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ABSTRACT. The right R-module M is said to be a w-dual Rickart module, if for every endomorphism
f: M — M with projection invariant image, f(M), in M, f(M) is a direct summand of M. We show
that the class of the m-dual Rickart modules contains properly the class of all m-dual Baer modules and
the dual Rickart modules. We also investigate the transfering between a base ring R and R[z] (and
R][z]]). It is shown that, in general, the class of m-dual Rickart modules is neither closed under direct
summands nor closed under direct sums. We conclude the paper by giving a connection between the

classes of m-dual Baer and =-lifting modules.

1. Introduction

Throughout this paper, R will be an associative ring with unity and any module M will be a
unital right R-module. For a right R-module M, S = Endgr(M) will denote the endomorphism
ring of M, and Mat,(R) denotes an n x n matrix ring over the ring R. For two R-modules M
and N, Homp(M,N) will indicate the set of all homomorphisms from M to N. The notations
N < M and N <; M mean that N is a submodule of M and N is a direct summand of M,
respectively. By Q and Z we denote the ring of rational and integer numbers, respectively. E(M)
denotes the injective hull of a module M and Z(p>) denotes the Priifer p-group for any prime integer
p. We also denote ry(I) = {m € M | Im = 0},rs(I) = {p € S| Ip =0} for @ # 1 C S,
rrR(N) ={r e R| Nr=0}Ig(N)={p €S| pN) =0} for N < M. For a subset X of S and a
submodule N of M, we denote the submodule } . f(N) by X (V).
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Let N < M for a module M. Then N is called a fully invariant submodule of M (denoted by
N<IM)if f(N)C N forall feS,and N is called a projection invariant submodule of M (denoted
by N <, M) if e(N) C N for all idempotent endomorphisms e € S. Clearly, every fully invariant
submodule is projection invariant. By [!, Proposition 3.1], if N <; M, then N < M if and only if
N <, M. Note that a right ideal I of a ring R is called projection invariant in Rr (denoted by I <, Rg)
if eI C I for all €2 = e € R. Moreover, fully invariant right ideals of R coincide with two-sided ideals
of R.

In 2010, dual Baer modules were introduced by Keskin Tiitiincii and Tribak. Let M be a module.
M is called a dual Baer module if for every submodule N of M, Dg(N) ={f € S| f(M) C N} is
a direct summand right ideal of Sg (see [7]). Later in 2013, Amouzegar and Talebi introduced quasi-
dual Baer modules. A module M is said to be quasi-dual Baer if, for every fully invariant submodule
N of M, there exists an idempotent e € S such that Dg(N) = eS (see [2]). In 2021, Kara and in
2022, Keskin Tiitiincii and Tribak defined m-dual Baer modules (according to Kara, dual m-endo Baer
modules). A module M is called 7-dual Baer if for each N <, M, Dg(N) = eS for some ¢* = ¢ € S
(see [0] and [3]). Clearly, M is dual Baer = M is m-dual Baer = M is quasi-dual Baer, for any module
M. Also, in 2011, Lee, Rizvi, and Roman introduced dual Rickart modules. A module M is called
dual Rickart, if for every endomorphism f: M — M, f(M) <q M (see [11]).

Motivated by all these works ( [2,6—5] and [l1]), we introduce m-dual Rickart modules, in this
paper. A module M is called a m-dual Rickart module if f(M) <, M, then f(M) <4 M, for every
endomorphism f : M — M. Our aim is to present some properties of these modules and investigate
direct summands and direct sums of them.

Section 2 is devoted to the study of some basic properties and direct summands of m-dual Rickart
modules. We construct some examples showing that m-dual Rickart modules are proper generalizations
of dual Rickart modules (Example 2.5) and m-dual Baer modules (Example 2.6). We will say that R
is a right m-dual Rickart ring, whenever the R-module Rp is a w-dual Rickart module, for any ring R.
We investigate the transfer of the right m-dual Rickart condition between a base ring R and R[z] (and
R][x]]). We prove that if R[x] (R][[z]]) is a right m-dual Rickart ring, then R is a right m-dual Rickart
ring (Proposition 2.12). Also, we illustrate that R[x] and R][[z]] may not be right m-dual Rickart
rings, if R is a right m-dual Rickart ring (Example 2.13). In this section, finally, we study the direct
summands of m-dual Rickart modules. We prove that if M = M; & Ms is a w-dual Rickart module
with M; <, M, then M; and M; are m-dual Rickart (Corollary 2.19).

The investigations in Section 3 focus on the question of when is the direct sum of w-dual Rickart
modules, m-dual Rickart? Mainly, we prove that if M = @, ; M; with M; <, M for all i € I, then M
is a m-dual Rickart module if and only if M; is a m-dual Rickart module for all 7 € I (Theorem 3.7).

The focus in Section 4 is on obtaining a connection between the classes of m-dual Baer and -lifting
modules. Firstly, we give the definitions of 7-lifting modules, w-dual nonsingular modules, and 7w-dual
cononsingular modules. Finally, we prove that a module M is wm-dual Baer and w-dual cononsingular

if and only if it is 7-lifting and 7-dual nonsingular (Theorem 4.10).
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2. m-Dual Rickart modules and direct summands
We start with the definition of w-dual Rickart modules.

Definition 2.1. An arbitrary module M is called a 7-dual Rickart module, if Imf <, M then Imf <,
M, for every endomorphism f: M — M .

Lemma 2.2. Let M be an arbitrary module, and S = Endr(M). M is a m-dual Rickart module if
and only if for every g € S with g(M) <, M, Dg(g(M)) is a direct summand of Sg.

Proof. (=) Suppose M is m-dual Rickart, and g : M — M an endomorphism with g(M) <, M. Then
there exists an idempotent e € S such that g(M) = e(M). Clearly, Dg(e(M)) = eS.

(<) Let g : M — M be an endomorphism, with g(M) <, M. By hypothesis, Dg(g(M)) = eS for
some idempotent e € S. Since e € Dg(g(M)), e(M) C g(M), and since g € Dg(g(M)), g = es for
some s € S. Therefore g(M) C e(M). Hence g(M) = e(M), which is a direct summand of M. O

Examples 2.3. Clearly, every dual Rickart module is w-dual Rickart. Every semisimple module is a
m-dual Rickart module. Every injective module over a right hereditary ring is m-dual Rickart. Any
module which has a von Neumann regular endomorphism ring is w-dual Rickart. The Z-modules

Z(p>) (p is any prime integer), Q and Q/Z are m-dual Rickart modules (see [11, Example 2.3]).
Lemma 2.4. Fvery m-dual Baer module is w-dual Rickart.

Proof. Let f: M — M with Imf <, M be an endomorphism, and S = End(M). Since M is m-dual
Baer, Dg(Imf) = eS for some e = e € S. By Lemma 2.2, M is w-dual Rickart. g

There exists a m-dual Rickart module which is not dual Rickart as we see in the following example.

Example 2.5. Let k be any field of characteristic 0. By [10, Corollary 3.17], the first Weyl algebra
Ai(k) is a simple domain, which is not a division ring. Therefore A;(k) is not a von Neumann
regular ring, because over domains von Neumann regular rings and division rings are coincide. Now,
Ai(k)  Ai(k)
Ai (k) Ai(k)
(see [10, Theorem 3.1]) which is not a domain. By [9, Corollary 18.6], R is not von Neumann regular.
Therefore Rp is not dual Rickart by [I1, Remark 2.2]. On the other hand, Rp is m-dual Rickart
by [%, Example 4.11] and Lemma 2.4. Note that pR is m-dual Rickart, as well.

let R = be the 2-by-2 matrix ring over Aj(k). Then, clearly, R is a simple ring

There exists a m-dual Rickart module which is not m-dual Baer as exhibited in the next example.

Example 2.6. Let F' be a field and I be an infinite index set. Let R = Hiel F; where F; = F for
each i € I. We know that Soc(Rr) = @z‘el F; and it is essential in Ri. On the other hand, Ry is
m-dual Rickart, because it is dual Rickart by [11, Example 5.1]. By [%, Proposition 4.18], Rp is not

m-dual Baer since R is not semisimple.

Remark 2.7. Let M be an indecomposable module. Then M is dual Baer iff it is m-dual Baer iff it
is dual Rickart iff it is w-dual Rickart. Because for an indecomposable module, every submodule is

projection invariant.
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Recall that for an R-module M and a direct summand N of M, N <, M if and only if N < M
(see [1, Proposition 3.1]). Also, recall that a module M is said to have the F'I-strong summand sum
property (briefly, FI-SSSP), if the sum of any number of fully invariant direct summands is again
a direct summand (see [2, page 80]). Therefore, M has the FI-SSSP if and only if the sum of any
number of projection invariant direct summands is again a direct summand. In the same manner, any
module M is said to have the FI-SSP, if the sum of any two projection invariant direct summands is

again a direct summand.
Lemma 2.8. Let M be a w-dual Baer module. Then M has the FI-SSSP.

Proof. By [2, Lemma 2.2] and [3, Remark 2.9]. O

Now, we can give the following result similar to [2, Theorem 2.2].

Theorem 2.9. Let M be a module with S = End(M) and Imf <, M, for all f € S. Then the
following are equivalent:
(i) M is m-dual Baer;
(i) M has the FI-SSSP and M is w-dual Rickart;
(iii) M is dual Baer.

Proof. (i) = (ii) By Lemmas 2.4 and 2.8.

(ii) = (iii) Let I < Sg. By hypothesis, Imf <, M for all f € I. Since M is m-dual Rickart,
Imf <4 M, for all f € I. Then Zfe[ Imf <4 M, since M has the FI-SSSP. Therefore M is dual Baer
by [7, Theorem 2.1].

(iii) = (i) Clear. O

We can investigate the endomorphism rings of indecomposable m-dual Rickart modules as follows.

Theorem 2.10. Let M be a module with S = Endr(M). The following are equivalent.
(i) M is indecomposable and dual Rickart;
(i)
(iii) S is a domain and (M) = ry(ls(p(M))) for all p € S;
)

(iv) every nonzero endomorphism ¢ € S is an epimorphism.

M s indecomposable and w-dual Rickart;

Proof. Tt follows by Remark 2.7 and [! 1, Proposition 4.4]. O

Next, we characterize m-dual Rickart rings as proved in the following.

Lemma 2.11. Let R be any ring. Rp is m-dual Baer if and only if every projection invariant cyclic

right ideal TR is a direct summand of Rg.

Proof. (=) Let R <, Rp. Consider the R-homomorphism f : R — R defined by f(r) = xr. Then
Imf = xR. Since Rp is m-dual Rickart, we have xR <4 Rp.

(<) Let f: R — R be an R-homomorphism with Imf <, Rg. Let f(1) = . Then Imf = zR. By
hypothesis, Imf <; Rr. Hence Rp is m-dual Rickart. (|
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Lemma 2.11 will be very useful to investigate the transfer of the right m-dual Rickart condition
between a base ring R and R[x] (and R[[x]]).

Proposition 2.12. Let R be a ring satisfying one of the following conditions:
(i) R[x] is a right w-dual Rickart ring;
(ii) R[[x]] is a right m-dual Rickart ring.

Then R is a right m-dual Rickart ring.

Proof. (i) Let R[z] be a m-dual Rickart ring. Let I = aR 9, Rp, where a € R. By [{, Lemma
4.1(iv)], I[z] = aR[z] 9, R[x|g[). This implies that I[z] = e(x)R[z] for some idempotent e(z) =
ep +e1x + ...+ e,x" € R[x] by Lemma 2.11. By the same proof as in [3, Proposition 4.19], I = egR.
Therefore R is a right m-dual Rickart ring by Lemma 2.11.

(ii) This is achieved by the same method as in (i). O

If R is a right w-dual Rickart ring, then R[x] and R[[z]] may not be right w-dual Rickart rings, as

the next example illustrates.

Example 2.13. Let F be a field. Clearly, F is a right m-dual Rickart ring. By [2, Example 4.20] and
Remark 2.7, neither F[x] nor F[[z]] is right m-dual Rickart.

The following example shows that the right m-dual Rickart property is not Morita invariant.

Example 2.14. We know that for any ring R and any positive integer n, the rings R and the
full matrix ring Mat,(R) are Morita equivalent. Let R be a simple ring which is a domain but not a
division ring. By [%, Example 3.5] and Remark 2.7, Rp, is not m-dual Rickart, but it is quasi-dual Baer.
Therefore for every positive integer n > 1, Mat,(R) is a right m-dual Rickart ring by [3, Proposition
4.21].

Next, we give the following definition to investigate direct summands of m-dual Rickart modules.

Definition 2.15. A module M is called N-m-dual Rickart if f(M) <, N, then f(M) <4 N, for every
homomorphism f: M — N.

Clearly, any module M is w-dual Rickart if and only if M is M-w-dual Rickart. The next example

illustrates this definition in a similar manner to [ 1, Example 2.15].

Example 2.16. Let N be a semisimple module. Then M is N-w-dual Rickart for any module M.
Let p be any prime integer, Mz = Z(p>°) and Nz = Z,. Then M is N-w-dual Rickart, but N is
not M-m-dual Rickart. Note that here M and N are w-dual Rickart modules. Also Zj4 is Zgz-m-dual

Rickart, while Z4 is not a m-dual Rickart Z-module.

Theorem 2.17. Let M and N be right R-modules. Then M is N-w-dual Rickart if and only if for any
direct summand M’ of M and any projection invariant submodule N’ of N, M' is N'-w-dual Rickart.
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Proof. Let M' <4 M and N’ <, N. Take f : M’ — N’ with f(M') <, N'. Since M’ <; M, there exists
an idempotent e : M — M with e(M) = M’. Now we can take the homomorphism ife : M — N,
where i : N’ — N is the inclusion map. By [5, Lemma 3.1], (ife)(M) = f(M') <, N. Since M is
N-m-dual Rickart, f(M’) <4 N, and hence f(M’) <; N’. Therefore M’ is N’-w-dual Rickart. The

converse is clear. O

Corollary 2.18. The following are equivalent for a module M .
(i) M is m-dual Rickart;
(ii) for every projection invariant submodule N of M, every direct summand L of M is N-w-dual
Rickart;
(iii) for every pair of submodules L and N of M with L <4 M and N <, M and any f: M — N
with f(M) <, N, the image of the restricted homomorphism fi, with fir(L) <, N is a direct

summand of N.

Proof. (i) = (ii) It is clear by Theorem 2.17.

(ii) = (iili) Let L <q M, N <9, M and f : M — N be any homomorphism with f(M) <, N. Let
g = fir : L — N and assume that g(L) <, N. By (ii), g(L) <q N.

(iii) = (i) Take M = L = N in (iii). O

We know that the Z-module Q is m-dual Rickart. Consider the submodule Z of Q. Since for every
integer n > 2, Dg(nZ) is non-zero and proper right ideal of S = Endz(Z), Zz is not m-dual Rickart.
Therefore m-dual Rickart property does not always transfer from a module to each of its submodules.
Next, we will show that a projection invariant direct summand of a m-dual Rickart module inherits

the property.

Corollary 2.19. Let M = M ® M3 be a w-dual Rickart module for some submodules M1 and My of
M. If My <, M, then My and M are w-dual Rickart.

Proof. My is m-dual Rickart by Corollary 2.18.

Now let f : My — M> be a homomorphism with f(M2)<,Ms. By [3, Lemma 4.13], M@ f(M2)<,M.
Let ¢ : M — M be the homomorphism defined by ¢(mi +ma) = m1 + f(mea) = (1a, © f)(m1 +ma).
Then (M) = M; @ f(Ms). Since M is m-dual Rickart, M@ f(Mz) <4 M1 @ My and so f(Ma) <gq M.
Therefore Ms is m-dual Rickart. O

The following example illustrates that projection invariant condition is necessary in Corollary 2.19.

Example 2.20. Let R be a simple ring which is a domain but not a division ring. As we mentioned
in Example 2.14, Rp is not m-dual Rickart. Now, consider a free right R-module Fr = ®}_; R; for
some integer n > 1, where R; = R for all 1 < i < n. By [8, Example 3.5], Fr is m-dual Baer, and so
it is m-dual Rickart by Lemma 2.4.
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3. Direct sums of m-dual Rickart modules

As seen in the example below, the direct sum of m-dual Rickart modules is not a w-dual Rickart,

necessarily.

Example 3.1. (see [ 1, Example 2.10]) Let M = Z(p*>°) and My = (11; + Z), for some prime integer p.
Note that M7 and Ms are both m-dual Rickart modules. Now, we will show that M = My & M> is not
m-dual Rickart. Let f: M — M be the endomorphism defined by f(l% +7, % +7Z) = (% +7Z,0) where
a,b €7 and n € N. Then f(M) = (% + Z) ® 0. We know that <% + Z) @0 is an essential submodule
in Z(p>) & 0. Therefore f(M) can not be a direct summand of M. Here, f(M) <, Z(p>) @& 0 because
Z(p*>) @0 is indecomposable. Since Homz(Z(p>) 0,0 ® (% +7)) =0, Z(p>®)®0<M by [12, Lemma
1.9]. Since Z(p*>) @ 0 is a direct summand of M, it is projection invariant in M, as well. Now,
by [5, Lemma 3.1], f(M) <, M. Therefore M is not m-dual Rickart.

We can generalize the above example as follows.

Example 3.2. Let L be a simple R-module such that the injective hull £ (L) of L has no maximal
submodules. Note that L <, E(L), since L is quasi-injective. On the other hand, E(L) <, E(L) ® L
since Homp(E(L),L) = 0. Now let M = E(L) ® L, and ¢ : L — E(L) be the inclusion map. Since L
is not a direct summand of E(L), L is not E(L)-m-dual Rickart. Therefore by Corollary 2.18, M is
not m-dual Rickart. Now let R be a discrete valuation ring with maximal ideal I and quotient field K.
It is well known that K/R = E(R/I). Therefore the R-module (K/R) @ (R/I) is not m-dual Rickart.
On the other hand, note that K/R and R/I are m-dual Rickart modules (see [8, Exeample 3.1]).

In this section, we focus on when a direct sum of wm-dual Rickart modules is also m-dual Rickart.
Let M = @,c; M;, and M; <, M. From Corollary 2.18, if M is a 7-dual Rickart module then M;

is Mj-m-dual Rickart, for all ¢,j5 € I. Now, we give the following results.

Proposition 3.3. Let M = @, ; M;, andlet N be an indecomposable module. Then M is N-w-dual
Rickart if and only if M; is N-mw-dual Rickart, for alli e I.

Proof. Since N is indecomposable, N has the SSSP and every submodule is projection invariant. Now
the result follows by Theorem 2.17 and [11, Proposition 5.3(ii)]. O

Corollary 3.4. Let M = @,.; M; where each M; is indecomposable. Then for each j € I, M is
M;-m-dual Rickart if and only if M; is M;-w-dual Rickart for alli € 1.

We can give the following applications of the above corollary.

Example 3.5. The Z-module Q/Z is Z(p™>)-w-dual Rickart for all prime integers p. Because Q/Z =
@D, cp Z(p™), where P is the set of all prime integers and Homgz(Z(p>),Z(¢>)) = 0 for all distinct
primes p and ¢g. The Z-module M = Z ® Q is not Q-m-dual Rickart. Because Z <, Q, but Z is not a

direct summand of Q. Also M is not Z-w-dual Rickart since Z is not w-dual Rickart.

Theorem 3.6. Let M = @,.; M; with M; <, M for all i € I, and let N be an arbitrary module.
Then N is M-m-dual Rickart if and only if N is M;-w-dual Rickart for all j € I.
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Proof. (=)Use Theorem 2.17.

(<) Let f : N — M be a homomorphism with f(N) <, M. We will show that f(N) <4 M.
By [5, Lemma 3.1], f(N) = @,;c;(f(N)N M;) and f(N)N M; <, M; for all i € I. Let m; : M — M;
be the projection map for each ¢ € I. Then we have the homomorphisms 7;f : N — M; with
(mif)(N) = f(N)NM;, for all i € I since f(N) <, M and 7; is an idempotent endomorphism of M for
each i € I. Since N is M;-w-dual Rickart, f(N)NM; <; M; for each i € I. Therefore f(N) <4 M. O

Finally, we can give the following last theorem and its corollary describing the direct sums of m-dual

Rickart modules.

Theorem 3.7. Let M = @z‘el M; with M; <, M for all © € I. Then M is a w-dual Rickart module
if and only if M; is a w-dual Rickart module for all i € I.

Proof. The necessity follows from Corollary 2.19. Conversely, assume that every M; is w-dual Rickart
for each i € I. Now, we will prove that M = @,.; M; is m-dual Rickart. Let f : M — M be a
homomorphism with f(M) <, M. Let j; : M; — M be the inclusion map and m; : M — M; be
the projection map for each ¢ € I. Then we have the homomorphisms =; fj; : M; — M, for each
i € I. Now, we have that (m;fj;)(M;) = m;(f(M;)) = f(M;) for all i € I, since each M; < M (because
M; <4 M and M; <, M). On the other hand, f(M) = @,;(f(M)NM;) and f(M)NM; <y, M; for all
i € I, since f(M)<, M (see [5, Lemma 3.1]). Note that f(M;) = f(M)NM; for each i € I. Therefore,
J(M) = @,c; f(M;) <4 M, since each M; is m-dual Rickart for each i € I. O

Recall that the Jacobson radical Rad(M) of any module M is the sum of all small submodules of
M and Rad(M) <M. Remember that any submodule S of any module M is called small, if whenever
M = S+ X for a submodule X of M, then M = X.

Corollary 3.8. Let an R-module M be a direct sum of submodules My and My such that Rad(M;) =
M, and My is a semisimple module. If M is w-dual Rickart, then My is w-dual Rickart. The converse
holds when Hompg(Ma, M) = 0.

Proof. Note that Rad(M) = Rad(M;) ® Rad(Mz) = M; <, M.
(=) Assume that M is m-dual Rickart. By Corollary 2.19, M; is m-dual Rickart.
(<) Since Hompg(Ma, My) =0, My <, M. Now the result is clear by Theorem 3.7. O

4. m-Dual Baer modules and some singularity conditions

Let M be a module. We will say that M is m-lifting, if for any N <, M there exists a direct
summand K of M such that K C N and N/K <« M/K. This definition is given under the name of
PIL-lifting in [1]. Note that if M is a lifting module, then it is 7-lifting. But the converse is not true,

in general as we see in the following example.
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0

Example 4.1. Let R =
Lo Lo

] . We know that Rp is not lifting since Zz is not lifting. Note that

0 0

2 2
summand of Rp, we can write Iy/Is < R/I;. Note that Jacobson radical of Rg is J(Rgr) = I1 =

0
Ly

In [5], the authors defined m-e.nonsingular and 7-e.cononsingular modules as follows (see [5, Defi-

projection invariant right ideals of Rp are I} =

0
and I, = [ ] Since I is a direct
2

0
. So I1 € Rp. Therefore, I;/0 < R/0. Hence Rp is 7-lifting.

nition 4.9 and Proposition 4.10]):

A module M is called w-e.nonsingular, if for each projection invariant left ideal Y of S for which
r3(Y') is essential in e(M), where e? = e € S we have 7y (Y) = e(M), and it is called 7-e.cononsingular,
if for each N <, M with rp/(Ig(NN)) a direct summand of M, we have N is essential in rys(Ig(V)).

Dually, we can define the following:

Definition 4.2. Let M be a module with S = Endr(M). M is called

(i) m-dual nonsingular if for each I <, Sg with e(M) C I(M) and I(M)/e(M) < M/e(M), where
e? =ec S, we have [(M) = e(M).

(ii) m-dual cononsingular if for each N <, M with Dg(N)(M) a direct summand of M, we have
N/Dg(N)(M) < M/Dg(N)(M).

In this section, our aim is to obtain a connection between the classes of m-dual Baer and w-lifting
modules via the dual singularity conditions defined above. Firstly, we give the following characteriza-

tion of m-dual nonsingular modules.

Theorem 4.3. Let M be a module with S = Endr(M). The following are equivalent:

(i) M is m-dual nonsingular;
(ii) For all I <, Sg with I(M)/e(M) < M/e(M) for some ¢* = e € S, we have I C eS;
(iii) For all N <, M such that NJe(M) < M/e(M) where €2 = e € S, we haveDg(N)(M) = e(M)
and e € Si(9).

Proof. (i) = (ii) Let M be m-dual nonsingular. Let I <, Sg with I(M)/e(M) < M/e(M) for some
e? = e € S. Then by 7-dual nonsingularity, we have e(M) = I(M). Hence I C Dg(e(M)) = eS.

(ii) = (iii) Let N <, M such that N/e(M) < M/e(M), where e> = ¢ € S. Note that Dg(N) <, Sg.
Clearly, e(M) C Dg(N)(M) € N. Hence Dg(N)(M)/e(M) < M/e(M). By (ii), Ds(N) C eS.
On the other hand, eS C Dg(N). Hence Dg(N) = eS, and so Dg(N)(M) = eS(M) C e(M).
Consequently, Dg(N)(M) = e(M). Note that Dg(N)(M) <, M and hence e(M) <, M. Then
e € S(S) by [, Lemma 3.1].

(iii) = (i) Let I <, Sg with I(M)/e(M) < M/e(M) where ¢? = ¢ € S. Note tat I(M) <, M. By
(iii), Dg(I(M))(M) = e(M). Therefore I(M) = e(M). Consequently, M is m-dual nonsingular. [
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Corollary 4.4. Let M be a w-dual nonsingular module with S = Endp(M). Let N <, M. If
N/e1(M) < M/e1(M) and N/ea(M) < M/ex(M), where €3 = e1,e3 = e3 € S, then e1 (M) = ex(M)
and ey, ez € Si(9).

Next, after a series of the following lemmas, we will reach the connection between the classes of

m-dual Baer and 7-lifting modules, which is the main aim of this section.
Lemma 4.5. If M is w-lifting, then it is w-dual cononsingular.

Proof. Assume that M is 7-lifting. Let N <, M with Dg(N)(M) = e(M) for some €2 = e € S.
Note that Dg(N)(M) C N. Since M is n-lifting, there exists f2 = f € S such that f(M) C N and
N/f(M) < M/f(M). Clearly, f(M) C e(M) and hence N/e(M) < M/e(M). Therefore M is m-dual

cononsingular. O
Lemma 4.6. Let M be a m-dual cononsingular and w-dual Baer module. Then M is w-lifting.

Proof. Let N <, M. Then Dg(N) = eS for some ¢ = ¢ € S since M is n-dual Baer. Now
e(M) = Dg(N)(M). Since M is m-dual cononsingular, N/e(M) < M/e(M). Hence M is w-lifting. O

Lemma 4.7. Let M be w-dual Baer module. Then M is w-dual nonsingular.

Proof. Assume that I(M)/e(M) < M/e(M) for some I <, Sg, where €2 = e € S. Since M is m-dual
Baer, I(M) = f(M) for some f2 = f € S by [%, Theorem 2.4]. On the other hand, f(M)/e(M) is a
direct summand of M/e(M), as well. Hence f(M) = e(M) = I(M). Hence M is m-dual nonsingular
by Theorem 4.3. O

Lemma 4.8. Let M be a w-dual nonsingular and w-lifting module. Then M is w-dual Baer.

Proof. Let I <, Sg. Then I(M) <, M. Since M is =-lifting, there exists an idempotent e € S such
that I(M)/e(M) < M/e(M). By m-dual nonsingularity, I(M) = e(M). Therefore M is m-dual Baer
by [8, Theorem 2.4]. O

Example 4.9. The converses of Lemmas 4.5 and 4.7 are not true in general. Consider the Z-module
My = Zyz. M is not w-lifting and not w-dual Baer. It is easy to see that M is m-dual cononsingular

and 7-dual nonsingular.

Theorem 4.10. The following are equivalent for a module M

(i) M is m-dual Baer and m-dual cononsingular;

(ii) M is w-lifting and w-dual nonsingular.
Proof. Combine Lemmas 4.5, 4.6, 4.7 and 4.8. O
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