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A NOTE ON ARITHMETIC-GEOMETRIC-HARMONIC MEAN INEQUALITY
OF SEVERAL POSITIVE OPERATORS

F. MIRZAPOUR∗ AND A. MORASSAEI

Abstract. Suppose that B1, · · · , Bm are positive operators on a Hilbert space H. In this paper we
generalize the weighted arithmetic, geometric, and harmonic means as follows:

am(κ;B) = a2(k1, N
′;B1,am−1(κ

′;B′)) =
k1B1 + · · ·+ kmBm

N
,

hm(κ;B) = h2(k1, N
′;B1,hm−1(κ

′;B′)) =

(
k1B

−1
1 + · · ·+ kmB−1

m

N

)−1

,

gm(κ;B) = g2(k1, N
′;B1,gm−1(κ

′;B′)),

where κ = (k1, · · · , km), N = k1 + · · ·+ km,κ′ = (k2, · · · , km), and N ′ = k2 + · · ·+ km. We show that
the arithmetic-geometric-harmonic mean inequality holds. Also we investigate nine properties of the
geometric mean.

1. Introduction

The simplest and the most classical mean values are the arithmetic, the geometric, and the harmonic
mean values. For a positive sequence b = (b1, · · · , bm) this mean values are defined respectively by

(1.1) Am(b) =
1

m

m∑
i=1

bi, Gm(b) = m

√√√√ m∏
i=1

bi, Hm(b) =
m∑m
i=1

1
bi

.

It is well known that

(1.2) Am(b) ≥ Gm(b) ≥ Hm(b) ,
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are called arithmetic mean-geometric mean-harmonic mean inequalities. The left hand of inequality
(1.2) is one of the most important inequalities in mathematics and it has many applications in different
sciences. In terms of the importance of this inequality, more than fifty arguments from different
mathematicians are presented in chronological order [5].

The study of the arithmetic-geometric mean inequality has rich literature (for details refer to
[1,6,9,12]). Some generalizations of this inequality are present by Pečarić, Qi, Šimić and Xue [11] and
Qi [13].

Assume that b = (b1, · · · , bm) is a sequence of positive numbers and κ = (k1, · · · , km) is a sequence
of nonnegative integers, such that k1 + · · ·+ km = N . We define

am(κ; b1, · · · , bm) =
k1b1 + · · ·+ kmbm

N
,(1.3)

gm(κ; b1, · · · , bm) =
N

√
bk11 · · · bkmm ,(1.4)

hm(κ; b1, · · · , bm) =

(
k1b

−1
1 + · · ·+ kmb−1

m

N

)−1

,(1.5)

that are the weighted arithmetic, weighted geometric, and weighted harmonic means respectively.
Then the arithmetic-geometric-harmonic mean inequality is as follows:

am(κ; b1, · · · , bm) ≥ gm(κ; b1, · · · , bm) ≥ hm(κ; b1, · · · , bm) .

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H with
the identity IH. In the case when dim H = n, we identify B(H) with the full matrix algebra Mn(C)
of all n × n matrices with entries in the complex field. An operator A ∈ B(H) is called positive if
〈Ax, x〉 ≥ 0 for all x ∈ H and in this case we write A ≥ 0. We write A > 0 if A is a positive invertible
operator. For self-adjoint operators A,B ∈ B(H), we say that A ≤ B if B −A ≥ 0. The Gelfand map
f(t) 7→ f(A) is an isometrical ∗-isomorphism between the C∗-algebra C(σ(A)) of continuous functions
on the spectrum σ(A) of a self-adjoint operator A and the C∗-algebra generated by A and IH. If
f, g ∈ C(σ(A)), then f(t) ≥ g(t) (t ∈ σ(A)) implies that f(A) ≥ g(A). A linear map Φ on B(H) is
positive if Φ(A) ≥ 0 whenever A ≥ 0. It is said to be unital if Φ(IH) = IH.

Let A,B ∈ B(H) are two positive invertible operators and ν ∈ [0, 1]. The operator-weighted
arithmetic, geometric, and harmonic means are defined by

A∇νB =(1− ν)A+ νB ,

A♯νB =A
1
2

(
A− 1

2BA− 1
2

)ν
A

1
2 ,

A!νB =
(
(1− ν)A−1 + νB−1

)−1
,

respectively. The operator version of the A-G-H mean inequality is A!νB ≤ A♯νB ≤ A∇νB. In
this regard, famous mathematicians such as T. Ando have worked, a summary of this issue can be
seen in [2, 7, 8, 10]. Also, for instance, in [3], Bakherad et. al. stated some extensions of interpolation
between the arithmetic-geometric means inequality. In 2021 , Bedrani et. al. [4], studied the geometric
mean A♯νB for two accretive matrices A,B, when ν ∈ (1, 2) and ν ∈ (−1, 0). Seddik in [15] presented
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the characterizations of some distinguished classes of B(H), namely, the self-adjoint operators, the
normal operators, and the unitary operators in terms of operator inequalities.

In this paper, we generalize all statements of [14] for the non-equal weights, respectively. Also, in
continuation, we present an example that shows the convergence of the recursive sequence defined for
geometric mean.

2. Arithmetic, geometric and harmonic mean

Assume that B1, · · · , Bm are positive operators in B(H). If we replace b1, · · · , bm by B1, · · · , Bm,
respectively, in (1.3) and (1.5), and consider B−1 = limε↘0(B+ εIH)

−1, then we get the extensions of
the arithmetic and the harmonic operator means. But, we use the induction for the definition of the
geometric mean gm(B1, · · · , Bm) as follows:

Let A and B be two positive operators, we define the recursive sequence {Tn},

(2.1)

T0 =
k
mA+ m−k

m B ; 0 < k < m

Tn+1 =
m−k
m Tn + k

mA k

√
(T−1

n B)m−k ; (n ≥ 0).

The following main result gives the convergence of the operator sequence {Tn}.
It is a well-known fact that, the product of two positive operators is not necessarily positive, in

fact not necessarily self-adjoint. In this concept, for every n = 1, 2, 3, · · · , the operators T−1
n B is not

self-adjoint but the operators (T−1
n B)

m−k
k exist and A(T−1

n B)
m−k

k is positive. As an example, we can
consider the positive operators A and B given by

A =

(
3 1

1 3

)
and B =

(
6 1

1 3

)
For the sake of simplicity, choose m = 3 and k = 2 in the Eq. (2.1), ie.

T0 =
2

3
A+

1

3
B =

(
4 1

1 3

)
.

Its inverse is

T−1
0 =

1

11

(
3 −1

−1 4

)
.

The recursion recommends for the next step

T1 =
1

3
T0 +

2

3
A

√
T−1
0 B ,

but a simple calculation shows

T−1
0 B =

(
17
11 0

− 2
11 1

)
.

This matrix has a square root but is not self-adjoint.

Theorem 2.1. With the above assumptions, the sequence {Tn} = {Tn(k,m − k;A,B)} converges
decreasingly in B(H) to

(2.2) A♯k/mB = B1/2(B−1/2AB−1/2)k/mB1/2 .
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Also, the following estimation holds

(2.3) 0 ≤ Tn −A♯k/mB ≤ (1− k

m
)n(T0 − (B−1/2AB−1/2)k/m) ∀n ≥ 0 .

Proof. To prove, we consider three steps as in [14, Theorem 2.1]:
Step 1. Assume that a > 0 is a real number and consider the recurrent sequence

(2.4)


x0 =

k
ma+ m−k

m ; 0 < k < m

xn+1 =
m−k
m xn + k

m

(
a

k
√

xm−k
n

)
; (n ≥ 0)

by using the idea of Step 1 of [14, Theorem 2.1], we conclude that

0 ≤ xn − m
√
ak ≤

(
m− k

m

)n (
x0 −

m
√
ak
)
, ∀n ≥ 0 .

And hence the real sequence {xn} converges to m
√
ak.

Step 2. Let A ∈ B(H) be a positive operator and define the following sequence

(2.5)

X0 =
k
mA+ m−k

m IH; 0 < k < m

Xn+1 =
m−k
m Xn + k

mAX
1−m

k
n ; (n ≥ 0)

.

Since that A commutes with Xn for n ≥ 0, so, by using Gelfand’s representation and the previous
step, we get {Xn} converges in B(H) to Ak/m and we have

0 ≤ Xn −Ak/m ≤
(
m− k

m

)n (
X0 −Ak/m

)
, ∀n ≥ 0 .

Step 3. With the same way of the second step, the sequence {Yn},

(2.6)

Y0 =
k
mB−1/2AB−1/2 + m−k

m IH; 0 < k < m

Yn+1 =
m−k
m Yn + k

mB−1/2AB−1/2Y
1−m

k
n ; (n ≥ 0)

converges in B(H) to (B−1/2AB−1/2)k/m and

0 ≤ Yn −
(
B−1/2AB−1/2

)k/m
≤
(
m− k

m

)n (
Y0 − (B−1/2AB−1/2)k/m

)
, (n ≥ 0) .

Thus, by using (2.6), we have

(2.7)

B1/2Y0B
1/2 = k

mA+ m−k
m B

B1/2Yn+1B
1/2 = m−k

m B1/2YnB
1/2 + k

mAB−1/2Y
1−m

k
n B1/2 (n ≥ 0),

and so,
B−1/2Y

k−m
k

n B1/2 = (B−1/2Y k−m
n B1/2)1/k.

Now we have

B−1/2Y k−m
n B1/2 =

(
B−1/2Y −1

n B1/2
)m−k

=
(
B−1/2Y −1

n B−1/2
)
B
(
B−1/2Y −1

n B−1/2
)
B · · ·

(
B−1/2Y −1

n B−1/2
)
B,

= (T−1
n B)m−k ,
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where Tn = B1/2YnB
1/2. This proves the theorem. □

Remark 2.2. The map (A,B) 7−→ A♯k/mB has the conjugate symmetry relation, i.e

(2.8) A♯k/mB = A1/2(A−1/2BA−1/2)(m−k)/mA1/2 = B♯(m−k)/mA.

Corollary 2.3. With the above assumptions, the following statements hold:

(1) For a fixed positive operator B, the maps X 7−→ X♯k/mB, and X 7−→ B♯k/mX are operator
increasing and concave;

(2) If L ∈ B(H) be a invertible operator, then

(L∗AL)♯k/m(L∗BL) = L∗(A♯k/mB)L .

Definition 2.4. With the above notations, if B = (B1, · · · , Bm) be a m-tuple of positive operators
and κ = (k1, · · · , km) be a m-tuple of nonnegative integers such that k1 + · · · + km = N . We define
the arithmetic, harmonic, and geometric mean of several operators as follows:

am(κ;B) = a2(k1, N
′;B1,am−1(κ

′;B′)) =
k1B1 + · · ·+ kmBm

N
(2.9)

hm(κ;B) = h2(k1, N
′;B1,hm−1(κ

′;B′)) =

(
k1B

−1
1 + · · ·+ kmB−1

m

N

)−1

(2.10)

gm(κ;B) = g2(k1, N
′;B1,gm−1(κ

′;B′))(2.11)

where κ′ = (k2, · · · , km), N ′ = k2 + · · ·+ km and B′ = (B2, · · · , Bm).
In the next theorem, we study the properties of the operator mean gm(κ;B).

Proposition 2.5. The operator mean gm(κ;B) satisfies the following properties:

(1) If B1, · · · , Bm are commuting, and r = (r1, · · · , rm) is a sequence of nonnegative rational
numbers with r1 + · · ·+ rm = 1 then

gm(r;B1, · · · , Bm) = Br1
1 · · ·Brm

m .

(2) Self–duality relation, i.e
(gm(κ;B))−1 = gm(κ;B−1),

where B−1 = (B−1
1 , · · · , B−1

m ).

(3) The arithmetic–geometric–harmonic mean inequality, i.e

hm(κ;B) ≤ gm(κ;B) ≤ am(κ;B) .

(4) The algebraic equation, i.e. the equation X(BX)N−1 = A(BA)k1−1 has one and only one
solution, X = gm(κ;A,B−1, · · · , B−1), where k1 + · · ·+ km = N .

Proof. (1) Follows immediately from the definition of gm.
(2) Follows by a simple induction on m ≥ 2 with the duality relation:

(A♯k/mB)−1 = A−1♯k/mB−1 .
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(3) By induction on m ≥ 2, it is well known for m = 2. Assume that it holds for m − 1, and
show that it holds for m. According to (2.3) with n = 0, we obtain

A♯k/mB ≤ k

m
A+

m− k

m
B .

Now, by using the definition of gm(κ;B), we have

gm(κ;B) = g2(k1, N
′;B1,gm−1(κ

′;B′)) ≤ g2(k1, N
′;B1,am−1(κ

′;B′))(2.12)

≤ a2(k1, N
′;B1,am−1(κ

′;B′)) = am(κ;B)

where B = (B1, B2, · · · , Bm) is positive operator hence

gm(κ;B−1) ≤ am(κ;B−1) ,

and by (1.3) and the fact that the map X 7→ X−1 is operator decreasing, we obtain the
geometric-harmonic mean inequality.

(4) We have

X = gm(κ;A,B−1, · · · , B−1) = g2(k1, N
′;A,gm−1(κ

′;B−1, · · · , B−1))

= g2(k1, N
′;A,B−1)

= B−1/2(B1/2AB1/2)k1/NB−1/2 ,

thus B1/2XB1/2 = (B1/2AB1/2)k1/N , and so

(B1/2XB1/2)N = (B1/2AB1/2)k1 ,

or equivalently

B1/2XB1/2B1/2XB1/2 · · ·B1/2XB1/2 = B1/2AB1/2B1/2AB1/2 · · ·B1/2AB1/2 .

Therefore X(BX)N−1 = A(BA)k1−1.
□

Proposition 2.6. Assume that B1, B2, · · · , Bm ∈ B(H) are positive operators. Then the following
statements hold:

(1) For every α1, α2, · · · , αm ∈ R+

gm(κ;α1B1, · · · , αmBm) = gm(κ;α1, · · · , αm)gm(κ;B) ,

where
gm(κ;α1, · · · , αm) =

N

√
αk1
1 · · ·αkm

m .

(2) The map X 7→ gm(κ;X,B2, · · · , Bm) is operator increasing and concave, i.e.

X ≤ Y =⇒ gm(κ;X,B2, · · · , Bm) ≤ gm(κ;Y,B2, · · · , Bm),

and

gm(κ;λX + (1− λ)Y,B2, · · · , Bm)

≥ λgm(κ;X,B2, · · · , Bm) + (1− λ)gm(κ;Y,B2, · · · , Bm),
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for all positive operators X,Y ∈ B(H) and λ ∈ [0, 1].
(3) For every invertible operator L ∈ B(H), the following equality holds

gm(κ;L∗B1L, · · · , L∗BmL) = L∗gm(κ;B1, · · · , Bm)L .

(4) If dimH < ∞, then

detgm(κ;B) = gm(κ; detB1, · · · , detBm) .

Proof. (1) This is clear, by the definition of gm.
(2) By using induction and Corollary 2.3 (1), we get the result.
(3) This follows from the definition and Corollary 2.3 (2).
(4) By the properties of the determinant, it is easy to see that, for all positive operators A and B,

det(A♯k/mB) = (detA)♯k/m(detB).

The above equality, the definition of gm(κ;B) and, a simple induction on m ≥ 2, implies the
desired result.

□

Corollary 2.7. The map X 7→ gm(κ;B1, · · · , X, · · · , Bm) is operator increasing and concave.

Proof. For m = 2, the desired result holds. For the map

X 7→ gm(κ;X,B2, · · · , Bm) ,

it is the statement of Proposition 2.6 (2). Now, by Remark 2.2 it is easy to see that if
X 7→ gm−1(κ

′;B2, · · · , X, · · · , Bm) is an operator increasing and concave map, then so is X 7→
g2
(
k1, N

′;B1,gm−1(κ
′;B2, · · · , X, · · · , Bm)

)
. □

Corollary 2.8. For all p ∈ (0, 1], there exists a rational sequence {rn} in [0, 1] such that rn ↗ p, thus
lim(A♯rnB) = A♯pB. Hence we can say:
If A = (A1, · · · , Am) is a sequence of positive operators and ω = (p1, · · · , pm) is a probability vector.
Then for each i = 1, 2, · · · ,m − 1, there are sequences of rational numbers {rn,i} in [0, 1], such that
rn,i ↗ pi (i = 1, 2, · · · ,m − 1). Then rn,m = 1 − (rn,1 + · · · + rn,m−1) is convergent to pm. By the
continuity of gm on B(H), we get

gm(ω;A) = gm((p1, · · · , pm); (A1, · · · , Am))

= lim
n→∞

gm((rn,1, · · · , rn,m); (A1, · · · , Am))

= lim
n→∞

gm(rn;A).

where rn = (rn,1, · · · , rn,m). According to the above propositions, gm(ω;A) has the following properties:

(P1) If A1, · · · , Am commute with each other, then

gm(ω;A) = Ap1
1 · · ·Apm

m .
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(P2) Joint homogeneity.

gm(ω; a1A1, · · · , amAm) = ap11 · · · apmm gm(ω,A)

for positive numbers ai > 0 (i = 1, · · · ,m).
(P3) Monotonicity. For each i = 1, 2, · · · ,m, if Bi ≤ Ai, then

gm(ω;B) ≤ gm(ω;A)

(P4) Continuity. For each i = 1, 2, · · · ,m, let {A(k)
i }∞k=1 be sequence of positive operators such that

A
(k)
i → Ai as k → ∞. Then

gm(ω;A
(k)
1 , · · · , A(k)

m ) → gm(ω;A1, · · · , Am).

(P5) Congruence invariance. For any invertible operator L,

gm(ω;L∗A1L, · · · , L∗AmL) = L∗gm(ω;A1, · · · , Am)L.

(P6) Joint concavity.

gm(ω;λA1 + (1− λ)B1, · · · , λAm + (1− λ)Bm)

≥ λgm(ω;A1, · · · , Am) + (1− λ)gm(ω;B1, · · · , Bm) for all 0 ≤ λ ≤ 1 .

(P7) Self-duality.
gm(ω;A−1

1 , · · · , A−1
m )−1 = gm(ω;A1, · · · , Am)

(P8) Determinantial identity.

detgm(ω;A1, · · · , Am) =

m∏
i=1

(detAi)
pi .

(P9) Arithmetic–geometric–harmonic mean inequalities.(
n∑

i=1

piA
−1
i

)−1

≤ gm(ω;A) ≤
n∑

i=1

piAi.

Remark 2.9. It is well known that (A,B) 7→ g2(ω;A,B) is symmetric. However gm is not symmetric
for m ≥ 3, [14].

In the following example, we provide a numerical example to illustrate the above theoretical results
with two numerical matrices. We denote by ‖A‖ the Schur’s norm of A defined by

‖A‖ =
√
Trace(A∗A) .

Example 2.10. Assume that A and B are two matrices as follows:

A =


9 3 1

3 8 2

1 2 6

 , B =


5 −1 2

−1 3 1

2 1 5

 .

In order to compute some iterations of the sequence {Tn}, we compute g2(A,B) by algorithm (2.1). By
using MATLAB software R2023a, we obtain numerical iterations T2, T3, · · · , T8 satisfying the following

DOI: https://dx.doi.org/10.30504/JIMS.2023.415016.1144

https://dx.doi.org/10.30504/JIMS.2023.415016.1144


J. Iran. Math. Soc. 5 (2024), no. 1, 33-43 F. Mirzapour and A. Morassaei 41

estimations in the tables 1, 2, 3 and 4 with m = 1000 and k = 1, · · · ,m− 1, and good approximations
are obtained from the first iterations. This computation shows that the sequence {Tn} converges.

‖T1 − T0‖ 0.0016154728057480257676
‖T2 − T1‖ 0.0011634280912704566754
‖T3 − T2‖ 0.00051474649329987193312
‖T4 − T3‖ 0.00008032143632017041564
‖T5 − T4‖ 0.0000016852354079912081024
‖T6 − T5‖ 0.00000000072232699894026335025
‖T7 − T6‖ 0.000000000000021791503230382269578
‖T8 − T7‖ 0

Table 1. estimation for k = 1

‖T1 − T0‖ 0.16541828864772079033
‖T2 − T1‖ 0.073685097004985281033
‖T3 − T2‖ 0.012398848987408535652
‖T4 − T3‖ 0.000306904176498107729
‖T5 − T4‖ 0.00000018290682899704290181
‖T6 − T5‖ 0.00000000000007029675847066042085
‖T7 − T6‖ 0.00000000000001788010648157496553
‖T8 − T7‖ 0

Table 2. estimation for k = 100

‖T1 − T0‖ 0.22161277342124655054
‖T2 − T1‖ 0.0054140138376658356392
‖T3 − T2‖ 0.0000032366912930827457344
‖T4 − T3‖ 0.0000000000011569560685390664217
‖T5 − T4‖ 0.0000000000000025646512328328951085
‖T6 − T5‖ 0.000000000000002122893325126378536
‖T7 − T6‖ 0.0000000000000011647424834813782837
‖T8 − T7‖ 0

Table 3. estimation for k = 500

DOI: https://dx.doi.org/10.30504/JIMS.2023.415016.1144

https://dx.doi.org/10.30504/JIMS.2023.415016.1144


42 J. Iran. Math. Soc. 5 (2024), no. 1, 33-43 F. Mirzapour and A. Morassaei

‖T1 − T0‖ 0.0000000038666396223820110835
‖T2 − T1‖ 0.0000000000000035388086795394242018
‖T3 − T2‖ 0.000000000000005193186131580818277
‖T4 − T3‖ 0.0000000000000023288234633381844451
‖T5 − T4‖ 0.0000000000000012755491433176288343
‖T6 − T5‖ 0.0000000000000028261664256307950536
‖T7 − T6‖ 0.0000000000000029373740229761031035
‖T8 − T7‖ 0

Table 4. estimation for k = 999
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