Document Type : Research Article
Author
Victoria University, Melbourne, Australi
Abstract
Keywords
Main Subjects
[1] M. W. Alomari, New upper and lower bounds for the trapezoid inequality of absolutely continuous functions and
applications, Konuralp J. Math. 7 (2019), no. 2, 319–323.
[2] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp.
ISBN: 0-387-94846-5.
[3] P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, in Handbook of Analytic-
Computational Methods in Applied Mathematics, G. A. Anastassiou (Ed), Chapman & Hall/CRC Press, New York,
2000, 65-134.
[4] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on
linear spaces and applications for semi-inner products, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article
35, 8 pp. https://www.emis.de/journals/JIPAM/images/080_01_JIPAM/080_01.pdf
[5] S. S. Dragomir, Reverses of Féjer’s inequalities for convex functions, Preprint RGMIA Res. Rep. Coll. 22 (2019),
Art. 88, 11 pp. https://rgmia.org/papers/v22/v22a88.pdf
[6] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, SpringerBriefs in Mathematics. Springer,
New York, 2012, x+112 pp. ISBN: 978-1-4614-1778-1.
[7] S. S. Dragomir, Riemann–Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle with Applications
to Unitary Operators in Hilbert Spaces, 2019 by CRC Press, 160 Pages, ISBN 9780367337100.
[8] S. S. Dragomir, Generalised trapezoid-type inequalities for complex functions defined on unit circle with applications
for unitary operators in Hilbert spaces, Mediterr. J. Math. 12 (2015), no. 3, 573–591.
[9] S. S. Dragomir, Trapezoid type inequalities for complex functions defined on the unit circle with applications for
unitary operators in Hilbert spaces, Georgian Math. J. 23 (2016), no. 2, 199–210.
[10] S. S. Dragomir, Reverses of operator Féjer’s inequalities, Tokyo J. Math. 44, no. 1, 2021, DOI:10.3836/tjm/
1502179330.
[11] S. S. Dragomir, C. Buşe, M. V. Boldea and L. Braescu, A generalization of the trapezoidal rule for the Riemann-
Stieltjes integral and applications, Nonlinear Anal. Forum 6 (2001), no. 2, 337–351.
[12] A. Kashuri and R. Liko, Generalized trapezoidal type integral inequalities and their applications, J. Anal. 28 (2020),
[13] W. Liu and J. Park, Some perturbed versions of the generalized trapezoid inequality for functions of bounded
variation, J. Comput, Anal. Appl. 22 (2017), no. 1, 11–18.
[14] W. Liu and H. Zhang, Refinements of the weighted generalized trapezoid inequality in terms of cumulative variation
and applications, Georgian Math. J. 25 (2018), no. 1, 47–64.
[15] K.-L.Tseng, G.-S. Yang and S. S. Dragomir, Generalizations of weighted trapezoidal inequality for mappings of
bounded variation and their applications, Math. Comput. Modelling 40 (2004), no. 1-2, 77–84.
[16] K. L. Tseng and S. R. Hwang, Some extended trapezoid-type inequalities and applications, Hacet. J. Math. Stat.
45 (2016), no. 3, 827–850.
[17] W. Yang, A companion for the generalized Ostrowski and the generalized trapezoid type inequalities, Tamsui Oxf.