[1] M. Aschbacher and R. Guralnick, Solvable generation of groups and Sylow subgroups of the lower central series, J. Algebra 77 no. 1, (1982) 189–201.
[2] S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York-Berlin, 1981.
[3] P. J. Cameron and P. Cara, Independent generating sets and geometries for symmetric groups, J. Algebra 258 (2002), no. 2, 641–650.
[4] J. Cossey and T. Hawkes, On generating a finite group by nilpotent subgroups, J. Pure Appl. Algebra 97 (1994), no. 3, 275–280.
[5] J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969) 199–205.
[6] P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford Ser. 7 (1936) 134–151.
[7] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Dedicata 36 (1990), no. 1, 67–87.
[8] M. W. Liebeck and A. Shalev, Maximal subgroups of symmetric groups, J. Combin. Theory Ser. A 75 (1996), no. 2, 341–352 .
[9] M. W. Liebeck and A. Shalev, The probability of generating a finite simple group, Geom. Dedicata 56 (1995), no. 1, 103–113.
[10] A. Lucchini, The largest size of a minimal generating set of a finite group, Arch. Math. (Basel) 101 (2013), no. 1, 1–8.
[11] A. Lucchini, The expected number of random elements to generate a finite group, Monatsh. Math. 181 (2016), no. 1, 123–142.
[12] A. Lucchini and P. Spiga, Independent sets of generators of prime power order, Expo. Math. 40 (2022), no. 1, 140–154.
[13] A. Maróti and M. C. Tamburini, Bounds for the probability of generating the symmetric and alternating group, Arch. Math. (Basel) 96 (2011), no. 2, 115–121.
[14] C. Praeger and J. Saxl, On the orders of primitive permutation groups, Bull. London Math. Soc. 12 (1980), no. 4, 303–307.
[15] J. Whiston, Maximal independent generating sets of the symmetric group, J. Algebra 232 (2000), no. 1, 255–268.
[16] J. Whiston and J. Saxl, On the maximal size of independent generating sets of PSL2(q), J. Algebra 258 (2002), no. 2, 651–657.