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ON INFINITE DIRECT PRODUCTS OF RINGS MODULO THEIR DIRECT
SUMS

E. MOMTAHAN

Dedicated to Professor O. A. S. Karamzadeh

Abstract. In this article, inspiring with a result due to Karamzadeh, we examine the∏
i∈I Ri/ ⊕i∈I Ri, where {Ri}i∈I is an infinite family of rings. We observe that they are not self-

injective on either side. However, in some important cases, they are ℵ0-self-injective. Along this
line, we study the interconnection between regularity (in the sense of von Neumann), injectivity , and
ℵ0-injectivity.

It is not knowledge, but the act of learning, not possession but the act of getting there, which
grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away
from it, in order to go into darkness again. The never-satisfied man is so strange; if he has
completed a structure, then it is not in order to dwell in it peacefully, but in order to begin
another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely
conquered, stretches out his arms for others. (Carl Friedrich Guass)

Our story begins with a paper of Matlis, in which, among other things, he has studied commutative
reduced rings, their minimal primes, their injective hulls and their classical rings of quotients (see [18]).
As Matlis remarks in the introduction of the article, in writing the paper, he was confronted with some
serious difficulties:

Some of this information is already known. Thus in order to present more detailed
results, a good deal of background information has to be used, imposing a severe
strain on the general reader unfamiliar with the subject. Further compounding the
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problem is that much of the information is scattered wholesale about the literature. An
even deeper difficulty is that this information, while relatively elementary in character,
is usually thrown off as pieces of debris from general construction in the theory of
noncommutative rings, or category and sheaf theory, so that no easy route to the
subject is available. In order to overcome these problems we shall present statements
and proofs of most relevant facts about a reduced ring and its minimal prime spectrum
including folklore and elementary exercises, as well as the work of other authors, giving
attributions only for the deeper results.

I think the result of his effort was quite successful and the outcome is a brilliant example of research-
expository articles. In the last section of his paper, he provides some interesting examples, and the
first one has the central figure of the discussion.

Example 1: Let I be an infinite index set; for each i ∈ I, let Fi be a field, K =
∏

i∈I Fi and
J = ⊕i∈IFi. In this example, he studied prime ideals of K and K

J . After showing that all prime ideals
of K

J are essential, Matlis posed his questions:

Matlis’s Questions
(1) It is an open question whether or not the ring R = K

J of Example 1 is self-
injective.
(2) Let R be any self-injective VNR that is not a finite direct sum of fields; and let J be
the sum of all of the simple submodules of R. (J could be 0.) Then R/J is a VNR with
an infinite number of prime ideals and they are all essential in R. For by Proposition
3.13 the proof can easily be reduced to the case of Example 1. The question of whether
or not R/J is selfinjective is a generalization of the open question posed by Example
1.

He posed the second question, as if, he was expecting that the answer of his first question was positive
(which is not). Karamzadeh had given the reference [18] to one of his MS.c students (named Mehrdad
Namdari), to write a research thesis on it. It was in this way that he came across these questions.
After a period of creative thinking which all mathematicians are familiar with, he finally solved the
problems and published his own solution in an article entitled “on a Question of Matlis” (see [14]). I
think this article, like any other good articles, has some unsaid points that here I will try to address a
corner of it. As we review his answers, we try to highlight the main points of his solution and at the
same time to generalize some of his results. In this way, we will reveal those “unsaid points”. I can
even claim that this topic has shaped a considerable part of his own intellectual and research life and
also some of his students, including myself.

This article has several goals, some of them pedagogical. One of these goals is to show readers how
a question can be an unending source of inspiration for the next and abundant research. And I will
explain this issue not only by telling that in a general phrase but by showing with a concrete example,
that is, Kazemzadeh’s answers. I’d be delighted to stimulate a few readers in this way. Another issue
that this article intends to highlight is that we should look at mathematics as a two-way gateway.
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Historically, it was usually non-commutative algebraists who studied commutative algebra in the hope
of generalizing its theorems to non-commutative settings. This is, of course, an efficient method for
research - as the Goldie school at University of Leeds, in the forties to the eighties of the twentieth
century - was exactly the representative of this way of thinking. But as it can be seen from our story,
it is harmless that experts in commutative algebra occasionally visit the articles of their colleagues
in non-commutative algebra. Last but not least, the present writing is a tribute to Professor O.A.S.
Karamzadeh in a mathematical way, the way he prefers to all other ways.

All rings are assumed to be associative with an identity and modules are unitary modules. A ring
R is called regular(in the sense of Von Neumann), if for every a ∈ R there exists b ∈ R such that
a = aba. A ring R is said to be reduced, if R has no non-zero nilpotent element. The direct sums of all
minimal left ideals of a ring R, is called the socle of R and is denoted by Socl(R). It is well known that
Socl(R) is the intersection of all essential left ideals of R. A ring R is said to be leftself-injective (left
ℵ0-self-injective) (left f-self-injective), if every module homomorphism ϕ : I −→ R can be extended to
a module homomorphism ϕ̄ : R −→ R, whenever I is a left ideal ((a left countably generated ideal),
(a left finitely generaated)) of R. It is evident that every left self-injective ring is left ℵ0-self-injective.
The reader is referred to [17] for undefined terms and notations.

Let R be a ring and x = ai(modAi), i ∈ I, be a (countable) system of congruences where ai ∈ R,
for all i ∈ I and each Ai is a principal left ideal of R. If every such system that is finitely solvable has
a simultaneous solution in R we say that R is (ℵ0−)linearly compact. A subset S of R is said to be
orthogonal provided xy = 0 for all x, y ∈ S and x ̸= y. If S ∩ T = ∅ and S ∪ T is an orthogonal set in
R, then S is said to have a left separation from T if there exists an element a ∈ R with as2 = s, for all
s ∈ S, and a ∈ annl(T ). By a countable system of linear equations over a ring R, we mean countably
many linear equations with coefficients from R involving a countable set of indeterminates where in
each equation there exists only a finite set of indeterminates with nonzero coefficients. A ring R is
called ℵ0-algebraically compact, if every countable system of linear equations over a ring R which is
finitely solvable has a simultaneous solution in R.

1. The first answer to the question of Matlis

As a matter of fact, Karamzadeh, has given two independent answers to the Matlis problems and
especially the second answer is more sophisticated than the first answer and quite independent of
Osofsky’s result. The second proof was also more fertile than the first one and I will explain it later
in Section 3, but for now, we focus on his first answer and the possibilities it opens to us for further
developments.

As we said earlier, the first answer is based on a deep observation of Osofsky. We present it exactly
as it has been presented in [23].

Theorem 1.1. Let {ei}i∈I be an infinite set of orthogonal idempotents of R. Assume for each A ⊆ I,
there exists mA ∈ R with mAei = ei, for all i ∈ A, and ejmA = 0, for all j ∈ I \ A. Then for all
MR ⊇ RR, M

⊕eiR+kerπ is not injective, where π : R −→
∏

i∈I eiR, π(x) = (eix).
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In [22, Lemma 5], Osofsky has shown that if R is a right self-injective regular ring that contains
an infinite set of orthogonal idempotents {en}n∈N, then R/⊕ enR is not an injective right R-module;
this immediately gives a negative answer to the second question of Matlis. Having this lemma in her
arsenal, she was able to prove her well known that theorem; R is semisimple Artinian if and only if
every (cyclic) finitely generated right R-module is injective (see [22, Theorem ]).

Though in [14], Theorem 1.1 has been used only to show that K
J is not self-injective, but actually the

very same proof works well to prove the following theorem. Before we go through the result further, we
remind some necessary concepts. Let R be a ring, we say that the ideal I ⊂ R is pure if the quotient
ring R/I is flat over R. It is well known that ⊕Ri is a pure ideal of

∏
Ri. We also recall that if K is

a two-sided ideal of the ring R, then R(R/K) is flat if and only if every injective right R/K-module
is injective as an R-module. A more formal generalization of this observation can be seen in the next
result.

Proposition 1.2. ( [8, Proposition 6.17] Let ϕ : R −→ S be a ring map, and let A be an injective
right S-module. If RS is flat, then A is also injective as a right R-module.

Based on the above results and discussion, we are ready to prove the next theorem.

Theorem 1.3. Let {Ri}i∈I be an infinite family of rings (with identity). Then∏
Ri

⊕Ri
,

is never left or right self-injective.

Proof. Let R =
∏

i∈I Ri, J =
⊕

Ri, and S = R/J . For each i ∈ I, let ei = (ai) ∈ R, where aj = 1,
if j = i and aj = 0, if j ̸= i. Then clearly Ri = eiR, for every i ∈ I, eiej = 0, when i ̸= j and
⊕Ri = ⊕eiR. For each A ⊆ I, we put χA, then clearly eiχA = ei, for all i ∈ A and eiχA = 0, for
every i ∈ I \ A. We also note that if π : R −→

∏
eiR is the natural map, whith π(x) = (eix), then

kerπ = (0). Now in view of Theorem 1.1, S is not injective as an R-module. On the other hand, S
is a flat R-module (on either side), so by Proposition 1.2, any injective S-module is also injective as
an R-module. But we have already observed that S is not injective as an R-module, so S cannot be
self-injective on either side. □

Corollary 1.4. Let {Ri}i∈I be an infinite family of regular rings, then
∏

Ri

⊕Ri
is neither a left nor a

right self-injective ring.

Ironically, Handelman (see [8, pp. 385–386]) has observed that, if R is a regular ring, then the
ring Rω/R(ω) is left and right ℵ0-self-injective, where ω = {0, 1, 2, · · · }. Even a more general version
of this observation can be stated.

Proposition 1.5. Let {Ri}i∈I be an infinite family of regular rings, then∏
Ri

⊕Ri

is ℵ0-self-injective on either side.
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A generalization of Handelman’s observation has been given by the author as follows.

Proposition 1.6. Let Ri be an infinite family of left coherent, left f-injective rings. Then
∏

Ri/⊕Ri

is a left ℵ0-self-injective ring.

Proof. See [20, Theorem 2.7]. □

In the light of Theorem 1.3 or Corollary 1.4, we know that Rω/R(ω) is neither right nor left self-
injective ring. Now, using a result in [8], perhaps, even a more interesting point can be stated. We
need a proposition from [8].

Proposition 1.7. ([8, Proposition 9.31]) Let R be a regular, right ℵ0-self-injective ring, and let J be
a two-sided ideal of R. If R

J contains no uncountable direct sums of nonzero right ideals, then R
J is a

right self-injective ring.

We also need a classic result due to Tarski [25] and Sierpinski [24], though, unfortunately, here,
just like the case of Zorn and Kuratowski on the so-called Zorn’s lemma, in the literature, only the
name of Tarski is mentioned. Let X be an infinite set. The family A ⊂ P (X), is called an almost
disjoint family, if every element of A is infinite and the intersection of any two distinct members is
finite. If |X| = ℵ0, then X has an almost disjoint family A with |A| = 2ℵ0 .

Corollary 1.8. Let R be a regular ring. Then Rω/R(ω) contains an uncountable direct sums of
non-zero right (and also left) ideals. In particular, its Goldie dimension is equal to, or greater than
2ℵ0.

Proof. Let A be an almost disjoint set on ω. Now the set {χA + R(ω)}A∈A is a set of orthogonal
idempotents which has 2ℵ0 elements. This shows that the Goldie dimension of Rω/R(ω) is equal to,
or greater than 2ℵ0 . □

Example 1.9. This is an outcome of a result due to Tyukavkin in [26]: let F be a countable field,
Ri = Mi(F), and R =

∏
i∈NRi, then R/M where M denotes a maximal twosided ideal containing

J = ⊕i∈NRi, is a directly finite self-injective ring that is not a V -ring (see also the introduction
of [12]). Comparing Tyukavkin’s result with Corollary 1.4, we observe that though R/J is not self-
injective, so is R/M .

2. The second answer to the question of Matlis

The following Theorem was proved in [14, Theorem 2.2]. The countable version has been proved
in [15, Proposition 1.2]. What follows is a mixture of these two. Based on this theorem, the second
answer to the question of Matlis has been provided. In results that will be proved in the sequel, the
following theorem will be used freely.

Theorem 2.1. ([14, Theorem 2.2] and [15, Proposition 1.2]) Let R be a reduced ring, then the following
statements are equivalent.

(1) R is a regular ring which is (ℵ0-)linearly compact on principal right ideals;
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(2) R is a regular ring and whenever S ∪T is (a countable orthogonal) an orthogonal set in R with
S ∩ T = ∅, then R has an element which separates S from T ;

(3) R is (an ℵ0-) a self-injective ring.

In [13, Exercise 11.45], it has been asked: Let R be the ring Zω
2 , and let I denote the ideal Z(ω)

2 .
Then (i) R is self-injective, and hence algebraically compact; (ii) R/I is not algebraically compact.
In the light of the above theorem, we know that the self-injectivity and algebraically compactness of
R/I are the same.

As a first application of this theorem, we can give an independent proof for Handelman’s observation.
The proof is exactly the same as the proof Karamzadeh has already given for K/J. Hence we do not
repeat it.

Proposition 2.2. Let {Ri}i∈I be an infinite family of abelian regular rings. Then

(1)
∏

Ri/⊕Ri is not self-injective;
(2)

∏
Ri/⊕Ri is ℵ0-self-injective.

Proof. (1) See [14, pages 2724-2725].
(2) See [15, pages 1510-1511]. □

Let X be a set, and A a family of subsets of X which is closed under complementation and
formation of countable unions, that is a σ-algebra. Let M(X,A) be the collection of all A-measurable
real-valued functions on X, i.e., those f : X −→ R such that for an interval I of any type, or just
each open interval, {x ∈ X | f(x) ∈ I} belongs to A. If f and g are members of M(X,A), then
f + g and fg which are defined pointwisely, belong to M(X,A) (see [10], Page 81, Theorem C), hence
M(X,A), with pointwise addition and multiplication is a commutative (reduced) ring. Now, Let X

be a Hasudorff space, if A is the σ-algebra of all Borel measurable sets, then we call M(X,A), the
ring of all Borel measurable functions. If X = Rn, then we may speak of Lebesgue measurable sets.
And in this case, each Borel set is a Lebesgue measurable set. When X = Rn, that is, when X is a
finite-dimensional Euclidean space, the cardinal number of all Borel measurable functions is c = 2ℵ0

(see [4], Page 96, Theorem 6. 2. 8]) and the cardinal number of all Lebesgue measurable functions is
2c. By C(X), we mean the ring of all real valued continuous functions, see [7], for undefined terms
and definitions, also by RX we mean the ring (again by pointwise addition and multiplication) of all
real-valued functions on X. Since every Borel set is generated by open sets of X, and the inverse
image of any open set under a continuous function remains open, hence every continuous function
is a Borel measurable function. In the special case, X = Rn, since the class of all Borel measurable
sets is a subclass of Lebesgue measurable sets, every continuous function is a Lebesgue measurable
function as well. Therefore the following inclusions hold whenever A is either the σ-ring of all Borel
measurable sets (when X is an arbitrary topological space) or the σ-ring of all Lebesgue measurable
functions (when X is a finite-dimensional Euclidean space):

C(X) ⊂ M(X,A) ⊂ RX
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But in general , i.e., when X is a topological space and A is an arbitrary σ-algebra, we know
that both of C(X) and M(X,A) are subrings of RX . In [9], it has been shown that M(X,A) is
von Neumann regular, but we give a proof for completeness (see Lemma 3.1). By Z(f) we mean
{x ∈ X | f(x) = 0}.

Let X be an infinite discrete topological space, then every function in RX is continuous, i.e., C(X),
is the whole RX . On the other hand, CF (X), i.e., the socle of C(X) is nothing but R(X). After giving
answer to the question of Matlis, Karamzadeh got interested in the following generalization of the
question: For a completely regular space X, when is C(X)/CF (X) self-injective or ℵ0-self-injective?
In the following lines, we first explain necessary concepts and symbols in the rings of functions (e.g.,
rings of continuous functions, C(X), rings of measurable functions, M(X,A), and their factors).

3. When regularity and ℵ0-self-injectivity come together

The fact that K
J , is ℵ0-self-injective or Handelman’s observation, gives us a strong motivation to

scrutinize the interconnection between regularity, ℵ0-injectivity and injectivity. In this section, we
provide some “natural” sources of ℵ0-self-injective regular rings. Those who are familiar with rings of
(real-valued) functions know that in some important examples, regularity and ℵ0-injectivity are two
inseparable friends.

3.1. Source 1: Rings of measurable functions. Rings of measurable functions, M(X,A), are a
natural source for regular ℵ0-self-injective rings. We will see soon that the other source, i.e., D(X) is
in fact a factor of M(X,A). Since these sources are less well-known than rings of continuous rings we
present them in full detail. The next lemma is well-known (see [9]) but we give proof for the sake of
completeness.

Lemma 3.1. M(X,A) is a von Neumnn regular ring.

Proof. Let f be a measurable function. We find another measurable function g such that fgf = f .
We define g as follows: on Z(f) we define g to be zero and on X \ Z(f) we define g = 1

f . It is not
difficult to see that g is measurable function and has the appropriate property. □

Now we show that M(X,A) is ℵ0-self-injective. We need the following Lemma for proving our
theorem:

Lemma 3.2 (Pasting Lemma for measurable functions). Let {Ai}∞i=1 be a family of mutually disjoint
measurable sets and f :

∪
Ai −→ R be a function. If f |Ai = fi is a measurable function, then f is

measurable function.

Proof. See [3]. □

Theorem 3.3. M(X,A) is an ℵ0-self-injective ring.

Proof. Let T
∪

S ⊆ M(X,A) be a countable orthogonal subset of M(X,A), with T
∩
S = ∅, in the

view of Theorem 2.1, we must separate T from S, that is, we must find a measurable function f such
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that ft = t2 and fs = 0, where t and s are arbitrary elements of T and S respectively. Let T = {fi}∞i=1

and S = {gi}∞i=1 and

L =

∞∪
i=1

Coz(fi), K =

∞∪
i=1

Coz(gi)

Both L and K are measurable sets. Since T
∪
S is an orthogonal set, hence for every two distinct

elements h1, h2 of S
∪
T we have Coz(h1)

∩
Coz(h2) = ∅. Let Y = L

∩
K, we define f : X −→ R by

f |Coz(fi) = fi and f |Coz(gi) = 0 and in addition f |X\Y = 0, then f is a well-defined map. By Pasting
Lemma (the above lemma) f is a measurable function, i.e., f ∈ M(X,A). And f has the desirable
property, i.e, ffi = f2

i and fgi = 0. □

3.2. Source 2: D(X). In [9], D(X) has been introduced as the set of continuous functions f on
topological space X to the two point compactification of the reals, R

∪
{+∞,−∞}, which are real

valued on a dense subset Xf of X.
By a representation theorem due to Henriksen and Johnson, every Archimedean reduced F-ring is

embedded in a D(X). In general, under pointwise addition and multiplication, D(X) is not a ring.
However, D(X) is an algebra, if and only if X is a quasi F-space. A completely regular space X is
called a quasi F -space, if every dense co-zero set Y in X is C∗-embedded. Since D(X) ∼= D(βX),
without loss of generality, we may suppose that X is a compact space. So when X is a compact space,
then D(X) becomes a ring with pointwise addition and multiplication. Let N be a subfamily of A,
with E ∈ A, F ∈ N , and E ⊆ F , implying E ∈ N and closed under countable unions - a σ-ideal.
The members of N is called the null sets, and accordingly, N = {f ∈ M(X,A) | Coz(f) ∈ N} is said
to be the ideal of null functions. In [9, Theorem 2.1], it has been shown that when X is a basically
disconnected compact space, then D(X) is isomorphic to a ring of measurable functions modulo N .

In [8, Proposition 9.31], it has been shown that every factor ring of an ℵ0-self-injective regular ring
is also ℵ0-self-injective regular. Therefore we have:

Corollary 3.4. Let I be an ideal of M(X,A), then M(X,A)
I is also an ℵ0-self-injective regular ring.

Proof. By Theorem 3.3, we have already shown that M(X,A) is an ℵ0-self-injective regular ring. Now
by [8, Proposition 9.31], we are thorough. □

Based on the above concepts and results we will have:

Corollary 3.5. Let X be a basically disconnected compact space. Then D(X) is an ℵ0-self-injective
ring.

Proof. By [9, Theorem 2.1], D(X) ∼= M(X,A)
N , where N is the ideal of null functions. By Corollary 3.4,

D(X) is an ℵ0-self-injective regular ring. □

3.3. Source 3: C(X). To answer the question, when is C(X)/CF (X) ℵ0-self-injective, Karamzadeh
(joint with Estaji) in [6], proved the following nice observation.

Theorem 3.6. ([6, Theorem 1] The following are equivalent:
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(1) X is a P-space;
(2) C(X) is ℵ0-selfinjective;
(3) C(X)/CF (X) is ℵ0-selfinjective.

Again here, like M(X,A) and D(X), we are confronted with the same phenomena, that regularity
and ℵ0-self-injectivity come together.

4. Where regularity and ℵ0-self-injectivity do not come together

Though, in Section 4, we have already observed that, there are instances in which regularity and
ℵ0-self-injectivity come together, but there are instances that they are quite independent concepts.
We have already dealt with rings

∏
p∈P Zp and

∏
p∈P Zp

⊕p∈PZp
. It is interesting that our source of examples

comes from subrings of
∏

p∈P Zp containing ⊕p∈PZp. Before giving our example, we need a lemma
whose verification is immediate. In this section by P, we always mean the set of all prime (natural)
numbers.

Lemma 4.1. Let n be a natural number, then Zn is contained in
∏

p∈P Zp as a subring.

The next definition and next proposition are a very special case of a more general concept and
theorem, introduced in [1] and [2]. Since it has not been published yet, we give proof here. In
the following, we say that R is a pure subring of S if the additive group of R is a pure subgroup
of the additive subgroup of S. We say that a subgroup H of a group G is pure if for every n ∈ N,
nH = H ∩ nG.

Definition 4.2. Let Mn := {x ∈
∏

p∈P Zp | ∃k ∈ N such that kx ∈ Zn}.

Proposition 4.3. For every n ∈ N, the following holds:
(1) Mn is a subring of

∏
p∈P Zp, containing ⊕p∈PZp ⊕ Zn;

(2) Mn
⊕p∈PZp

is (ring) isomorphic with Qn;
(3) Mn is a regular ring;
(4) Mn is not ℵ0-self-injective ring.

Proof. (1): Let x, y ∈ Mn, we know that there exist k, l ∈ N such that kx = s and ly = t, where
s, t ∈ Zn. We observe that kl(xy) = (kx)(ly) = st ∈ Zn. On the other hand kl(x+y) = l(kx)+k(ly) =

ls+ kt which belong to Zn as well. This shows that Mn is a ring.
(2) Define ϕ : Mn −→ Zn⊗Q with ϕ(x) = t⊗ 1

k , where kx = a+t ∈ (⊕p∈PZp)+Zn. First of all, we show
that ϕ is well-defined. Suppose that for x ∈ Mn, there are k, k′ ∈ N such kx = a+ t and k′x = a′ + t′.
Note that k′kx = k′a+ k′t = ka′ + kt′, which implies that (k′a+ k′t)⊗ 1

kk′ = (ka′ + kt′)⊗ 1
kk′ . That

is k′a ⊗ 1
kk′ + k′t ⊗ 1

kk′ = ka′ ⊗ 1
kk′ + kt′ ⊗ 1

kk′ . But ka ⊗ 1
kk′ = 0 = ka′ ⊗ 1

kk′ . Hence t ⊗ 1
k = t′ ⊗ 1

k′ ,
i.e., ϕ is well-defined.
Now we show that ϕ is a ring homomorphism. To show that ϕ(x+ y) = ϕ(x) + ϕ(y), suppose that for
x, y ∈ Mn, there are k, l ∈ N such that kx = a + s and ly = b + t. Now consider lkx = la + ls and
kly = kb + kt, we have kl(x + y) = la + ls + kb + kt, this implies that ϕ(x + y) = ls + kt ⊗ 1

kl , but
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ls⊗ 1
kl+kt⊗ 1

kl = s⊗ 1
k+t⊗ 1

l = ϕ(x)+ϕ(y). Now, since klxy = (kx)(ly) = (a+s)(b+t) = ab+at+sb+st,
where ab+ at+ sb ∈ ⊕p∈PZp, we have ϕ(xy) = st⊗ 1

kl = (s⊗ 1
k )(t⊗

1
l ) = ϕ(x)ϕ(y). Furthermore, we

show that ϕ is onto. Without loss of generality, we may suppose that s⊗ 1
k ∈ Zn⊗Q, now the equation

k(x+⊕p∈PZp) = s+⊕p∈PZp is solvable, due to
∏

p∈P Zp/⊕p∈P Zp being divisible. Hence, there exists
x ∈

∏
p∈P Zp such that kx = s + a, where a ∈ ⊕p∈PZp, therefore x ∈ Mn and ϕ(x) = s ⊗ 1

k . Now we
show that kerϕ = ⊕p∈PZp. To observe this, recall first that Zn⊗Q ∼= S−1Zn, where S = Z\{0}. Now
if t⊗ 1

k = 0 if and only if there exists n ∈ Z \ {0}} such that nt = 0, i.e., t ∈ ⊕p∈PZp.
(3) Since ⊕p∈PZp is regular, and also Zn ⊗ Q ∼= Qn is a regular ring, we conclude that Mn is regular
(see [8]).
(4) Since Mn is regular and Soc(Mn) = ⊕p∈PZp is countably generated, if it were ℵ0-self-injective,
it would be self-injective, due to [20, Corollary 4.4], but this is not the case because the maximal
quotient ring of Mn is

∏
p∈P Zp. □

These Mn, are regular but they are not ℵ0-self-injective. It seems that to have an ℵ0-self-injective
ring which is not regular is a rarer occurrence. Of course, one can examine

∏∞
n=2 Zn or the product

of any family of non-regular self-injective rings. If one is looking for an ℵ0-self-injective ring which
is neither regular nor self-injective, one may see [21]. Let R = Z(+)Q/Z be a ring with addition
(m,n) + (p, q) = (m+ p, n+ q) and multiplication (m,n)(p, q) = (mp,mq + np). The ring R is called
the (trivial) idealization of Z with respect to the Z-module Q/Z. The ring R is a commutative ring
and the ideal 0(+)Q/Z is the Jacobson radical of R. Now S = Rω/R(ω) is an ℵ0-self-injective such
that S/Jac(S) ∼= Zω/Z(ω). Hence S is neither regular nor self-injective.

Proposition 4.4. There is a commutative ℵ0-self-injective ring S, such that S/Jac(S) ∼= Zω

Z(ω) . In
particular, S is neither self-injective nor regular.
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