Generalized trapezoid type inequalities for functions with values in Banach spaces

Document Type : Research Article

Author

Victoria University, Melbourne, Australia.

Abstract

Let $E$ be a complex Banach space‎. ‎In this paper we show among others that‎, ‎if $\alpha‎ :‎\left[ a,b\right] \rightarrow \mathbb{C}$ is continuous and $Y:‎ ‎\left[ a,b\right] \rightarrow E$ is strongly differentiable on the interval $‎ ‎\left( a,b\right)‎ ,‎$ then for all $u\in \left[ a,b\right]‎ ,‎$‎
\begin{align*}‎
‎& \left\Vert \left( \int_{u}^{b}\alpha \left( s\right) ds\right) Y\left(‎
‎b\right)‎ +‎\left( \int_{a}^{u}\alpha \left( s\right) ds\right) Y\left(‎
‎a\right)‎ -‎\int_{a}^{b}\alpha \left( t\right) Y\left( t\right) dt\right\Vert‎
‎\\‎
‎& \leq \left\{‎
‎\begin{array}{l}‎
‎\max \left\{ \int_{u}^{b}\left\vert \alpha \left( s\right) \right\vert‎
‎ds,\int_{a}^{u}\left\vert \alpha \left( s\right) \right\vert ds\right\}‎
‎\int_{a}^{b}\left\Vert Y^{\prime }\left( t\right) \right\Vert dt‎, ‎\\‎
‎‎‎\left[ \int_{u}^{b}\left( b-t\right) \left\vert \alpha \left( t\right)‎
‎\right\vert dt+\int_{a}^{u}\left( t-a\right) \left\vert \alpha \left(‎
‎t\right) \right\vert dt\right] \sup_{t\in \left[ a,b\right] }\left\Vert‎
‎Y^{\prime }\left( t\right) \right\Vert‎ , ‎\\‎ ‎‎
‎\leq \left( b-a\right) ^{1/p}\left[ \left( \int_{u}^{b}\left\vert \alpha‎
‎\left( s\right) \right\vert ds\right) ^{p}+\left( \int_{a}^{u}\left\vert‎
‎\alpha \left( s\right) \right\vert ds\right) ^{p}\right] ^{1/p} \\‎
‎\times \left( \int_{a}^{b}\left\Vert Y^{\prime }\left( t\right) \right\Vert‎
‎^{q}dt\right) ^{1/q}‎‎‎
‎\end{array}‎
\right.
‎\end{align*}‎
‎for $p,$ $q>1$ with $\frac{1}{p}+\frac{1}{q}=1.$ Applications for operator‎ ‎monotone functions with examples for power and logarithmic functions are‎ ‎also given‎.

Keywords

Main Subjects


  1. [1] M. W. Alomari, New upper and lower bounds for the trapezoid inequality of absolutely continuous functions and

    applications, Konuralp J. Math. 7 (2019), no. 2, 319–323.

    [2] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp.

    ISBN: 0-387-94846-5.

    [3] P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, in Handbook of Analytic-

    Computational Methods in Applied Mathematics, G. A. Anastassiou (Ed), Chapman & Hall/CRC Press, New York,

    2000, 65-134.

    [4] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on

    linear spaces and applications for semi-inner products, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article

    35, 8 pp. https://www.emis.de/journals/JIPAM/images/080_01_JIPAM/080_01.pdf

    [5] S. S. Dragomir, Reverses of Féjer’s inequalities for convex functions, Preprint RGMIA Res. Rep. Coll. 22 (2019),

    Art. 88, 11 pp. https://rgmia.org/papers/v22/v22a88.pdf

    [6] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type, SpringerBriefs in Mathematics. Springer,

    New York, 2012, x+112 pp. ISBN: 978-1-4614-1778-1.

    [7] S. S. Dragomir, Riemann–Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle with Applications

    to Unitary Operators in Hilbert Spaces, 2019 by CRC Press, 160 Pages, ISBN 9780367337100.

    [8] S. S. Dragomir, Generalised trapezoid-type inequalities for complex functions defined on unit circle with applications

    for unitary operators in Hilbert spaces, Mediterr. J. Math. 12 (2015), no. 3, 573–591.

    [9] S. S. Dragomir, Trapezoid type inequalities for complex functions defined on the unit circle with applications for

    unitary operators in Hilbert spaces, Georgian Math. J. 23 (2016), no. 2, 199–210.

    [10] S. S. Dragomir, Reverses of operator Féjer’s inequalities, Tokyo J. Math. 44, no. 1, 2021, DOI:10.3836/tjm/

    1502179330.

    [11] S. S. Dragomir, C. Buşe, M. V. Boldea and L. Braescu, A generalization of the trapezoidal rule for the Riemann-

    Stieltjes integral and applications, Nonlinear Anal. Forum 6 (2001), no. 2, 337–351.

    [12] A. Kashuri and R. Liko, Generalized trapezoidal type integral inequalities and their applications, J. Anal. 28 (2020),

    1. 4, 1023–1043.

    [13] W. Liu and J. Park, Some perturbed versions of the generalized trapezoid inequality for functions of bounded

    variation, J. Comput, Anal. Appl. 22 (2017), no. 1, 11–18.

    [14] W. Liu and H. Zhang, Refinements of the weighted generalized trapezoid inequality in terms of cumulative variation

    and applications, Georgian Math. J. 25 (2018), no. 1, 47–64.

    [15] K.-L.Tseng, G.-S. Yang and S. S. Dragomir, Generalizations of weighted trapezoidal inequality for mappings of

    bounded variation and their applications, Math. Comput. Modelling 40 (2004), no. 1-2, 77–84.

    [16] K. L. Tseng and S. R. Hwang, Some extended trapezoid-type inequalities and applications, Hacet. J. Math. Stat.

    45 (2016), no. 3, 827–850.

    [17] W. Yang, A companion for the generalized Ostrowski and the generalized trapezoid type inequalities, Tamsui Oxf.

    1. Inf. Math. Sci. 29 (2013), no. 2, 113–127