The $n$-th residual relative operator entropy $\mathfrak{R}^{[n]}_{x,y}(A|B)$ and the $n$-th operator valued divergence

Document Type : Research Article

Authors

1 Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan

2 1-1-3, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, 639-0202, Japan.

3 Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma, 371-0816, Japan.

Abstract

We introduced the $n$-th residual relative operator entropy $\mathfrak{R}^{[n]}_{x,y}(A|B)$ and showed its monotone property, for example, $\mathfrak{R}^{[n]}_{x,x}(A|B) \le \mathfrak{R}^{[n]}_{x,y}(A|B) \le \mathfrak{R}^{[n]}_{y,y}(A|B)$ and $\mathfrak{R}^{[n]}_{x,x}(A|B) \le \mathfrak{R}^{[n]}_{y,x}(A|B) \le \mathfrak{R}^{[n]}_{y,y}(A|B)$ for $x\le y$ if $A\le B$ or $n$ is odd.
The $n$-th residual relative operator entropy $\mathfrak{R}^{[n]}_{x,y}(A|B)$ is not symmetric on $x$ and $y$, that is, $\mathfrak{R}^{[n]}_{x,y}(A|B)\neq \mathfrak{R}^{[n]}_{y,x}(A|B)$ for $n\geq 2$ while $\mathfrak{R}^{[1]}_{x,y}(A|B)= \mathfrak{R}^{[1]}_{y,x}(A|B)$.
In this paper we compare $\mathfrak{R}^{[n]}_{x,y}(A|B)$ with $\mathfrak{R}^{[n]}_{y,x}(A|B)$ and give the relations between $\mathfrak{R}^{[n]}_{x,y}(A|B)$ and the $n$-th operator divergence $\Delta_{i,x}^{[n]}(A|B)$.
In this process, we find another operator divergence ${\overline \Delta}_{i,x}^{[n]}(A|B)$ which is similar to $\Delta_{i,x}^{[n]}(A|B)$ but not the same.

Keywords

Main Subjects


[1] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Jpn. 34 (1989), 3, 341--348.
[2] T. Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl. 381 (2004) 219--235. DOI:10.1016/j.laa.2003.11.017
[3] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Relative operator entropy, operator divergence and Shannon inequality. Sci. Math. Jpn. 75 (2012), no. 3, 289--298. DOI:10.32219/isms.75.3_289
[4] H. Isa, E. Kamei, H. Tohyama and M. Watanabe, The n-th relative operator entropies and operator divergences, Ann. Funct. Anal. 11 (2020), no. 2, 298--313. DOI:10.1007/s43034-019-00004-5
[5] F. Kubo and T. Ando, Means of positive linear operators, Math Ann. 246 (1979/80), no. 3, 205--224. DOI:10.1007/BF01371042
[6] H. Tohyama, E. Kamei and M. Watanabe, The n-th operator valued divergences Δ[n]i;x(AjB), Sci. Math. Jpn. 84 (2021), no. 1, 51--60. DOI:10.32219/isms.84.1_51
[7] H. Tohyama, E. Kamei and M. Watanabe, The n-th residual relative operator entropy R[n]x;y(AjB), Adv. in Oper.Theory (2021), no. 1, paper no. 18, 11 pages. DOI:10.1007/s43036-020-00120-3
[8] K. Yanagi, K. Kuriyama and S. Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy,Linear Algebra Appl. 394 (2005) 109--118. DOI:10.1016/J.LAA.2004.06.025