. bf 31 (2001), no. 4, 1133--1140.
[21] A. A. Estaji and O. A. S. Karamzadeh, On C(X) modulo its socle, Comm. Algebra 31 (2003), no. 4, 1561--1571.
[22] C. Faith, Rings and things and a fine array of twentieth century associative algebra, 65, American Mathematical Society, Providence, RI, 1999.
[23] N. J. Fine, L. Gillman and J. Lambek, Rings of quotients of rings of functions, Lecture Notes Series Mc-Gill University Press, Montreal, 1965.
[24] I. Garrido and F. Montalvo, Algebraic properties of the uniform closure of spaces of continuous functions, Ann. NewYork Acad. Sci. 788 (1996), no. 1, 101--107.
[25] M. Ghadermazi, O. A. S. Karamzadeh and Mehrdad Namdari, C(X) versus its functionally countable subalgebra, Bull. Iranian Math. Soc. 45 (2019), no. 1, 173--187.
[26] M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebra of C(X), Rend.Sem. Mat. Univ. Padova 129 (2013) 47--69.
[27] M. Ghadermazi and M. Namdari, On a-scattered spaces, Far East J. Math. Sci. (FJMS) 32 (2009), no. 2, 267--274.
[28] S. Ghasemzadeh, O. A. S. Karamzadeh and M. Namdari, The super socle of the ring of continuous functions, Math.Slovaca 67 (2017), no. 4, 1001--1010.
[29] S. Ghasemzadeh, and M. Namdari, When is the super socle of C(X) prime? Appl. Gen. Topol 20 (2019), no. 1, 231--236.
[30] M. Ghirati and O. A. S. Karamzadeh, On strongly essential modules, Comm. Algebra 36 (2008), no. 2, 564--580.
[31] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, 1960.
[32] Javier Gómez-Pérez, Warren W. McGovern, The m-topology on Cm(X) revisited, Topology Appl. 153 (2006), 1838--1848.
[33] K. R. Goodearl, Von Neumann Regular Rings, Pitman, 1979.
[34] A. Hayati, M. Namdari and M. Paimann, On countably uniform closed-spaces, Quaest. Math. 42 (2019), no. 5, 593--604.
[35] M. Henriksen, Topology related to rings of real-valued continuous functions, Recent Progress in General TopologyII, eds. M. Husek, J. van Mill, 553556, Elsevier Science, 2002.
[36] M. Henriksen and A. Nikou, Removing sets from connected product spaces while preserving connectedness, Comment. Math. Univ. Carolin 48 (2007), no. 1, 119--134.
[37] M. Henriksen, B. Mitra, C(X) can sometimes determines X without X being realcompact, Comment. Math. Univ.Carolin 46 (2005), no. 4, 711--720.
[38] W. Iberkleid, R. Lafuente-Rodriguez and W. McGovern, The regular topology on C(X), Comment. Math. Univ. Carolin 52 (2011), no. 3, 445--461.
[39] I. Kaplansky, Commutative Rings, Rev. ed., University of Chicago Press, 1974.
[40] I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947) 153--183.
[41] O. A. S. Karamzadeh, On the Krull intersection theorem, Acta. Math. Hung 42 (1983), no. 1-2, 139--141.
[42] O. A. S. Karamzadeh, a-Noetherian and Artinian Modules, Comm. Algebra 23 (1995), no. 10, 3685--3703.
[43] O. A. S. Karamzadeh, Which Problems are Inspiring in Mathematics? Proceedings of 15th AIMC, Shiraz, 1995.
[44] O. A. S. Karamzadeh, The mathematics of Mathematics Houses (The Snaky Connection), Math. Intelligencer 34 (2012), no. 4 , 46--52.
[45] O. A. S. Karamzadeh, Mathematical Review, MR3451352.
[46] O. A. S. Karamzadeh, Mathematical Reviews, MR3934522.
[47] O. A. S. Karamzadeh, Mathematical Reviews, MR4054063.
[48] O. A. S. Karamzadeh, On a question of Matlis, Comm. Algebra 25 (1997), no. 9, 2717--2726.
[49] O. A. S. Karamzadeh, An Elementary-Minded Mathematician, Math. Intelligencer 43 (2021), no. 2, 76--78.
[50] O. A. S. Karamzadeh, and Z. Keshtkar, On c-realcompact spaces, Quaest. Math. 41 (2018), no. 8, 1135--1167.
[51] O. A. S. Karamzadeh, and A. A. Koochakpoor, On @◦-self-injectivity of strongly regular rings, Comm. Algebra 27 (1999), no. 4, 1501--1513.
[52] O. A. S. Karamzadeh and M. Motamedi, On the intersection of maximal right ideals which are direct summands, Bull. Iranian Math. Soc. 10 (1983), no. 1-2, 47--54.
[53] O. A. S. Karamzadeh, M. Motamedi and S. M. Shahrtash, Erratum to "On rings with a unique proper essential right ideal", Fund. Math. 205 (2009), no. 3, 289--291.
[54] O. A. S. Karamzadeh, M. Motamedi and S. M. Shahrtash, On rings with a unique proper essential right ideal, Fund.Math. 183 (2004), no. 3, 229--244.
[55] O. A. S. Kramzadeh, M. Namdari, M.A. Siavoshi, A note on λ-compact spaces, Math. Slovaka 63 (2013), no. 6, 1371--1380.
[56] O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16 (2015), no. 2, 183--207.
[57] O. A. S. Karamzadeh, and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer.Math. Soc. 93 (1985), no. 1, 179--184.
[58] Z. Keshtkar, R. Mohamadian, M. Namdari and M. Zeinali, On some properties of the space of minimal prime ideals of Cc(X), Categ. Gen. Algebr. Struct. Appl. 17 (2022), no. 1, 85--100.
[59] C. W. Kohls, Ideals in rings of continuous functions, Fund. Math. 45 (1975), 28-50.
[60] C. Kuratowski, On a topological problem connected with the Cantor Bernstein theorem, Fund. Math. 37 (1950), no. 1, 213--216.
[61] J. Lambek, Lectures on rings and modules. Vol. 283. American Mathematical Soc., 2009.
[62] S. Majidipour, R. Mohamadian, M. Namdari and S. Soltanpour, On the essential CP-spaces, Algebraic Struct. Appl.9 (2022), no. 2, 97--111.
[63] F. Manshoor, New Topologies on the Rings of Continuous Functions, J. Math. Ext. 6 (2013), no. 4, 1--9.
[64] F. Manshoor and F. Manshoor, Another Generalization of the m-Topology, Int. Math. Forum 9 (2014), no. 14, 683--688.
[65] F. Manshoor, Characterization of some kind of compactness via some properties of the space of functions with m-topology, Int. J. Contemp. Math. Sciences 7 (2012), no. 21, 1037--1042.
[66] E. Matlis, The minimal prime spectrum of a reduced ring, Illinois J. Math. 27 (1983), no. 3, 353--391.
[67] S. Mehran, and M. Namdari, The lambda-super socle of the ring of continuous functions, Categ. Gen. Algebr. Struct.Appl. 6 (2017), Speical Issue on the Occasion of Banaschewski's 90th Birthday (I), 37--50.
[68] S. Mehran, M. Namdari and S. Soltanpour, On the essentiality and primeness of λ-super socle of C(X), Appl. Gen.Topol. 19 (2018), no. 2, 261--268.
[69] R. Mehri and R. Mohamadian, On the locally countable subalgebra of C(X) whose local domain is cocountable, Hacet. J. Math. Stat 46 (2017), no. 6, 1053--1068.
[70] R. Mohamadian, M. Namdari, H. Najafian and S. Soltanpour, A note on Cc(X) via a topological ring, J. Algebr. Syst. 10 (2023), no. 2, 323--334.
[71] E. Momtahan, Incredible results in mathematics (a collection of popular talks by O. A. S. Karamzadeh), Shahid Chamran university, Ahvaz-Iran, 2000 (in Farsi).
[72] M. Namdari, and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012), no. 9-12, 561--571.
[73] M. Namdari, and A. Veisi, The subalgebra of Cc(X) consisting of elements with countable image versus C(X) with respect to their rings of quotients, Far East J. Math. Sci. (FJMS) 59 (2011), no. 2, 201--212.
[74] M. Parsinia, Constructing the Banaschewski compactification through the functionally countable subalgebra of C(X), Categ. Gen. Algebr. Struct. Appl. 14 (2021), no. 1, 167--180.
[75] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.
[76] A. Pelczynski and Z. Semadeni, Spaces of continuous functions (III) (Spaces C(Ω) for Omega without perfect subsets, Studia Math. 18 (1959) 211--222.
[77] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957) 39--42.
[78] A. R. Salehi, Connectedness of ordered rings of fractions of C(X) with the m-topology, Filomat 31 (2017), no. 18, 5685--5693.
[79] R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society, Student Texts 51, Second Edition,Cambridge Univ, Press, Cambridge, 2000.
[80] H. Simmons, The Gabriel Dimension and CantorBendixson Rank of a Ring, Bull. London Math. Soc. 20 (1988), no. 1, 16--22.
[81] A. Taherifar, On a question of Kaplansky, Topology Appl. 232 (2017) 98--101.
[82] E. M. Vechtomov, Rings of continuous functions with values in a topological division ring, Journal of Mathematical sciences 78 (1996), no. 6, 702--753.
[83] A. Veisi, On the mc-topology on the functionally countable subalgebra of C(X), J. Algebr. Syst. 9 (2022), no. 2,335--345.
[84] S. Willard, General Topology, Addisson-Wesley Publishing Company, 1970.