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THE UNIT GROUP OF THE GROUP ALGEBRA FqD36

R. K. SHARMA AND Y. KUMAR∗

Abstract. Let p be a prime number and Fq be a finite field having q = pn elements and D36 be the
dihedral group of order 36. In this paper, the unit group U(FqD36), of the group algebra FqD36, is
completely characterized.

1. Introduction

Due to the importance of group rings and units in group rings in both pure mathematics and ap-
plied sciences, determining the structure of units group of a group ring has always been a fascinating
and challenging problem. While the significance of group rings in pure mathematics is widely ac-
knowledged, its practical applications may not be as commonly recognized. In this context, the work
of Hurley [12, 13] are noteworthy instances, as they establish a link between matrix rings and group
rings, offering a methodology for constructing convolutional codes in the field of telecommunication
engineering through the utilization of units of group rings (see also [2]). More specifically, finite group
rings and group rings of finite groups over fields occupy a distinctive and crucial role. Hence extensive
research has been conducted to investigate the algebraic structure of the unit group U(FqG) of a group
algebra FqG when G is a finite non-abelian group ([6–13], [15–21], [26–28]).

In 2014, Makhijani et al. [17] characterized the unitary subgroup of the group of units of FpmD2pn ,
considering the canonical involution ∗, for p > 2. The unit group of the group algebra F2kD2n was
discussed in [20], specifically for odd values of n.
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Furthermore, in 2015, Makhijani, in [21], determined the unit group of the group algebra FqD30,
while Gildea provided a presentation of the unit group U(F5kD20), [4]. For unit groups of circulant
matrices and their algebraic structure, see Makhijani et al. and Sharma works, [18] and [26]. Based on
the current literature survey, the unit group structure of group rings has been established for certain
cases such as F2nD2m (where m is odd), FpnD2pm(p is odd prime), FqD60, and FqD40. However, as of
the present knowledge, the unit group structure of the group algebra FqD36 remains undetermined.

Let p be a prime number. This paper provides a comprehensive characterization of the unit group
of the group algebra FqD36, where Fq represents any finite field with q = pn for some n ∈ N.

Throughout the paper, we will use the following notations:

• J : Jacobson radical;
• U(G): unit group of G;
• Cr: cyclic group of order r;
• Fq: finite field of order q;
• G′: commutator subgroup of G;
• DimFq : dimension over the field Fq;
• ω(G,N): the augmentation ideal corresponding to normal subgroup N of G ;
• SFq(γg): cyclotomic Fq-class corresponding to element g ;
• Z(G): Center of group G ;
• Ĝ =

∑
g∈G g for finite order group G.

We utilized the presentation of D36 as follows:

D36 = ⟨a, b | a18, b2, (ba)2⟩

and it should be pointed out that this group possesses 12 distinct conjugacy classes, which are listed as follows:
[e], [a], [a2], [a3], [a4], [a5], [a6], [a7], [a8], [a9], [b], and [a9b].

Any unfamiliar terminology and notation can be referenced in [14, 24]. Throughout this paper, all
rings are assumed to be associative with identity.

2. Main results

Lemma 2.1. Let Fq be a finite field and G be a finite group. Then

U(FqG) ∼= (1 + J (FqG))⋊ U( FqG

J (FqG)
).

Proof. If f : 1 + J (FqG) → U(FqG) is the inclusion map and g : U(FqG) → U( FqG
J (FqG)) is defined as

g(x) = x+ J (FqG), then the following sequence forms a short exact sequence of groups:

1 → 1 + J (FqG)
f−→ U(FqG)

g−→ U
(

FqG
J (FqG)

)
−→ 1 .

Now, using Wedderburn-Malcev theorem [1, Chapter 10, Theorem 72.19], there exists a semisimple
subalgebra K of FqG, such that

FqG = K ⊕ J (FqG),
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and so for each x+J (FqG) ∈ FqG
J (FqG) , there is a unique xK ∈ K such that x+J (FqG) = xK+J (FqG).

Hence, the map
h : U( FqG

J (FqG)
) → U(FqG)

defined by h(x+ J (FqG)) = xK is a group homomorphism.
Now, observe that g ◦ h = id on U( FqG

J (FqG)), and hence

U(FqG) ∼= (1 + J (FqG))⋊ U( FqG

J (FqG)
).

This proves the lemma. □

We need the following result from [14].

Definition 2.2. Let I be a nilpotent ideal of a ring R. By the nilpotency index of I we mean the least
positive integer n, such that In = 0.

We write t(G) for the nilpotency index of J (FqG).

Proposition 2.3. [14, Chapter 3, Corollary 1.5] Assume that N is a normal p-subgroup of G. Then

Dim(J (FpnG)) = Dim(J (Fpn(G/N))) + |G| − |G : N |

over Fpn .

Firstly, let us derive some important lemmas.

Lemma 2.4. Let q = 2n and G = D18. Then DimFqJ (FqG) = 1.

Proof. We know that D18 is a Frobenius group as the dihedral group of order 2n with n odd is a
Frobenius group with a complement P being a Sylow 2-subgroup of order 2. Therefore, by [14, Chapter
3, Corollary 7.8], we have DimFqJ (FqG) = |P | − 1 = 1. □

Lemma 2.5. Let q = 2n and G = D36. Then DimFqJ (FqG) = 19 and 1 + J (FqG) ∼= C19n
2 .

Proof. Let N = Z(G) represent the normal 2-subgroup of the group G. Then by plugging in N into
Proposition 2.3 and the fact that G/N ∼= D18, we obtain:

DimFqJ (FqG) = DimFqJ (FqD18) +
|G|
2

.

Now, applying Lemma 2.4,
DimFqJ (FqG) = 1 +

|G|
2

= 19,

this proves the first statement. Commutativity of J (FqG) follows as a consequence of the result
presented in [14, Chapter 3, Theorem 15.6]. Observe that

ω(D36, ⟨y9⟩) = ω(⟨y9⟩)FqD36

= J (Fq⟨y9⟩)FqD36

⊆ J (FqD36).
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Let z = 1 + y9 ∈ Z(FqD36). Consequently, a basis for ω(D36, ⟨y9⟩) is formed by

{z, yz, . . . , y8z, xz, xyz, . . . , xy8z}.

Any element w in ω(D36, ⟨y9⟩) can be represented as

w = (a1 + a2y + · · ·+ a9y
8 + b1x+ b2xy + · · ·+ b9xy

8)z,

where ai, bi ∈ Fq. Now, considering w2 = (a1 + a2y+ · · ·+ a9y
8 + b1x+ b2xy+ · · ·+ b9xy

8)2z2 = 0, we
conclude that 1 + ω(D36, ⟨y9⟩) ∼= C18n

2 .
Again since D̂18 =

∑
g∈D18

g ∈ J (FqD18), we have A = (1 + x)(1 + y + · · · + y8) ∈ J (FqD36). In
fact,

J (FqD36) = ω(D36, ⟨y9⟩)⊕ FqA

as a vector space over the field Fq.

Now, notice that:

A2 = ((1 + x)(1 + y + · · ·+ y8))2

= (1 + x)(1 + y + · · ·+ y8)(1 + x)(1 + y + · · ·+ y8)

= (1 + 2x+ 1)(1 + y + · · ·+ y8)2

= 0.

Therefore,
1 + J (FqD36) = (1 + ω(D36, ⟨y9⟩))× {1 + αA | α ∈ Fq} ∼= C19n

2 .

This proves the lemma. □

Lemma 2.6. Let q = 2n, G = D36. Then

FqG

J (FqG)
∼=

{
Fq ⊕M2(Fq)

4 if 2n ≡ ±1 (mod 9),

Fq ⊕M2(Fq)⊕M2(Fq3) otherwise.

Proof. Conjugate classes corresponding to 2− regular elements are [e], [a2] = {a2, a16}, [a4] = {a4, a14},
[a6] = {a6, a12} and [a8] = {a8, a10}.

We divide the proof in two cases:
Case 1. Let q = 2n ≡ ±1 (mod 9).

If q = 2n ≡ ±1 (mod 9), then
d = o(q) (mod 9)

= 1 or 2 (mod 9)

and TFq ,G = {1} or {±1}. But we know that conjugate class of an element and its inverse is the same.
Therefore in this case, we have

SFq(γg) = {γg} i.e., |SFq(γg)| = 1,

for each 2− regular element g ∈ G in [3, Theorem 1.3]. This gives that
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(2.1) FqG

J (FqG)
∼= Fq ⊕Mn1(Fq)⊕Mn2(Fq)⊕Mn1(Fq)⊕Mn1(Fq).

Now only possible integer values of ni in relation (2.1) are n1 = n2 = n3 = n4 = 2, as the total
dimension of FqG

J (FqG) is equal to 17.
Thus

FqG

J (FqG)
∼= Fq ⊕M2(Fq)

4.

Again, if 2n ≡ ±2,±4 (mod 5), then d = order of 2n=3 or 6 (mod 9), and hence TFq ,G =

{1, 2, 4, 5, 7, 8} or TFq ,G = {1, 4, 7}. Therefore in this case, we have

SFq(γe) = {γe} =⇒ |SFq(γe)| = 1 =⇒ Ki
∼= Fq,

SFq(γa2 )
= {γa2 , γa4 , γa8} =⇒ |SFq(γa2 )

| = 3 =⇒ Ki
∼= Fq3 ,

SFq(γa6 )
= {γa6} =⇒ |SFq(γa6 )

| = 1 =⇒ Ki
∼= Fq.

This gives

(2.2) FqG

J (FqG)
∼= Fq ⊕Mn1(Fq)⊕Mn2(Fq3).

From relation (2.2), ni must be equal to 2 as DimFq(J (FqG)) = 19. This proves the lemma. □

Lemma 2.7. Let q = 3n and G = D36. Then DimFqJ (FqG) = 32.

Proof. By repeatedly applying Proposition 2.3, and considering the normal 3−subgroup as the cyclic
group C3 of the group G, we have

DimFqJ (FqG) = DimFqJ (FqD12) + 24 = 12− 4 + 24 = 32.

This proves the lemma. □

Now, we will proceed to prove our main theorems.

Theorem 2.8. Let q = 3n, G = D36,V1 = 1 + J (FqG) and V2 = 1 + ω(G′). Then

(1) FqG
J (FqG)

∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq ;
(2) U(FqG) ∼= V1 ⋊ (F∗

q × F∗
q × F∗

q × F∗
q) ;

(3) V1 is a non-abelian maximal normal 3−subgroup of U(FqG), with order 332n and exponent 9;
(4) V1 is a non-abelian normal subgroup of U(FqG), with nilpotency class 8.

(5) V1 = V2;
(6) Z(V1) is an abelian group of exponent 9.

Proof. (1). The three regular elements of D36 correspond to the conjugacy classes of elements 1, a, a9,
and ab. Now, since q ≡ 1 mod 2, the order of q modulo 2 is denoted as d, which is equal to 1
according to [3]. Consequently, there are four simple components in FqG

J (FqG) with a total dimension of
4. Therefore, we can conclude that FqG

J (FqG) is isomorphic to Fq ⊕ Fq ⊕ Fq ⊕ Fq.
(2). Proof is a straightforward application of the fact that for any two ring R1 and R2, U(R1⊕R2) =
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U(R1)× U(R2) in 1.

(3). Since DimFqJ (FqD36) = 32, it follows that |V1| = 332n. The non-abelian part can be deduced
from [14, Chapter 3, Theorem 15.2]. Furthermore, since G is solvable, it is also 3-solvable, with a
normal Sylow 3-subgroup. By [14, Chapter 7, Proposition 2.4], the index of nilpotency of J (FqG) is
9, implying that the exponent of the group V1 is 9.
(4). If O3(G) = {1, a2, a4, a6, a8, a10, a12, a14, a16}, then O3(G) is a maximal normal 3-subgroup of
G. Let x ∈ G ∩ V1. Thus, x − 1 ∈ 1 + J (FqG) is a nilpotent element. Consequently, (x − 1)3

2
=

x3
2 − 1 = 0, implying x3

2
= 1. This shows that G ∩ V1 is a 3-group, and hence G ∩ V1 ⊆ O3(G) =

{1, a2, a4, a6, a8, a10, a12, a14, a16}. Now a2 − 1 = 2+ a2 ∈ J (FqG), and hence 2b+ a2b, 2a2 + a4, 2ab+

a3b, 2a6+a8, 2a12+a14, 2a8+a10 and a10+a12 are elements of J (FqG). Let x = a2, y = 1+2b+a2b, z =

1+2a2+a4, w = 1+2ab+a3b, r = 1+2a6+a8, s = 1+2a12+a14, t = 1+2a8+a10, u = 1+2a10+a12

be elements of V1. Then
[x, y] = 1+2b+2a2+a4+2a6+a8+2a10+a12+2ba2+2ba4+ba6+2ba8+ba10+2ba12+ba14+2ba16 = A,

[z,A] = b+ a4 + a6 + 2a8 + 2a10 + a14 + ba2 + ba4 + 2ba8 + ba10 + ba12 + 2ba14 = B,

[w,B] = a4 + a5 + a7 +2a8 + a10 +2a11 + a12 +2a13 +2a16 + ba+2ba2 + ba3 + ba5 + ba6 + ba8 + ba9 +

2ba11 + 2ba12 + 2ba13 + ba15 = C,

[r, C] = 1 + b+ ba+ 2ba3 + ba4 + ba5 + 2ba8 + ba9 + 2ba12 + 2ba13 + ba14 + 2ba16 + 2ba17 = D,

[s,D] = 1 + ba+ ba2 + ba7 + ba8 + ba13 + ba14 = E,

[t, E] = 1 + 2b+ ba+ ba2 + 2ba6 + ba7 + ba8 + 2ba9 + 2ba11 + 2ba12 + ba13 + ba14 + 2ba17 = F,

[u, F ] = 1 + b+ ba+ ba2 + ba3 + ba4 + ba5 + ba6 + ba7 + ba8 + ba9 + ba10 + ba11 + ba12 + ba13 + ba14 +

ba15 + ba16 + ba17 ̸= 1 and hence, V1 is a nilpotent group of class 8.

(5). Using ( [24], Chapter 2, Lemma 2.8), we establish that J (FqG) is nilpotent, if and only if
J (FqG

′) is nilpotent. However, J (FqG) is the maximal nilpotent ideal, so we have ω(FqG
′) =

J (FqG
′) ⊆ J (FqG). Furthermore, we observe that Fq(

D36
D′

36
) ∼= Fq(C2 × C2) ∼= FqG

ω(G′) , which im-
plies that DimFqω(FqG

′) = 32. Therefore, we conclude that V1 = V2.
(6). As V1 = V2, we can say that B = {ai − 1 | i = 2, 4, · · · , 16} ∪ {a(ai − 1) | i = 2, 4, · · · , 16} ∪
{ab(ai − 1) | i = 2, 4, · · · , 16} ∪ {b(ai − 1) | i = 2, 4, · · · , 16} forms a basis of J (FqG). Now, the
elements 1 + a+ a17 commute with each basis element, thus belong to Z(J (FqG)). This implies that
2 + a + a17 ∈ 1 + Z(J (FqG)) = Z(V1). Furthermore, since (2 + a + a17)3 = 2 + a3 + a15 ̸= 1, we
conclude that 2 + a+ a17 is an element of order 9. This proves the theorem. □

Theorem 2.9. Let q = 2n, G = D36. Then

U(FqG) ∼=

{
(C19n

2 )⋊ (F∗
q ×GL2(Fq)

4) if 2n ≡ ±1 (mod 9),

(C19n
2 )⋊ (F∗

q ×GL2(Fq)×GL2(Fq3)) otherwise.

Proof. Combining Lemma 2.5 and Lemma 2.6, gives the proof of the theorem. □

Finally, let us now discuss the semisimple case.
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Theorem 2.10. Let q = pn, G = D36 and p > 3. Then

U(FqG) ∼=

{
F∗
q
4 ×GL2(Fq)

8 pn ≡ ±1 (mod 9),

F∗
q
4 ×GL2(Fq)

2 ×GL2(Fq3)
2 otherwise.

.

Proof. Since p > 3 and Fq(
G
G′ ) ∼= Fq(C2 × C2) ∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq, using Wedderburn decomposition

thorem and [23, Proposition 3.6.11], we have

FqG ∼= Fq ⊕ Fq ⊕ Fq ⊕ Fq ⊕
k∑

i=1

Mni(Ki)

where Ki being finite dimensional division algebras over field Fq and ni ≥ 2.

We divide the proof in two cases:
Case 1. Let q = pn ≡ ±1 (mod 9).

If q = pn ≡ ±1 (mod 9), then
d = o(q) (mod 9)

= 1 or 2 (mod 9)

and TFq ,G = {1} or {±1}. But we know that conjugate class of an element and its inverse is the same,
therefore in this case we have

SFq(γg) = {γg} i.e. |SFq(γg)| = 1,

for each element g ∈ G in [3, Theorem 1.3]. Hence the Wedderburn decomposition is given by

(2.3) FqG ∼= F4
q ⊕

8∑
i=1

Mni(Fq).

Using dimension constraints on equation (2.3), we have

36 = 4 +

8∑
i=1

n2
i ,

(2.4) or 32 =

8∑
i=1

n2
i .

Only possible solution of equation 2.4 is

ni = 2, for i = 1, 2, · · ·, 8

and hence

(2.5) FqG ∼= F4
q ⊕

8∑
i=1

M2(Fq).

Case 2. Let q = pn ≡ ±1 (mod 9). Then

TFq ,G = {1, 7, 13} or {1, 5, 7, 11, 13, 17}.

Therefore, we simply assume
TFq ,G = {1, 5, 7}.
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If we consider cyclotomic Fq-classes, we have

SFq(γe) = {γe} =⇒ |SFq(γe)| = 1 =⇒ Ki
∼= Fq,

SFq(γa) = {γa, γa5 , γa7} =⇒ |SFq(γa)| = 3 =⇒ Ki
∼= Fq3 ,

SFq(γa2 )
= {γa2 , γa8 , γa4} =⇒ |SFq(γa2 )

| = 3 =⇒ Ki
∼= Fq3 ,

SFq(γa3 )
= {γa3} =⇒ |SFq(γa3 )

| = 1 =⇒ Ki
∼= Fq,

SFq(γa6 )
= {γa6} =⇒ |SFq(γa6 )

| = 1 =⇒ Ki
∼= Fq,

SFq(γa9 )
= {γa9} =⇒ |SFq(γa9 )

| = 1 =⇒ Ki
∼= Fq,

SFq(γb) = {γb} =⇒ |SFq(γb)| = 1 =⇒ Ki
∼= Fq,

SFq(γa9b)
= {γa9b} =⇒ |SFq(γa9b)

| = 1 =⇒ Ki
∼= Fq.

So, in this case the Wedderburn decomposition is given by

(2.6) FqG ∼= F4
q ⊕Mn1(Fq)⊕Mn2(Fq)⊕Mn3(Fq3)⊕Mn4(Fq3).

Again using dimension constrains on (2.6), we have

(2.7) 36 = 4 + n2
1 + n2

2 + 3n2
3 + 3n2

4,

(2.8) or 32 = n2
1 + n2

2 + 3n2
3 + 3n2

4.

But equation 2.8 has only solution as

n1 = 2, n2 = 2, n3 = 2, n4 = 2.

Thus, we have
FqG ∼= F4

q ⊕M2(Fq)
2 ⊕M2(Fq3)⊕M2(Fq3).

This proves the theorem. □
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