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A STUDY ON THE π-DUAL RICKART MODULES
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Dedicated to Prof. O. A. S. Karamzadeh

Abstract. The right R-module M is said to be a π-dual Rickart module, if for every endomorphism
f : M → M with projection invariant image, f(M), in M , f(M) is a direct summand of M . We show
that the class of the π-dual Rickart modules contains properly the class of all π-dual Baer modules and
the dual Rickart modules. We also investigate the transfering between a base ring R and R[x] (and
R[[x]]). It is shown that, in general, the class of π-dual Rickart modules is neither closed under direct
summands nor closed under direct sums. We conclude the paper by giving a connection between the
classes of π-dual Baer and π-lifting modules.

1. Introduction

Throughout this paper, R will be an associative ring with unity and any module M will be a
unital right R-module. For a right R-module M , S = EndR(M) will denote the endomorphism
ring of M , and Matn(R) denotes an n × n matrix ring over the ring R. For two R-modules M

and N , HomR(M,N) will indicate the set of all homomorphisms from M to N . The notations
N ≤ M and N ≤d M mean that N is a submodule of M and N is a direct summand of M ,
respectively. By Q and Z we denote the ring of rational and integer numbers, respectively. E(M)

denotes the injective hull of a module M and Z(p∞) denotes the Prüfer p-group for any prime integer
p. We also denote rM (I) = {m ∈ M | Im = 0}, rS(I) = {φ ∈ S | Iφ = 0} for ∅ ̸= I ⊆ S;
rR(N) = {r ∈ R | Nr = 0}, lS(N) = {φ ∈ S | φ(N) = 0} for N ≤ M . For a subset X of S and a
submodule N of M , we denote the submodule

∑
f∈X f(N) by X(N).
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Let N ≤ M for a module M . Then N is called a fully invariant submodule of M (denoted by
N ⊴M) if f(N) ⊆ N for all f ∈ S, and N is called a projection invariant submodule of M (denoted
by N ⊴p M) if e(N) ⊆ N for all idempotent endomorphisms e ∈ S. Clearly, every fully invariant
submodule is projection invariant. By [1, Proposition 3.1], if N ≤d M , then N ⊴ M if and only if
N⊴pM . Note that a right ideal I of a ring R is called projection invariant in RR (denoted by I⊴pRR)
if eI ⊆ I for all e2 = e ∈ R. Moreover, fully invariant right ideals of R coincide with two-sided ideals
of R.

In 2010, dual Baer modules were introduced by Keskin Tütüncü and Tribak. Let M be a module.
M is called a dual Baer module if for every submodule N of M , DS(N) = {f ∈ S | f(M) ⊆ N} is
a direct summand right ideal of SS (see [7]). Later in 2013, Amouzegar and Talebi introduced quasi-
dual Baer modules. A module M is said to be quasi-dual Baer if, for every fully invariant submodule
N of M , there exists an idempotent e ∈ S such that DS(N) = eS (see [2]). In 2021, Kara and in
2022, Keskin Tütüncü and Tribak defined π-dual Baer modules (according to Kara, dual π-endo Baer
modules). A module M is called π-dual Baer if for each N ⊴p M , DS(N) = eS for some e2 = e ∈ S

(see [6] and [8]). Clearly, M is dual Baer ⇒ M is π-dual Baer ⇒ M is quasi-dual Baer, for any module
M . Also, in 2011, Lee, Rizvi, and Roman introduced dual Rickart modules. A module M is called
dual Rickart, if for every endomorphism f : M → M , f(M) ≤d M (see [11]).

Motivated by all these works ( [2, 6–8] and [11]), we introduce π-dual Rickart modules, in this
paper. A module M is called a π-dual Rickart module if f(M) ⊴p M , then f(M) ≤d M , for every
endomorphism f : M → M . Our aim is to present some properties of these modules and investigate
direct summands and direct sums of them.

Section 2 is devoted to the study of some basic properties and direct summands of π-dual Rickart
modules. We construct some examples showing that π-dual Rickart modules are proper generalizations
of dual Rickart modules (Example 2.5) and π-dual Baer modules (Example 2.6). We will say that R

is a right π-dual Rickart ring, whenever the R-module RR is a π-dual Rickart module, for any ring R.
We investigate the transfer of the right π-dual Rickart condition between a base ring R and R[x] (and
R[[x]]). We prove that if R[x] (R[[x]]) is a right π-dual Rickart ring, then R is a right π-dual Rickart
ring (Proposition 2.12). Also, we illustrate that R[x] and R[[x]] may not be right π-dual Rickart
rings, if R is a right π-dual Rickart ring (Example 2.13). In this section, finally, we study the direct
summands of π-dual Rickart modules. We prove that if M = M1 ⊕ M2 is a π-dual Rickart module
with M1 ⊴p M , then M1 and M2 are π-dual Rickart (Corollary 2.19).

The investigations in Section 3 focus on the question of when is the direct sum of π-dual Rickart
modules, π-dual Rickart? Mainly, we prove that if M =

⊕
i∈I Mi with Mi ⊴p M for all i ∈ I, then M

is a π-dual Rickart module if and only if Mi is a π-dual Rickart module for all i ∈ I (Theorem 3.7).
The focus in Section 4 is on obtaining a connection between the classes of π-dual Baer and π-lifting

modules. Firstly, we give the definitions of π-lifting modules, π-dual nonsingular modules, and π-dual
cononsingular modules. Finally, we prove that a module M is π-dual Baer and π-dual cononsingular
if and only if it is π-lifting and π-dual nonsingular (Theorem 4.10).
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2. π-Dual Rickart modules and direct summands

We start with the definition of π-dual Rickart modules.

Definition 2.1. An arbitrary module M is called a π-dual Rickart module, if Imf ⊴pM then Imf ≤d

M , for every endomorphism f : M → M .

Lemma 2.2. Let M be an arbitrary module, and S = EndR(M). M is a π-dual Rickart module if
and only if for every g ∈ S with g(M)⊴p M , DS(g(M)) is a direct summand of SS.

Proof. (⇒) Suppose M is π-dual Rickart, and g : M → M an endomorphism with g(M)⊴p M . Then
there exists an idempotent e ∈ S such that g(M) = e(M). Clearly, DS(e(M)) = eS.

(⇐) Let g : M → M be an endomorphism, with g(M) ⊴p M . By hypothesis, DS(g(M)) = eS for
some idempotent e ∈ S. Since e ∈ DS(g(M)), e(M) ⊆ g(M), and since g ∈ DS(g(M)), g = es for
some s ∈ S. Therefore g(M) ⊆ e(M). Hence g(M) = e(M), which is a direct summand of M . □

Examples 2.3. Clearly, every dual Rickart module is π-dual Rickart. Every semisimple module is a
π-dual Rickart module. Every injective module over a right hereditary ring is π-dual Rickart. Any
module which has a von Neumann regular endomorphism ring is π-dual Rickart. The Z-modules
Z(p∞) (p is any prime integer), Q and Q/Z are π-dual Rickart modules (see [11, Example 2.3]).

Lemma 2.4. Every π-dual Baer module is π-dual Rickart.

Proof. Let f : M → M with Imf ⊴p M be an endomorphism, and S = End(M). Since M is π-dual
Baer, DS(Imf) = eS for some e2 = e ∈ S. By Lemma 2.2, M is π-dual Rickart. □

There exists a π-dual Rickart module which is not dual Rickart as we see in the following example.

Example 2.5. Let k be any field of characteristic 0. By [10, Corollary 3.17], the first Weyl algebra
A1(k) is a simple domain, which is not a division ring. Therefore A1(k) is not a von Neumann
regular ring, because over domains von Neumann regular rings and division rings are coincide. Now,

let R =

[
A1(k) A1(k)

A1(k) A1(k)

]
be the 2-by-2 matrix ring over A1(k). Then, clearly, R is a simple ring

(see [10, Theorem 3.1]) which is not a domain. By [9, Corollary 18.6], R is not von Neumann regular.
Therefore RR is not dual Rickart by [11, Remark 2.2]. On the other hand, RR is π-dual Rickart
by [8, Example 4.11] and Lemma 2.4. Note that RR is π-dual Rickart, as well.

There exists a π-dual Rickart module which is not π-dual Baer as exhibited in the next example.

Example 2.6. Let F be a field and I be an infinite index set. Let R =
∏

i∈I Fi where Fi = F for
each i ∈ I. We know that Soc(RR) =

⊕
i∈I Fi and it is essential in RR. On the other hand, RR is

π-dual Rickart, because it is dual Rickart by [11, Example 5.1]. By [8, Proposition 4.18], RR is not
π-dual Baer since R is not semisimple.

Remark 2.7. Let M be an indecomposable module. Then M is dual Baer iff it is π-dual Baer iff it
is dual Rickart iff it is π-dual Rickart. Because for an indecomposable module, every submodule is
projection invariant.
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Recall that for an R-module M and a direct summand N of M , N ⊴p M if and only if N ⊴ M

(see [1, Proposition 3.1]). Also, recall that a module M is said to have the FI-strong summand sum
property (briefly, FI-SSSP), if the sum of any number of fully invariant direct summands is again
a direct summand (see [2, page 80]). Therefore, M has the FI-SSSP if and only if the sum of any
number of projection invariant direct summands is again a direct summand. In the same manner, any
module M is said to have the FI-SSP, if the sum of any two projection invariant direct summands is
again a direct summand.

Lemma 2.8. Let M be a π-dual Baer module. Then M has the FI-SSSP.

Proof. By [2, Lemma 2.2] and [8, Remark 2.9]. □

Now, we can give the following result similar to [2, Theorem 2.2].

Theorem 2.9. Let M be a module with S = End(M) and Imf ⊴p M , for all f ∈ S. Then the
following are equivalent:

(i) M is π-dual Baer;
(ii) M has the FI-SSSP and M is π-dual Rickart;
(iii) M is dual Baer.

Proof. (i) ⇒ (ii) By Lemmas 2.4 and 2.8.
(ii) ⇒ (iii) Let I ≤ SS . By hypothesis, Imf ⊴p M for all f ∈ I. Since M is π-dual Rickart,
Imf ≤d M , for all f ∈ I. Then

∑
f∈I Imf ≤d M , since M has the FI-SSSP. Therefore M is dual Baer

by [7, Theorem 2.1].
(iii) ⇒ (i) Clear. □

We can investigate the endomorphism rings of indecomposable π-dual Rickart modules as follows.

Theorem 2.10. Let M be a module with S = EndR(M). The following are equivalent.
(i) M is indecomposable and dual Rickart;
(ii) M is indecomposable and π-dual Rickart;
(iii) S is a domain and φ(M) = rM (lS(φ(M))) for all φ ∈ S;
(iv) every nonzero endomorphism φ ∈ S is an epimorphism.

Proof. It follows by Remark 2.7 and [11, Proposition 4.4]. □

Next, we characterize π-dual Rickart rings as proved in the following.

Lemma 2.11. Let R be any ring. RR is π-dual Baer if and only if every projection invariant cyclic
right ideal xR is a direct summand of RR.

Proof. (⇒) Let xR ⊴p RR. Consider the R-homomorphism f : R → R defined by f(r) = xr. Then
Imf = xR. Since RR is π-dual Rickart, we have xR ≤d RR.

(⇐) Let f : R → R be an R-homomorphism with Imf ⊴p RR. Let f(1) = x. Then Imf = xR. By
hypothesis, Imf ≤d RR. Hence RR is π-dual Rickart. □

DOI: https://dx.doi.org/10.30504/JIMS.2023.396908.1114

https://dx.doi.org/10.30504/JIMS.2023.396908.1114


J. Iran. Math. Soc. 4 (2023), no. 2, 235-245 D. Keskin Tütüncü 239

Lemma 2.11 will be very useful to investigate the transfer of the right π-dual Rickart condition
between a base ring R and R[x] (and R[[x]]).

Proposition 2.12. Let R be a ring satisfying one of the following conditions:

(i) R[x] is a right π-dual Rickart ring;
(ii) R[[x]] is a right π-dual Rickart ring.

Then R is a right π-dual Rickart ring.

Proof. (i) Let R[x] be a π-dual Rickart ring. Let I = aR ⊴p RR, where a ∈ R. By [4, Lemma
4.1(iv)], I[x] = aR[x] ⊴p R[x]R[x]. This implies that I[x] = e(x)R[x] for some idempotent e(x) =

e0 + e1x+ . . .+ enx
n ∈ R[x] by Lemma 2.11. By the same proof as in [8, Proposition 4.19], I = e0R.

Therefore R is a right π-dual Rickart ring by Lemma 2.11.
(ii) This is achieved by the same method as in (i). □

If R is a right π-dual Rickart ring, then R[x] and R[[x]] may not be right π-dual Rickart rings, as
the next example illustrates.

Example 2.13. Let F be a field. Clearly, F is a right π-dual Rickart ring. By [8, Example 4.20] and
Remark 2.7, neither F [x] nor F [[x]] is right π-dual Rickart.

The following example shows that the right π-dual Rickart property is not Morita invariant.

Example 2.14. We know that for any ring R and any positive integer n, the rings R and the
full matrix ring Matn(R) are Morita equivalent. Let R be a simple ring which is a domain but not a
division ring. By [8, Example 3.5] and Remark 2.7, RR is not π-dual Rickart, but it is quasi-dual Baer.
Therefore for every positive integer n > 1, Matn(R) is a right π-dual Rickart ring by [8, Proposition
4.21].

Next, we give the following definition to investigate direct summands of π-dual Rickart modules.

Definition 2.15. A module M is called N -π-dual Rickart if f(M)⊴p N , then f(M) ≤d N , for every
homomorphism f : M → N .

Clearly, any module M is π-dual Rickart if and only if M is M -π-dual Rickart. The next example
illustrates this definition in a similar manner to [11, Example 2.15].

Example 2.16. Let N be a semisimple module. Then M is N -π-dual Rickart for any module M .
Let p be any prime integer, MZ = Z(p∞) and NZ = Zp. Then M is N -π-dual Rickart, but N is
not M -π-dual Rickart. Note that here M and N are π-dual Rickart modules. Also Z4 is Z3-π-dual
Rickart, while Z4 is not a π-dual Rickart Z-module.

Theorem 2.17. Let M and N be right R-modules. Then M is N -π-dual Rickart if and only if for any
direct summand M ′ of M and any projection invariant submodule N ′ of N , M ′ is N ′-π-dual Rickart.
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Proof. Let M ′ ≤d M and N ′⊴pN . Take f : M ′ → N ′ with f(M ′)⊴pN
′. Since M ′ ≤d M , there exists

an idempotent e : M → M with e(M) = M ′. Now we can take the homomorphism ife : M → N ,
where i : N ′ → N is the inclusion map. By [5, Lemma 3.1], (ife)(M) = f(M ′) ⊴p N . Since M is
N -π-dual Rickart, f(M ′) ≤d N , and hence f(M ′) ≤d N ′. Therefore M ′ is N ′-π-dual Rickart. The
converse is clear. □

Corollary 2.18. The following are equivalent for a module M .
(i) M is π-dual Rickart;
(ii) for every projection invariant submodule N of M , every direct summand L of M is N -π-dual

Rickart;
(iii) for every pair of submodules L and N of M with L ≤d M and N ⊴p M and any f : M → N

with f(M) ⊴p N , the image of the restricted homomorphism f|L with f|L(L) ⊴p N is a direct
summand of N .

Proof. (i) ⇒ (ii) It is clear by Theorem 2.17.
(ii) ⇒ (iii) Let L ≤d M , N ⊴p M and f : M → N be any homomorphism with f(M) ⊴p N . Let

g = f|L : L → N and assume that g(L)⊴p N . By (ii), g(L) ≤d N .
(iii) ⇒ (i) Take M = L = N in (iii). □

We know that the Z-module Q is π-dual Rickart. Consider the submodule Z of Q. Since for every
integer n ≥ 2, DS(nZ) is non-zero and proper right ideal of S = EndZ(Z), ZZ is not π-dual Rickart.
Therefore π-dual Rickart property does not always transfer from a module to each of its submodules.
Next, we will show that a projection invariant direct summand of a π-dual Rickart module inherits
the property.

Corollary 2.19. Let M = M1 ⊕M2 be a π-dual Rickart module for some submodules M1 and M2 of
M . If M1 ⊴p M , then M1 and M2 are π-dual Rickart.

Proof. M1 is π-dual Rickart by Corollary 2.18.
Now let f : M2 → M2 be a homomorphism with f(M2)⊴pM2. By [3, Lemma 4.13], M1⊕f(M2)⊴pM .

Let φ : M → M be the homomorphism defined by φ(m1 +m2) = m1 + f(m2) = (1M1 ⊕ f)(m1 +m2).
Then φ(M) = M1⊕f(M2). Since M is π-dual Rickart, M1⊕f(M2) ≤d M1⊕M2 and so f(M2) ≤d M2.
Therefore M2 is π-dual Rickart. □

The following example illustrates that projection invariant condition is necessary in Corollary 2.19.

Example 2.20. Let R be a simple ring which is a domain but not a division ring. As we mentioned
in Example 2.14, RR is not π-dual Rickart. Now, consider a free right R-module FR = ⊕n

i=1Ri for
some integer n > 1, where Ri

∼= R for all 1 ≤ i ≤ n. By [8, Example 3.5], FR is π-dual Baer, and so
it is π-dual Rickart by Lemma 2.4.
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3. Direct sums of π-dual Rickart modules

As seen in the example below, the direct sum of π-dual Rickart modules is not a π-dual Rickart,
necessarily.

Example 3.1. (see [11, Example 2.10]) Let M1 = Z(p∞) and M2 = ⟨1p +Z⟩, for some prime integer p.
Note that M1 and M2 are both π-dual Rickart modules. Now, we will show that M = M1⊕M2 is not
π-dual Rickart. Let f : M → M be the endomorphism defined by f( a

pn +Z, b
p +Z) = ( bp +Z, 0) where

a, b ∈ Z and n ∈ N. Then f(M) = ⟨1p + Z⟩ ⊕ 0. We know that ⟨1p + Z⟩ ⊕ 0 is an essential submodule
in Z(p∞)⊕ 0. Therefore f(M) can not be a direct summand of M . Here, f(M)⊴p Z(p∞)⊕ 0 because
Z(p∞)⊕0 is indecomposable. Since HomZ(Z(p∞)⊕0, 0⊕⟨ 1p +Z⟩) = 0, Z(p∞)⊕0⊴M by [12, Lemma
1.9]. Since Z(p∞) ⊕ 0 is a direct summand of M , it is projection invariant in M , as well. Now,
by [5, Lemma 3.1], f(M)⊴p M . Therefore M is not π-dual Rickart.

We can generalize the above example as follows.

Example 3.2. Let L be a simple R-module such that the injective hull E(L) of L has no maximal
submodules. Note that L⊴p E(L), since L is quasi-injective. On the other hand, E(L)⊴p E(L)⊕ L

since HomR(E(L), L) = 0. Now let M = E(L)⊕ L, and i : L → E(L) be the inclusion map. Since L

is not a direct summand of E(L), L is not E(L)-π-dual Rickart. Therefore by Corollary 2.18, M is
not π-dual Rickart. Now let R be a discrete valuation ring with maximal ideal I and quotient field K.
It is well known that K/R ∼= E(R/I). Therefore the R-module (K/R)⊕ (R/I) is not π-dual Rickart.
On the other hand, note that K/R and R/I are π-dual Rickart modules (see [8, Exeample 3.1]).

In this section, we focus on when a direct sum of π-dual Rickart modules is also π-dual Rickart.
Let M =

⊕
i∈I Mi, and Mi ⊴p M . From Corollary 2.18, if M is a π-dual Rickart module then Mi

is Mj-π-dual Rickart, for all i, j ∈ I. Now, we give the following results.

Proposition 3.3. Let M =
⊕

i∈I Mi, and let N be an indecomposable module. Then M is N -π-dual
Rickart if and only if Mi is N -π-dual Rickart, for all i ∈ I.

Proof. Since N is indecomposable, N has the SSSP and every submodule is projection invariant. Now
the result follows by Theorem 2.17 and [11, Proposition 5.3(ii)]. □

Corollary 3.4. Let M =
⊕

i∈I Mi where each Mi is indecomposable. Then for each j ∈ I, M is
Mj-π-dual Rickart if and only if Mi is Mj-π-dual Rickart for all i ∈ I.

We can give the following applications of the above corollary.

Example 3.5. The Z-module Q/Z is Z(p∞)-π-dual Rickart for all prime integers p. Because Q/Z =⊕
p∈P Z(p∞), where P is the set of all prime integers and HomZ(Z(p∞),Z(q∞)) = 0 for all distinct

primes p and q. The Z-module M = Z⊕Q is not Q-π-dual Rickart. Because Z⊴p Q, but Z is not a
direct summand of Q. Also M is not Z-π-dual Rickart since Z is not π-dual Rickart.

Theorem 3.6. Let M =
⊕

i∈I Mi with Mi ⊴p M for all i ∈ I, and let N be an arbitrary module.
Then N is M -π-dual Rickart if and only if N is Mj-π-dual Rickart for all j ∈ I.
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Proof. (⇒)Use Theorem 2.17.
(⇐) Let f : N → M be a homomorphism with f(N) ⊴p M . We will show that f(N) ≤d M .

By [5, Lemma 3.1], f(N) =
⊕

i∈I(f(N) ∩Mi) and f(N) ∩Mi ⊴p Mi for all i ∈ I. Let πi : M → Mi

be the projection map for each i ∈ I. Then we have the homomorphisms πif : N → Mi with
(πif)(N) = f(N)∩Mi, for all i ∈ I since f(N)⊴pM and πi is an idempotent endomorphism of M for
each i ∈ I. Since N is Mi-π-dual Rickart, f(N)∩Mi ≤d Mi for each i ∈ I. Therefore f(N) ≤d M . □

Finally, we can give the following last theorem and its corollary describing the direct sums of π-dual
Rickart modules.

Theorem 3.7. Let M =
⊕

i∈I Mi with Mi ⊴p M for all i ∈ I. Then M is a π-dual Rickart module
if and only if Mi is a π-dual Rickart module for all i ∈ I.

Proof. The necessity follows from Corollary 2.19. Conversely, assume that every Mi is π-dual Rickart
for each i ∈ I. Now, we will prove that M =

⊕
i∈I Mi is π-dual Rickart. Let f : M → M be a

homomorphism with f(M) ⊴p M . Let ji : Mi → M be the inclusion map and πi : M → Mi be
the projection map for each i ∈ I. Then we have the homomorphisms πifji : Mi → Mi for each
i ∈ I. Now, we have that (πifji)(Mi) = πi(f(Mi)) = f(Mi) for all i ∈ I, since each Mi ⊴M (because
Mi ≤d M and Mi⊴pM). On the other hand, f(M) =

⊕
i∈I(f(M)∩Mi) and f(M)∩Mi⊴pMi for all

i ∈ I, since f(M)⊴pM (see [5, Lemma 3.1]). Note that f(Mi) = f(M)∩Mi for each i ∈ I. Therefore,
f(M) =

⊕
i∈I f(Mi) ≤d M , since each Mi is π-dual Rickart for each i ∈ I. □

Recall that the Jacobson radical Rad(M) of any module M is the sum of all small submodules of
M and Rad(M)⊴M . Remember that any submodule S of any module M is called small, if whenever
M = S +X for a submodule X of M , then M = X.

Corollary 3.8. Let an R-module M be a direct sum of submodules M1 and M2 such that Rad(M1) =

M1, and M2 is a semisimple module. If M is π-dual Rickart, then M1 is π-dual Rickart. The converse
holds when HomR(M2,M1) = 0.

Proof. Note that Rad(M) = Rad(M1)⊕ Rad(M2) = M1 ⊴p M .
(⇒) Assume that M is π-dual Rickart. By Corollary 2.19, M1 is π-dual Rickart.
(⇐) Since HomR(M2,M1) = 0, M2 ⊴p M . Now the result is clear by Theorem 3.7. □

4. π-Dual Baer modules and some singularity conditions

Let M be a module. We will say that M is π-lifting, if for any N ⊴p M there exists a direct
summand K of M such that K ⊆ N and N/K ≪ M/K. This definition is given under the name of
PI-lifting in [1]. Note that if M is a lifting module, then it is π-lifting. But the converse is not true,
in general as we see in the following example.
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Example 4.1. Let R =

[
Z 0

Z2 Z2

]
. We know that RR is not lifting since ZZ is not lifting. Note that

projection invariant right ideals of RR are I1 =

[
0 0

Z2 0

]
and I2 =

[
0 0

Z2 Z2

]
. Since I2 is a direct

summand of RR, we can write I2/I2 ≪ R/I2. Note that Jacobson radical of RR is J(RR) = I1 =[
0 0

Z2 0

]
. So I1 ≪ RR. Therefore, I1/0 ≪ R/0. Hence RR is π-lifting.

In [5], the authors defined π-e.nonsingular and π-e.cononsingular modules as follows (see [5, Defi-
nition 4.9 and Proposition 4.10]):

A module M is called π-e.nonsingular, if for each projection invariant left ideal Y of S for which
rM (Y ) is essential in e(M), where e2 = e ∈ S we have rM (Y ) = e(M), and it is called π-e.cononsingular,
if for each N ⊴p M with rM (lS(N)) a direct summand of M , we have N is essential in rM (lS(N)).
Dually, we can define the following:

Definition 4.2. Let M be a module with S = EndR(M). M is called

(i) π-dual nonsingular if for each I ⊴p SS with e(M) ⊆ I(M) and I(M)/e(M) ≪ M/e(M), where
e2 = e ∈ S, we have I(M) = e(M).

(ii) π-dual cononsingular if for each N ⊴p M with DS(N)(M) a direct summand of M , we have
N/DS(N)(M) ≪ M/DS(N)(M).

In this section, our aim is to obtain a connection between the classes of π-dual Baer and π-lifting
modules via the dual singularity conditions defined above. Firstly, we give the following characteriza-
tion of π-dual nonsingular modules.

Theorem 4.3. Let M be a module with S = EndR(M). The following are equivalent:

(i) M is π-dual nonsingular;
(ii) For all I ⊴p SS with I(M)/e(M) ≪ M/e(M) for some e2 = e ∈ S, we have I ⊆ eS;
(iii) For all N ⊴p M such that N/e(M) ≪ M/e(M) where e2 = e ∈ S, we haveDS(N)(M) = e(M)

and e ∈ Sl(S).

Proof. (i) ⇒ (ii) Let M be π-dual nonsingular. Let I ⊴p SS with I(M)/e(M) ≪ M/e(M) for some
e2 = e ∈ S. Then by π-dual nonsingularity, we have e(M) = I(M). Hence I ⊆ DS(e(M)) = eS.

(ii) ⇒ (iii) Let N ⊴p M such that N/e(M) ≪ M/e(M), where e2 = e ∈ S. Note that DS(N) ⊴p SS .
Clearly, e(M) ⊆ DS(N)(M) ⊆ N . Hence DS(N)(M)/e(M) ≪ M/e(M). By (ii), DS(N) ⊆ eS.
On the other hand, eS ⊆ DS(N). Hence DS(N) = eS, and so DS(N)(M) = eS(M) ⊆ e(M).
Consequently, DS(N)(M) = e(M). Note that DS(N)(M) ⊴p M and hence e(M) ⊴p M . Then
e ∈ Sl(S) by [5, Lemma 3.1].

(iii) ⇒ (i) Let I ⊴p SS with I(M)/e(M) ≪ M/e(M) where e2 = e ∈ S. Note tat I(M) ⊴p M . By
(iii), DS(I(M))(M) = e(M). Therefore I(M) = e(M). Consequently, M is π-dual nonsingular. □
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Corollary 4.4. Let M be a π-dual nonsingular module with S = EndR(M). Let N ⊴p M . If
N/e1(M) ≪ M/e1(M) and N/e2(M) ≪ M/e2(M), where e21 = e1, e

2
2 = e2 ∈ S, then e1(M) = e2(M)

and e1, e2 ∈ Sl(S).

Next, after a series of the following lemmas, we will reach the connection between the classes of
π-dual Baer and π-lifting modules, which is the main aim of this section.

Lemma 4.5. If M is π-lifting, then it is π-dual cononsingular.

Proof. Assume that M is π-lifting. Let N ⊴p M with DS(N)(M) = e(M) for some e2 = e ∈ S.
Note that DS(N)(M) ⊆ N . Since M is π-lifting, there exists f2 = f ∈ S such that f(M) ⊆ N and
N/f(M) ≪ M/f(M). Clearly, f(M) ⊆ e(M) and hence N/e(M) ≪ M/e(M). Therefore M is π-dual
cononsingular. □

Lemma 4.6. Let M be a π-dual cononsingular and π-dual Baer module. Then M is π-lifting.

Proof. Let N ⊴p M . Then DS(N) = eS for some e2 = e ∈ S since M is π-dual Baer. Now
e(M) = DS(N)(M). Since M is π-dual cononsingular, N/e(M) ≪ M/e(M). Hence M is π-lifting. □

Lemma 4.7. Let M be π-dual Baer module. Then M is π-dual nonsingular.

Proof. Assume that I(M)/e(M) ≪ M/e(M) for some I ⊴p SS , where e2 = e ∈ S. Since M is π-dual
Baer, I(M) = f(M) for some f2 = f ∈ S by [8, Theorem 2.4]. On the other hand, f(M)/e(M) is a
direct summand of M/e(M), as well. Hence f(M) = e(M) = I(M). Hence M is π-dual nonsingular
by Theorem 4.3. □

Lemma 4.8. Let M be a π-dual nonsingular and π-lifting module. Then M is π-dual Baer.

Proof. Let I ⊴p SS . Then I(M) ⊴p M . Since M is π-lifting, there exists an idempotent e ∈ S such
that I(M)/e(M) ≪ M/e(M). By π-dual nonsingularity, I(M) = e(M). Therefore M is π-dual Baer
by [8, Theorem 2.4]. □

Example 4.9. The converses of Lemmas 4.5 and 4.7 are not true in general. Consider the Z-module
MZ = ZZ. M is not π-lifting and not π-dual Baer. It is easy to see that M is π-dual cononsingular
and π-dual nonsingular.

Theorem 4.10. The following are equivalent for a module M

(i) M is π-dual Baer and π-dual cononsingular;
(ii) M is π-lifting and π-dual nonsingular.

Proof. Combine Lemmas 4.5, 4.6, 4.7 and 4.8. □
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