Journal of the Iranian Mathematical Society ISSN (on-line): 2717-1612 J. Iran. Math. Soc. 4 (2023), no. 2, 235-245 © 2023 Iranian Mathematical Society

A STUDY ON THE π -DUAL RICKART MODULES

D. KESKIN TÜTÜNCÜ

Dedicated to Prof. O. A. S. Karamzadeh

ABSTRACT. The right *R*-module *M* is said to be a π -dual Rickart module, if for every endomorphism $f: M \to M$ with projection invariant image, f(M), in *M*, f(M) is a direct summand of *M*. We show that the class of the π -dual Rickart modules contains properly the class of all π -dual Baer modules and the dual Rickart modules. We also investigate the transfering between a base ring *R* and R[x] (and R[[x]]). It is shown that, in general, the class of π -dual Rickart modules is neither closed under direct summands nor closed under direct sums. We conclude the paper by giving a connection between the classes of π -dual Baer and π -lifting modules.

1. Introduction

Throughout this paper, R will be an associative ring with unity and any module M will be a unital right R-module. For a right R-module M, $S = \operatorname{End}_R(M)$ will denote the endomorphism ring of M, and $Mat_n(R)$ denotes an $n \times n$ matrix ring over the ring R. For two R-modules Mand N, $\operatorname{Hom}_R(M, N)$ will indicate the set of all homomorphisms from M to N. The notations $N \leq M$ and $N \leq_d M$ mean that N is a submodule of M and N is a direct summand of M, respectively. By \mathbb{Q} and \mathbb{Z} we denote the ring of rational and integer numbers, respectively. E(M)denotes the injective hull of a module M and $\mathbb{Z}(p^{\infty})$ denotes the Prüfer p-group for any prime integer p. We also denote $r_M(I) = \{m \in M \mid Im = 0\}, r_S(I) = \{\varphi \in S \mid I\varphi = 0\}$ for $\emptyset \neq I \subseteq S$; $r_R(N) = \{r \in R \mid Nr = 0\}, l_S(N) = \{\varphi \in S \mid \varphi(N) = 0\}$ for $N \leq M$. For a subset X of S and a submodule N of M, we denote the submodule $\sum_{f \in X} f(N)$ by X(N).

Communicated by Alireza Abdollahi

MSC(2020): Primary: 16D10, 16S50; Secondary: 16D80.

Keywords: Dual Baer module, π -dual Baer module, dual Rickart module, π -dual Rickart module, projection invariant submodule. Received: 11 May 2023, Accepted: 5 August 2023.

Let $N \leq M$ for a module M. Then N is called a *fully invariant* submodule of M (denoted by $N \leq M$) if $f(N) \subseteq N$ for all $f \in S$, and N is called a *projection invariant* submodule of M (denoted by $N \leq_p M$) if $e(N) \subseteq N$ for all idempotent endomorphisms $e \in S$. Clearly, every fully invariant submodule is projection invariant. By [1, Proposition 3.1], if $N \leq_d M$, then $N \leq M$ if and only if $N \leq_p M$. Note that a right ideal I of a ring R is called *projection invariant* in R_R (denoted by $I \leq_p R_R$) if $eI \subseteq I$ for all $e^2 = e \in R$. Moreover, fully invariant right ideals of R coincide with two-sided ideals of R.

In 2010, dual Baer modules were introduced by Keskin Tütüncü and Tribak. Let M be a module. M is called a *dual Baer* module if for every submodule N of M, $D_S(N) = \{f \in S \mid f(M) \subseteq N\}$ is a direct summand right ideal of S_S (see [7]). Later in 2013, Amouzegar and Talebi introduced quasidual Baer modules. A module M is said to be *quasi-dual Baer* if, for every fully invariant submodule N of M, there exists an idempotent $e \in S$ such that $D_S(N) = eS$ (see [2]). In 2021, Kara and in 2022, Keskin Tütüncü and Tribak defined π -dual Baer modules (according to Kara, dual π -endo Baer modules). A module M is called π -dual Baer if for each $N \leq_p M$, $D_S(N) = eS$ for some $e^2 = e \in S$ (see [6] and [8]). Clearly, M is dual Baer $\Rightarrow M$ is π -dual Baer $\Rightarrow M$ is quasi-dual Baer, for any module M. Also, in 2011, Lee, Rizvi, and Roman introduced dual Rickart modules. A module M is called dual Rickart, if for every endomorphism $f: M \to M$, $f(M) \leq_d M$ (see [11]).

Motivated by all these works ([2, 6–8] and [11]), we introduce π -dual Rickart modules, in this paper. A module M is called a π -dual Rickart module if $f(M) \leq_p M$, then $f(M) \leq_d M$, for every endomorphism $f: M \to M$. Our aim is to present some properties of these modules and investigate direct summands and direct sums of them.

Section 2 is devoted to the study of some basic properties and direct summands of π -dual Rickart modules. We construct some examples showing that π -dual Rickart modules are proper generalizations of dual Rickart modules (Example 2.5) and π -dual Baer modules (Example 2.6). We will say that Ris a right π -dual Rickart ring, whenever the R-module R_R is a π -dual Rickart module, for any ring R. We investigate the transfer of the right π -dual Rickart condition between a base ring R and R[x] (and R[[x]]). We prove that if R[x] (R[[x]]) is a right π -dual Rickart ring, then R is a right π -dual Rickart ring (Proposition 2.12). Also, we illustrate that R[x] and R[[x]] may not be right π -dual Rickart rings, if R is a right π -dual Rickart ring (Example 2.13). In this section, finally, we study the direct summands of π -dual Rickart modules. We prove that if $M = M_1 \oplus M_2$ is a π -dual Rickart module with $M_1 \leq_p M$, then M_1 and M_2 are π -dual Rickart (Corollary 2.19).

The investigations in Section 3 focus on the question of when is the direct sum of π -dual Rickart modules, π -dual Rickart? Mainly, we prove that if $M = \bigoplus_{i \in I} M_i$ with $M_i \leq_p M$ for all $i \in I$, then M is a π -dual Rickart module if and only if M_i is a π -dual Rickart module for all $i \in I$ (Theorem 3.7).

The focus in Section 4 is on obtaining a connection between the classes of π -dual Baer and π -lifting modules. Firstly, we give the definitions of π -lifting modules, π -dual nonsingular modules, and π -dual cononsingular modules. Finally, we prove that a module M is π -dual Baer and π -dual cononsingular if and only if it is π -lifting and π -dual nonsingular (Theorem 4.10).

2. π -Dual Rickart modules and direct summands

We start with the definition of π -dual Rickart modules.

Definition 2.1. An arbitrary module M is called a π -dual Rickart module, if $\operatorname{Im} f \leq_p M$ then $\operatorname{Im} f \leq_d M$, for every endomorphism $f: M \to M$.

Lemma 2.2. Let M be an arbitrary module, and $S = \text{End}_R(M)$. M is a π -dual Rickart module if and only if for every $g \in S$ with $g(M) \leq_p M$, $D_S(g(M))$ is a direct summand of S_S .

Proof. (\Rightarrow) Suppose M is π -dual Rickart, and $g: M \to M$ an endomorphism with $g(M) \leq_p M$. Then there exists an idempotent $e \in S$ such that g(M) = e(M). Clearly, $D_S(e(M)) = eS$.

 (\Leftarrow) Let $g: M \to M$ be an endomorphism, with $g(M) \leq_p M$. By hypothesis, $D_S(g(M)) = eS$ for some idempotent $e \in S$. Since $e \in D_S(g(M))$, $e(M) \subseteq g(M)$, and since $g \in D_S(g(M))$, g = es for some $s \in S$. Therefore $g(M) \subseteq e(M)$. Hence g(M) = e(M), which is a direct summand of M. \Box

Examples 2.3. Clearly, every dual Rickart module is π -dual Rickart. Every semisimple module is a π -dual Rickart module. Every injective module over a right hereditary ring is π -dual Rickart. Any module which has a von Neumann regular endomorphism ring is π -dual Rickart. The \mathbb{Z} -modules $\mathbb{Z}(p^{\infty})$ (*p* is any prime integer), \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are π -dual Rickart modules (see [11, Example 2.3]).

Lemma 2.4. Every π -dual Baer module is π -dual Rickart.

Proof. Let $f: M \to M$ with $\operatorname{Im} f \leq_p M$ be an endomorphism, and $S = \operatorname{End}(M)$. Since M is π -dual Baer, $D_S(\operatorname{Im} f) = eS$ for some $e^2 = e \in S$. By Lemma 2.2, M is π -dual Rickart.

There exists a π -dual Rickart module which is not dual Rickart as we see in the following example.

Example 2.5. Let k be any field of characteristic 0. By [10, Corollary 3.17], the first Weyl algebra $A_1(k)$ is a simple domain, which is not a division ring. Therefore $A_1(k)$ is not a von Neumann regular ring, because over domains von Neumann regular rings and division rings are coincide. Now, let $R = \begin{bmatrix} A_1(k) & A_1(k) \\ A_1(k) & A_1(k) \end{bmatrix}$ be the 2-by-2 matrix ring over $A_1(k)$. Then, clearly, R is a simple ring (see [10, Theorem 3.1]) which is not a domain. By [9, Corollary 18.6], R is not von Neumann regular. Therefore R_R is not dual Rickart by [11, Remark 2.2]. On the other hand, R_R is π -dual Rickart by [8, Example 4.11] and Lemma 2.4. Note that $_R R$ is π -dual Rickart, as well.

There exists a π -dual Rickart module which is not π -dual Baer as exhibited in the next example.

Example 2.6. Let F be a field and I be an infinite index set. Let $R = \prod_{i \in I} F_i$ where $F_i = F$ for each $i \in I$. We know that $Soc(R_R) = \bigoplus_{i \in I} F_i$ and it is essential in R_R . On the other hand, R_R is π -dual Rickart, because it is dual Rickart by [11, Example 5.1]. By [8, Proposition 4.18], R_R is not π -dual Baer since R is not semisimple.

Remark 2.7. Let M be an indecomposable module. Then M is dual Baer iff it is π -dual Baer iff it is dual Rickart iff it is π -dual Rickart. Because for an indecomposable module, every submodule is projection invariant.

Recall that for an *R*-module *M* and a direct summand *N* of *M*, $N \leq_p M$ if and only if $N \leq M$ (see [1, Proposition 3.1]). Also, recall that a module *M* is said to have the *FI-strong summand sum* property (briefly, *FI-SSSP*), if the sum of any number of fully invariant direct summands is again a direct summand (see [2, page 80]). Therefore, *M* has the FI-SSSP if and only if the sum of any number of projection invariant direct summands is again a direct summand. In the same manner, any module *M* is said to have the *FI-SSP*, if the sum of any two projection invariant direct summands is again a direct summand.

Lemma 2.8. Let M be a π -dual Baer module. Then M has the FI-SSSP.

Proof. By [2, Lemma 2.2] and [8, Remark 2.9].

Now, we can give the following result similar to [2, Theorem 2.2].

Theorem 2.9. Let M be a module with S = End(M) and $\text{Im} f \leq_p M$, for all $f \in S$. Then the following are equivalent:

- (i) M is π -dual Baer;
- (ii) M has the FI-SSSP and M is π -dual Rickart;
- (iii) *M* is dual Baer.

Proof. (i) \Rightarrow (ii) By Lemmas 2.4 and 2.8.

(ii) \Rightarrow (iii) Let $I \leq S_S$. By hypothesis, $\operatorname{Im} f \leq_p M$ for all $f \in I$. Since M is π -dual Rickart, $\operatorname{Im} f \leq_d M$, for all $f \in I$. Then $\sum_{f \in I} \operatorname{Im} f \leq_d M$, since M has the FI-SSSP. Therefore M is dual Baer by [7, Theorem 2.1]. (iii) \Rightarrow (i) Clear.

We can investigate the endomorphism rings of indecomposable π -dual Rickart modules as follows.

Theorem 2.10. Let M be a module with $S = \operatorname{End}_R(M)$. The following are equivalent.

- (i) M is indecomposable and dual Rickart;
- (ii) M is indecomposable and π -dual Rickart;
- (iii) S is a domain and $\varphi(M) = r_M(l_S(\varphi(M)))$ for all $\varphi \in S$;
- (iv) every nonzero endomorphism $\varphi \in S$ is an epimorphism.

Proof. It follows by Remark 2.7 and [11, Proposition 4.4].

Next, we characterize π -dual Rickart rings as proved in the following.

Lemma 2.11. Let R be any ring. R_R is π -dual Baer if and only if every projection invariant cyclic right ideal xR is a direct summand of R_R .

Proof. (\Rightarrow) Let $xR \leq_p R_R$. Consider the *R*-homomorphism $f : R \to R$ defined by f(r) = xr. Then $\operatorname{Im} f = xR$. Since R_R is π -dual Rickart, we have $xR \leq_d R_R$.

(⇐) Let $f : R \to R$ be an *R*-homomorphism with $\operatorname{Im} f \trianglelefteq_p R_R$. Let f(1) = x. Then $\operatorname{Im} f = xR$. By hypothesis, $\operatorname{Im} f \leq_d R_R$. Hence R_R is π -dual Rickart.

Lemma 2.11 will be very useful to investigate the transfer of the right π -dual Rickart condition between a base ring R and R[x] (and R[[x]]).

Proposition 2.12. Let R be a ring satisfying one of the following conditions:

- (i) R[x] is a right π -dual Rickart ring;
- (ii) R[[x]] is a right π -dual Rickart ring.

Then R is a right π -dual Rickart ring.

Proof. (i) Let R[x] be a π -dual Rickart ring. Let $I = aR \leq_p R_R$, where $a \in R$. By [4, Lemma 4.1(iv)], $I[x] = aR[x] \leq_p R[x]_{R[x]}$. This implies that I[x] = e(x)R[x] for some idempotent $e(x) = e_0 + e_1x + \ldots + e_nx^n \in R[x]$ by Lemma 2.11. By the same proof as in [8, Proposition 4.19], $I = e_0R$. Therefore R is a right π -dual Rickart ring by Lemma 2.11.

(ii) This is achieved by the same method as in (i).

If R is a right π -dual Rickart ring, then R[x] and R[[x]] may not be right π -dual Rickart rings, as the next example illustrates.

Example 2.13. Let F be a field. Clearly, F is a right π -dual Rickart ring. By [8, Example 4.20] and Remark 2.7, neither F[x] nor F[[x]] is right π -dual Rickart.

The following example shows that the right π -dual Rickart property is not Morita invariant.

Example 2.14. We know that for any ring R and any positive integer n, the rings R and the full matrix ring $Mat_n(R)$ are Morita equivalent. Let R be a simple ring which is a domain but not a division ring. By [8, Example 3.5] and Remark 2.7, R_R is not π -dual Rickart, but it is quasi-dual Baer. Therefore for every positive integer n > 1, $Mat_n(R)$ is a right π -dual Rickart ring by [8, Proposition 4.21].

Next, we give the following definition to investigate direct summands of π -dual Rickart modules.

Definition 2.15. A module M is called N- π -dual Rickart if $f(M) \leq_p N$, then $f(M) \leq_d N$, for every homomorphism $f: M \to N$.

Clearly, any module M is π -dual Rickart if and only if M is M- π -dual Rickart. The next example illustrates this definition in a similar manner to [11, Example 2.15].

Example 2.16. Let N be a semisimple module. Then M is N- π -dual Rickart for any module M. Let p be any prime integer, $M_{\mathbb{Z}} = \mathbb{Z}(p^{\infty})$ and $N_{\mathbb{Z}} = \mathbb{Z}_p$. Then M is N- π -dual Rickart, but N is not M- π -dual Rickart. Note that here M and N are π -dual Rickart modules. Also \mathbb{Z}_4 is \mathbb{Z}_3 - π -dual Rickart, while \mathbb{Z}_4 is not a π -dual Rickart \mathbb{Z} -module.

Theorem 2.17. Let M and N be right R-modules. Then M is N- π -dual Rickart if and only if for any direct summand M' of M and any projection invariant submodule N' of N, M' is N'- π -dual Rickart.

Proof. Let $M' \leq_d M$ and $N' \leq_p N$. Take $f: M' \to N'$ with $f(M') \leq_p N'$. Since $M' \leq_d M$, there exists an idempotent $e: M \to M$ with e(M) = M'. Now we can take the homomorphism $ife: M \to N$, where $i: N' \to N$ is the inclusion map. By [5, Lemma 3.1], $(ife)(M) = f(M') \leq_p N$. Since M is N- π -dual Rickart, $f(M') \leq_d N$, and hence $f(M') \leq_d N'$. Therefore M' is N'- π -dual Rickart. The converse is clear.

Corollary 2.18. The following are equivalent for a module M.

- (i) M is π -dual Rickart;
- (ii) for every projection invariant submodule N of M, every direct summand L of M is N-π-dual Rickart;
- (iii) for every pair of submodules L and N of M with $L \leq_d M$ and $N \leq_p M$ and any $f: M \to N$ with $f(M) \leq_p N$, the image of the restricted homomorphism $f_{|L}$ with $f_{|L}(L) \leq_p N$ is a direct summand of N.

Proof. (i) \Rightarrow (ii) It is clear by Theorem 2.17.

(ii) \Rightarrow (iii) Let $L \leq_d M$, $N \leq_p M$ and $f : M \to N$ be any homomorphism with $f(M) \leq_p N$. Let $g = f_{|L} : L \to N$ and assume that $g(L) \leq_p N$. By (ii), $g(L) \leq_d N$. (iii) \Rightarrow (i) Take M = L = N in (iii).

We know that the \mathbb{Z} -module \mathbb{Q} is π -dual Rickart. Consider the submodule \mathbb{Z} of \mathbb{Q} . Since for every integer $n \geq 2$, $D_S(n\mathbb{Z})$ is non-zero and proper right ideal of $S = \text{End}_{\mathbb{Z}}(\mathbb{Z})$, $\mathbb{Z}_{\mathbb{Z}}$ is not π -dual Rickart. Therefore π -dual Rickart property does not always transfer from a module to each of its submodules. Next, we will show that a projection invariant direct summand of a π -dual Rickart module inherits the property.

Corollary 2.19. Let $M = M_1 \oplus M_2$ be a π -dual Rickart module for some submodules M_1 and M_2 of M. If $M_1 \leq_p M$, then M_1 and M_2 are π -dual Rickart.

Proof. M_1 is π -dual Rickart by Corollary 2.18.

Now let $f: M_2 \to M_2$ be a homomorphism with $f(M_2) \leq_p M_2$. By [3, Lemma 4.13], $M_1 \oplus f(M_2) \leq_p M$. Let $\varphi: M \to M$ be the homomorphism defined by $\varphi(m_1 + m_2) = m_1 + f(m_2) = (1_{M_1} \oplus f)(m_1 + m_2)$. Then $\varphi(M) = M_1 \oplus f(M_2)$. Since M is π -dual Rickart, $M_1 \oplus f(M_2) \leq_d M_1 \oplus M_2$ and so $f(M_2) \leq_d M_2$. Therefore M_2 is π -dual Rickart.

The following example illustrates that projection invariant condition is necessary in Corollary 2.19.

Example 2.20. Let R be a simple ring which is a domain but not a division ring. As we mentioned in Example 2.14, R_R is not π -dual Rickart. Now, consider a free right R-module $F_R = \bigoplus_{i=1}^n R_i$ for some integer n > 1, where $R_i \cong R$ for all $1 \le i \le n$. By [8, Example 3.5], F_R is π -dual Baer, and so it is π -dual Rickart by Lemma 2.4.

3. Direct sums of π -dual Rickart modules

As seen in the example below, the direct sum of π -dual Rickart modules is not a π -dual Rickart, necessarily.

Example 3.1. (see [11, Example 2.10]) Let $M_1 = \mathbb{Z}(p^{\infty})$ and $M_2 = \langle \frac{1}{p} + Z \rangle$, for some prime integer p. Note that M_1 and M_2 are both π -dual Rickart modules. Now, we will show that $M = M_1 \oplus M_2$ is not π -dual Rickart. Let $f: M \to M$ be the endomorphism defined by $f(\frac{a}{p^n} + \mathbb{Z}, \frac{b}{p} + \mathbb{Z}) = (\frac{b}{p} + \mathbb{Z}, 0)$ where $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then $f(M) = \langle \frac{1}{p} + Z \rangle \oplus 0$. We know that $\langle \frac{1}{p} + Z \rangle \oplus 0$ is an essential submodule in $\mathbb{Z}(p^{\infty}) \oplus 0$. Therefore f(M) can not be a direct summand of M. Here, $f(M) \leq_p \mathbb{Z}(p^{\infty}) \oplus 0$ because $\mathbb{Z}(p^{\infty}) \oplus 0$ is indecomposable. Since $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}(p^{\infty}) \oplus 0, 0 \oplus \langle \frac{1}{p} + Z \rangle) = 0$, $\mathbb{Z}(p^{\infty}) \oplus 0 \leq M$ by [12, Lemma 1.9]. Since $\mathbb{Z}(p^{\infty}) \oplus 0$ is a direct summand of M, it is projection invariant in M, as well. Now, by [5, Lemma 3.1], $f(M) \leq_p M$. Therefore M is not π -dual Rickart.

We can generalize the above example as follows.

Example 3.2. Let L be a simple R-module such that the injective hull E(L) of L has no maximal submodules. Note that $L \leq_p E(L)$, since L is quasi-injective. On the other hand, $E(L) \leq_p E(L) \oplus L$ since $\operatorname{Hom}_R(E(L), L) = 0$. Now let $M = E(L) \oplus L$, and $i : L \to E(L)$ be the inclusion map. Since L is not a direct summand of E(L), L is not E(L)- π -dual Rickart. Therefore by Corollary 2.18, M is not π -dual Rickart. Now let R be a discrete valuation ring with maximal ideal I and quotient field K. It is well known that $K/R \cong E(R/I)$. Therefore the R-module $(K/R) \oplus (R/I)$ is not π -dual Rickart. On the other hand, note that K/R and R/I are π -dual Rickart modules (see [8, Exeample 3.1]).

In this section, we focus on when a direct sum of π -dual Rickart modules is also π -dual Rickart.

Let $M = \bigoplus_{i \in I} M_i$, and $M_i \leq_p M$. From Corollary 2.18, if M is a π -dual Rickart module then M_i is M_j - π -dual Rickart, for all $i, j \in I$. Now, we give the following results.

Proposition 3.3. Let $M = \bigoplus_{i \in I} M_i$, and let N be an indecomposable module. Then M is N- π -dual Rickart if and only if M_i is N- π -dual Rickart, for all $i \in I$.

Proof. Since N is indecomposable, N has the SSSP and every submodule is projection invariant. Now the result follows by Theorem 2.17 and [11, Proposition 5.3(ii)]. \Box

Corollary 3.4. Let $M = \bigoplus_{i \in I} M_i$ where each M_i is indecomposable. Then for each $j \in I$, M is M_j - π -dual Rickart if and only if M_i is M_j - π -dual Rickart for all $i \in I$.

We can give the following applications of the above corollary.

Example 3.5. The \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} is $\mathbb{Z}(p^{\infty})$ - π -dual Rickart for all prime integers p. Because $\mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}(p^{\infty})$, where \mathbb{P} is the set of all prime integers and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}(p^{\infty}), \mathbb{Z}(q^{\infty})) = 0$ for all distinct primes p and q. The \mathbb{Z} -module $M = \mathbb{Z} \oplus \mathbb{Q}$ is not \mathbb{Q} - π -dual Rickart. Because $\mathbb{Z} \leq_p \mathbb{Q}$, but \mathbb{Z} is not a direct summand of \mathbb{Q} . Also M is not \mathbb{Z} - π -dual Rickart since \mathbb{Z} is not π -dual Rickart.

Theorem 3.6. Let $M = \bigoplus_{i \in I} M_i$ with $M_i \leq_p M$ for all $i \in I$, and let N be an arbitrary module. Then N is M- π -dual Rickart if and only if N is M_j - π -dual Rickart for all $j \in I$. *Proof.* (\Rightarrow) Use Theorem 2.17.

(\Leftarrow) Let $f : N \to M$ be a homomorphism with $f(N) \leq_p M$. We will show that $f(N) \leq_d M$. By [5, Lemma 3.1], $f(N) = \bigoplus_{i \in I} (f(N) \cap M_i)$ and $f(N) \cap M_i \leq_p M_i$ for all $i \in I$. Let $\pi_i : M \to M_i$ be the projection map for each $i \in I$. Then we have the homomorphisms $\pi_i f : N \to M_i$ with $(\pi_i f)(N) = f(N) \cap M_i$, for all $i \in I$ since $f(N) \leq_p M$ and π_i is an idempotent endomorphism of M for each $i \in I$. Since N is M_i - π -dual Rickart, $f(N) \cap M_i \leq_d M_i$ for each $i \in I$. Therefore $f(N) \leq_d M$. \Box

Finally, we can give the following last theorem and its corollary describing the direct sums of π -dual Rickart modules.

Theorem 3.7. Let $M = \bigoplus_{i \in I} M_i$ with $M_i \leq_p M$ for all $i \in I$. Then M is a π -dual Rickart module if and only if M_i is a π -dual Rickart module for all $i \in I$.

Proof. The necessity follows from Corollary 2.19. Conversely, assume that every M_i is π -dual Rickart for each $i \in I$. Now, we will prove that $M = \bigoplus_{i \in I} M_i$ is π -dual Rickart. Let $f : M \to M$ be a homomorphism with $f(M) \trianglelefteq_p M$. Let $j_i : M_i \to M$ be the inclusion map and $\pi_i : M \to M_i$ be the projection map for each $i \in I$. Then we have the homomorphisms $\pi_i f j_i : M_i \to M_i$ for each $i \in I$. Now, we have that $(\pi_i f j_i)(M_i) = \pi_i(f(M_i)) = f(M_i)$ for all $i \in I$, since each $M_i \trianglelefteq M$ (because $M_i \leq_d M$ and $M_i \trianglelefteq_p M$). On the other hand, $f(M) = \bigoplus_{i \in I} (f(M) \cap M_i)$ and $f(M) \cap M_i \trianglelefteq_p M_i$ for all $i \in I$, since $f(M) \trianglelefteq_p M$ (see [5, Lemma 3.1]). Note that $f(M_i) = f(M) \cap M_i$ for each $i \in I$. Therefore, $f(M) = \bigoplus_{i \in I} f(M_i) \leq_d M$, since each M_i is π -dual Rickart for each $i \in I$.

Recall that the Jacobson radical $\operatorname{Rad}(M)$ of any module M is the sum of all small submodules of M and $\operatorname{Rad}(M) \leq M$. Remember that any submodule S of any module M is called *small*, if whenever M = S + X for a submodule X of M, then M = X.

Corollary 3.8. Let an *R*-module M_1 be a direct sum of submodules M_1 and M_2 such that $\operatorname{Rad}(M_1) = M_1$, and M_2 is a semisimple module. If M is π -dual Rickart, then M_1 is π -dual Rickart. The converse holds when $\operatorname{Hom}_R(M_2, M_1) = 0$.

Proof. Note that $\operatorname{Rad}(M) = \operatorname{Rad}(M_1) \oplus \operatorname{Rad}(M_2) = M_1 \trianglelefteq_p M$.

 (\Rightarrow) Assume that M is π -dual Rickart. By Corollary 2.19, M_1 is π -dual Rickart.

(⇐) Since Hom_R(M_2, M_1) = 0, $M_2 \leq_p M$. Now the result is clear by Theorem 3.7.

4. π -Dual Baer modules and some singularity conditions

Let M be a module. We will say that M is π -lifting, if for any $N \leq_p M$ there exists a direct summand K of M such that $K \subseteq N$ and $N/K \ll M/K$. This definition is given under the name of PI-lifting in [1]. Note that if M is a lifting module, then it is π -lifting. But the converse is not true, in general as we see in the following example. **Example 4.1.** Let $R = \begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix}$. We know that R_R is not lifting since $\mathbb{Z}_{\mathbb{Z}}$ is not lifting. Note that projection invariant right ideals of R_R are $I_1 = \begin{bmatrix} 0 & 0 \\ \mathbb{Z}_2 & 0 \end{bmatrix}$ and $I_2 = \begin{bmatrix} 0 & 0 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix}$. Since I_2 is a direct summand of R_R , we can write $I_2/I_2 \ll R/I_2$. Note that Jacobson radical of R_R is $J(R_R) = I_1 = \begin{bmatrix} 0 & 0 \\ \mathbb{Z}_2 & 0 \end{bmatrix}$. So $I_1 \ll R_R$. Therefore, $I_1/0 \ll R/0$. Hence R_R is π -lifting.

In [5], the authors defined π -e.nonsingular and π -e.cononsingular modules as follows (see [5, Definition 4.9 and Proposition 4.10]):

A module M is called π -e.nonsingular, if for each projection invariant left ideal Y of S for which $r_M(Y)$ is essential in e(M), where $e^2 = e \in S$ we have $r_M(Y) = e(M)$, and it is called π -e.cononsingular, if for each $N \leq_p M$ with $r_M(l_S(N))$ a direct summand of M, we have N is essential in $r_M(l_S(N))$. Dually, we can define the following:

Definition 4.2. Let M be a module with $S = \operatorname{End}_R(M)$. M is called

- (i) π -dual nonsingular if for each $I \leq_p S_S$ with $e(M) \subseteq I(M)$ and $I(M)/e(M) \ll M/e(M)$, where $e^2 = e \in S$, we have I(M) = e(M).
- (ii) π -dual cononsingular if for each $N \leq_p M$ with $D_S(N)(M)$ a direct summand of M, we have $N/D_S(N)(M) \ll M/D_S(N)(M)$.

In this section, our aim is to obtain a connection between the classes of π -dual Baer and π -lifting modules via the dual singularity conditions defined above. Firstly, we give the following characterization of π -dual nonsingular modules.

Theorem 4.3. Let M be a module with $S = \text{End}_R(M)$. The following are equivalent:

- (i) M is π -dual nonsingular;
- (ii) For all $I \leq_p S_S$ with $I(M)/e(M) \ll M/e(M)$ for some $e^2 = e \in S$, we have $I \subseteq eS$;
- (iii) For all $N \leq_p M$ such that $N/e(M) \ll M/e(M)$ where $e^2 = e \in S$, we have $D_S(N)(M) = e(M)$ and $e \in S_l(S)$.

Proof. (i) \Rightarrow (ii) Let M be π -dual nonsingular. Let $I \leq_p S_S$ with $I(M)/e(M) \ll M/e(M)$ for some $e^2 = e \in S$. Then by π -dual nonsingularity, we have e(M) = I(M). Hence $I \subseteq D_S(e(M)) = eS$.

(ii) \Rightarrow (iii) Let $N \leq_p M$ such that $N/e(M) \ll M/e(M)$, where $e^2 = e \in S$. Note that $D_S(N) \leq_p S_S$. Clearly, $e(M) \subseteq D_S(N)(M) \subseteq N$. Hence $D_S(N)(M)/e(M) \ll M/e(M)$. By (ii), $D_S(N) \subseteq eS$. On the other hand, $eS \subseteq D_S(N)$. Hence $D_S(N) = eS$, and so $D_S(N)(M) = eS(M) \subseteq e(M)$. Consequently, $D_S(N)(M) = e(M)$. Note that $D_S(N)(M) \leq_p M$ and hence $e(M) \leq_p M$. Then $e \in S_l(S)$ by [5, Lemma 3.1].

(iii) \Rightarrow (i) Let $I \leq_p S_S$ with $I(M)/e(M) \ll M/e(M)$ where $e^2 = e \in S$. Note tat $I(M) \leq_p M$. By (iii), $D_S(I(M))(M) = e(M)$. Therefore I(M) = e(M). Consequently, M is π -dual nonsingular. \Box

Corollary 4.4. Let M be a π -dual nonsingular module with $S = \operatorname{End}_R(M)$. Let $N \leq_p M$. If $N/e_1(M) \ll M/e_1(M)$ and $N/e_2(M) \ll M/e_2(M)$, where $e_1^2 = e_1, e_2^2 = e_2 \in S$, then $e_1(M) = e_2(M)$ and $e_1, e_2 \in S_l(S)$.

Next, after a series of the following lemmas, we will reach the connection between the classes of π -dual Baer and π -lifting modules, which is the main aim of this section.

Lemma 4.5. If M is π -lifting, then it is π -dual cononsingular.

Proof. Assume that M is π -lifting. Let $N \leq_p M$ with $D_S(N)(M) = e(M)$ for some $e^2 = e \in S$. Note that $D_S(N)(M) \subseteq N$. Since M is π -lifting, there exists $f^2 = f \in S$ such that $f(M) \subseteq N$ and $N/f(M) \ll M/f(M)$. Clearly, $f(M) \subseteq e(M)$ and hence $N/e(M) \ll M/e(M)$. Therefore M is π -dual cononsingular.

Lemma 4.6. Let M be a π -dual cononsingular and π -dual Baer module. Then M is π -lifting.

Proof. Let $N \leq_p M$. Then $D_S(N) = eS$ for some $e^2 = e \in S$ since M is π -dual Baer. Now $e(M) = D_S(N)(M)$. Since M is π -dual cononsingular, $N/e(M) \ll M/e(M)$. Hence M is π -lifting. \Box

Lemma 4.7. Let M be π -dual Baer module. Then M is π -dual nonsingular.

Proof. Assume that $I(M)/e(M) \ll M/e(M)$ for some $I \leq_p S_S$, where $e^2 = e \in S$. Since M is π -dual Baer, I(M) = f(M) for some $f^2 = f \in S$ by [8, Theorem 2.4]. On the other hand, f(M)/e(M) is a direct summand of M/e(M), as well. Hence f(M) = e(M) = I(M). Hence M is π -dual nonsingular by Theorem 4.3.

Lemma 4.8. Let M be a π -dual nonsingular and π -lifting module. Then M is π -dual Baer.

Proof. Let $I \leq_p S_S$. Then $I(M) \leq_p M$. Since M is π -lifting, there exists an idempotent $e \in S$ such that $I(M)/e(M) \ll M/e(M)$. By π -dual nonsingularity, I(M) = e(M). Therefore M is π -dual Baer by [8, Theorem 2.4].

Example 4.9. The converses of Lemmas 4.5 and 4.7 are not true in general. Consider the \mathbb{Z} -module $M_{\mathbb{Z}} = \mathbb{Z}_{\mathbb{Z}}$. *M* is not π -lifting and not π -dual Baer. It is easy to see that *M* is π -dual cononsingular and π -dual nonsingular.

Theorem 4.10. The following are equivalent for a module M

- (i) M is π -dual Baer and π -dual cononsingular;
- (ii) M is π -lifting and π -dual nonsingular.

Proof. Combine Lemmas 4.5, 4.6, 4.7 and 4.8.

References

 C. Abdioğlu, M. T. Koan and S. Şahinkaya, On modules for which all submodules are projection invariant and the lifting condition, *Southeast Asian Bull. Math.* 34 (2010), no. 5, 807–818.

- [2] T. Amouzegar and Y. Talebi, On quasi-dual Baer modules, TWMS J. Pure Appl. Math. 4 (2013), no. 1, 78–86.
- [3] G. F. Birkenmeier, A. Tercan and C. C. Yücel, The extending condition relative to sets of submodules, Comm. Algebra 42 (2014), no. 2, 764–778.
- [4] G. F. Birkenmeier, Y. Kara and A. Tercan, π-Baer rings, J. Algebra Appl. 17 (2018), no. 2, 1850029, 19 pp.
- [5] G. F. Birkenmeier, Y. Kara and A. Tercan, π-endo Baer modules, Comm. Algebra 48 (2020), no. 3, 1132–1149.
- [6] Y. Kara, On dual π-endo Baer modules, Malaya J. Math. 9 (2021), no. 2, 39-45.
- [7] D. Keskin Tütüncü and R. Tribak, On dual Baer modules, Glasg. Math. J. 52 (2010), no. 2, 261–269.
- [8] D. Keskin Tütüncü and R. Tribak, π-dual Baer modules and π-dual Baer rings, Moroccan J. Algebra, Geom. Appl., to appear.
- [9] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- [10] T. Y. Lam, A First Course in Noncommutative Rings, Second Ed., Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.
- [11] G. Lee, S. T. Rizvi and C. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), no. 11, 4036–4058.
- [12] A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J. 48 (2006), no. 3, 533-545.

Derya Keskin Tütüncü

Department of Mathematics, University of Hacettepe, P.O. Box 06800, Ankara, Turkey.

Email: keskin@hacettepe.edu.tr