Journal of the Iranian Mathematical Society ISSN (on-line): 2717-1612
J. Iran. Math. Soc. 4 (2023), no. 2, 131-147
© 2023 Iranian Mathematical Society

RINGS OF QUOTIENTS OF THE RING $\mathcal{R}(L)$ BY coz-FILTERS

A. A. ESTAJI^{*} AND T. HAGHDADI

Dedicated to Prof. O. A. S. Karamzadeh

ABSTRACT. In this article, we first introduce the concept of z-sets in the ring $\mathcal{R}(L)$ of real-valued continuous functions on a completely regular frame L, and give some properties of them. Let $S_{\mathcal{F}}^{-1}\mathcal{R}(L)$ denote the ring of fractions of the ring $\mathcal{R}(L)$, where \mathcal{F} is a coz-filter on L and $S_{\mathcal{F}}$ is a multiplicatively closed subset related to \mathcal{F} . We show that $S_{\mathcal{F}}^{-1}\mathcal{R}(L)$ may be realized as the direct limits of the subrings $\mathcal{R}(A)$, where $A \in \{\mathfrak{o}_L(\operatorname{coz}(\alpha)) : \alpha \in S_{\mathcal{F}}\}$. Also, we show that $Q_{\operatorname{cl}}\mathcal{R}(L) = \mathcal{R}(L)$, if and only if $\mathcal{R}(L)$ is a special saturated ring.

1. Introduction and Preliminaries

In the point-free (localic) approach to topology, topological spaces are replaced by locales, seen as generalized spaces in which points are not explicitly mentioned. Formally, a *frame* L is defined as a special complete lattice (where we denote *top* (respectively, *bottom*) by \top (respectively, \perp)), usually called a *locale* in which finite meets distribute over arbitrary joins; that is, $a \land \bigvee S = \bigvee \{a \land s \colon s \in S\}$ for all $a \in L$ and $S \subseteq L$. A frame homomorphism is a map between frames that preserves finite meets and arbitrary joins.

Throughout this paper, L will be a frame. Every frame is a complete Heyting algebra with the Heyting implication given by

$$a \to b = \bigvee \{ x \in L \colon a \land x \le b \}.$$

*Corresponding author

Communicated by Alireza Abdollahi

MSC(2020): Primary: 06D22; Secondary: 13B30.

Keywords: Ring of all real continuous functions on a frame, coz-filter, multiplicatively closed z-set.

Received: 4 March 2023, Accepted: 17 June 2023.

DOI: https://dx.doi.org/10.30504/JIMS.2023.388284.1096

For any $a \in L$, the element $a \to \bot$ is called the *pseudo complement* of a and is denoted by a^* .

For every $a, b \in L$, a is said to be rather below $b \in L$, written $a \prec b$, provided that $a^* \lor b = \top$. On the other hand, a is completely below b, written $a \prec b$, if there are elements (c_q) indexed by the rational numbers $\mathbb{Q} \cap [0,1]$ such that $c_0 = a$, $c_1 = b$, and $c_p \prec c_q$ for p < q. A frame L is said to be regular, if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$, and it is completely regular, if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$, and it is completely regular, if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$. An ideal J of a frame L is completely regular, if for every $x \in J$, there is $y \in J$ such that $x \prec y$. For a completely regular frame L, the frame of its completely regular ideals is denoted by βL . The join map $\beta L \to L$ is dense onto and is referred to as the Stone-Čech compactification of L. We denote its right adjoint by r. A straightforward calculation shows that $r(a) = \{x \in L : x \prec a\}$ for each $a \in L$. Throughout the paper, all frames will be assumed to be completely regular.

The frame $\mathcal{L}(\mathbb{R})$ of reals is obtained by taking the ordered pairs (p,q) of rational numbers as generators and imposing the following relations:

- (R1) $(p,q) \land (r,s) = (p \lor r, q \land s),$
- (R2) $(p,q) \lor (r,s) = (p,s)$ whenever $p \le r < q \le s$,
- (R3) $(p,q) = \bigvee \{ (r,s) | p < r < s < q \},$
- (R4) $\top = \bigvee \{ (p,q) | p, q \in \mathbb{Q} \}.$

Note that the pairs (p,q) in $\mathcal{L}(\mathbb{R})$ and the open intervals $\langle p,q \rangle = \{x \in \mathbb{R} : p < x < q\}$ in the frame $\mathfrak{O}\mathbb{R}$ have the same role. Let $\mathcal{R}(L)$ be the set of all frame maps from $\mathcal{L}(\mathbb{R})$ to a completely regular frame L, which is an f-ring. The reader can see [7] for more details of all these facts.

The properties of mapping coz: $\mathcal{R}(L) \to L$, defined by $\operatorname{coz}(\varphi) = \varphi(-,0) \lor \varphi(0,-)$, which are often used in this paper, are as follows:

- (1) $\cos(\alpha\beta) = \cos(\alpha) \wedge \cos(\beta)$.
- (2) $\cos(\alpha + \beta) \le \cos(\alpha) \lor \cos(\beta)$.
- (3) $\alpha \in \mathcal{R}(L)$ is invertible, if and only if $\cos(\alpha) = \top$.
- (4) $coz(\alpha) = \bot$, if and only if $\alpha = \mathbf{0}$.
- (5) $\cos(\alpha^2 + \beta^2) = \cos(\alpha) \vee \cos(\beta).$

For $A \subseteq \mathcal{R}(L)$, let $\operatorname{Coz}(A) := \{\operatorname{coz}(\alpha) ; \alpha \in A\}$, and let the cozero part of L, is denoted by $\operatorname{Coz}(L)$, be the regular sub- σ -frame consisting of all the cozero elements of L. It is known that L is completely regular, if and only if $\operatorname{Coz}(L)$ generates L. For $A \subseteq \operatorname{Coz}(L)$, we write $\operatorname{Coz}^{\leftarrow}(A)$ to designate the family of frame maps $\{\alpha \in \mathcal{R}(L) : \operatorname{coz}(\alpha) \in A\}$.

A sublocale of a locale L is a subset $S \subseteq L$, closed under arbitrary meets, such that $x \to s \in S$ for every $(x, s) \in L \times S$. Throughout this paper, let $\mathcal{S}\ell(L)$ be the set of all sublocales, which is a coframe with the relation of inclusion. The smallest sublocale of L is $O = \{\top\}$, called the void sublocale. For any $a \in L$, sets

$$\mathfrak{o}_L(a) := \{a \to x \mid x \in L\} = \{x \mid x = a \to x\} \text{ and } \mathfrak{c}_L(a) := \{x \in L \mid x \ge a\}$$

denote the open and closed sublocales of L determined by a, respectively (see [19]). The closure and interior of every $S \in \mathcal{S}(L)$, are defined, respectively, by

$$cl_L S := \bigcap \{ \mathfrak{c}_L(a) \in \mathcal{S}\ell(L) \colon S \subseteq \mathfrak{c}_L(a) \} = \mathfrak{c}_L\left(\bigwedge S\right) \text{ and } \operatorname{int}_L S := \bigvee \{ \mathfrak{o}_L(a) \in \mathcal{S}\ell(L) \colon \mathfrak{o}_L(a) \subseteq S \}.$$

A sublocale S of L is dense, if $cl_L(S) = L$. This is the case if and only if the bottom of S is the bottom element of L.

We shall freely use the following properties of these sublocales:

- (1) $\mathfrak{o}_L(\bot) = \mathfrak{c}_L(\top) = \mathsf{O}$ and $\mathfrak{o}_L(\top) = \mathfrak{c}_L(\bot) = L$.
- (2) $\mathfrak{c}_L(a) \subseteq \mathfrak{o}_L(b)$, if and only if $a \lor b = \top$, and also, $\mathfrak{o}_L(a) \subseteq \mathfrak{c}_L(b)$, if and only if $a \land b = \bot$.
- (3) $\operatorname{int}_L \mathfrak{c}_L(a) = \mathfrak{o}_L(a^*)$ and $\operatorname{cl}_L \mathfrak{o}_L(a) = \mathfrak{c}_L(a^*)$.
- (4) $\mathfrak{o}_L(a) \cap \mathfrak{o}_L(b) = \mathfrak{o}_L(a \wedge b)$ and $\mathfrak{c}_L(a) \vee \mathfrak{c}_L(b) = \mathfrak{c}_L(a \wedge b).$
- (5) $\bigvee_i \mathfrak{o}_L(a_i) = \mathfrak{o}_L(\bigvee_i a_i)$ and $\bigcap_i \mathfrak{c}_L(a_i) = \mathfrak{c}_L(\bigvee_i a_i).$

If S is a sublocale of L, then we write $\nu_S \colon L \to S$ for the associated frame surjection. Recall from [19] that, for any $a \in L$, $\nu_S(a) = \bigwedge \{x \in S \mid a \leq x\} = \bigwedge (S \cap \mathfrak{c}_L(a))$. Also the nuclei associated with $\mathfrak{o}_L(a)$ is $\nu_{\mathfrak{o}_L(a)}(x) = a \to x$. Recall from [16] that, a ring homomorphism $h \colon A \to R$ is an exoteric homomorphism, if for all pairs (I, J) of finitely generated ideals of A, $\operatorname{Ann}_A(I) = \operatorname{Ann}_A(J)$ implies $\operatorname{Ann}_R(h(I)) = \operatorname{Ann}_R(h(J))$. An ideal of a ring A is said to be exoteric, if it is the kernel of an exoteric homomorphism. Dube [12] showed that $\operatorname{Soc}(\mathcal{R}(L))$ is an exoteric ideal of $\mathcal{R}(L)$. He also showed that if L has a finite number of atoms, then one can create a ring homomorphism with the domain $\mathcal{R}(L)$ whose core is $\operatorname{Soc}(\mathcal{R}(L))$.

Let A be a ring and let B be a commutative ring containing A with the same unit element. Then B is a ring of quotients or rational extension of A provided that for every $b \in B$, $b^{-1}A := \{a \in A : ba \in A\}$ is a dense ideal in B. That is, for every pair of elements $b, b' \in B$ with $b' \neq 0$, there is $a \in A$ such that $ba \in A$ and $b'a \neq 0$.

The concept of rational extension and quotient ring was defined by Johnson [18] and Utumi [22]. Then in [17], this concept was applied to the ring C(X) of all continuous real-valued functions on a completely regular space X. The classical ring of quotients of A denoted by $Q_{cl}(A)$, is the ring of equivalence classes of formal quotients $\frac{c}{d}$ for $c \in A$ and a non-zero-divisor d of A. Let Q(X) (resp., $Q_{cl}(X)$) denote the maximal ring of quotients (resp., the classical ring of quotients) of C(X). These rings have been studied by Fine, Gillman, and Lambek [17] and realized as the ring of all continuous functions on the dense open sets (dense cozero sets) of X and the ring of all continuous functions on the dense cozero-sets in X. In special cases, the ring Q(X) reduces to the classical ring of quotients of C(X), but in general, the classical ring is a proper subring of Q(X). Now let $Q(\mathcal{R}(L))$ (resp., $Q_{cl}(\mathcal{R}(L))$) denote the maximal ring of quotients (resp., the classical ring of quotients) of the ring $\mathcal{R}(L)$ of real-valued continuous functions on a completely regular frame L. These rings have been studied by Abedi [1] and realized as the direct limit of the subrings $\mathcal{R}(\downarrow c)$, where c is a dense element (dense cozero element) of L. Also, Abedi applied these representations of $Q(\mathcal{R}(L))$ and $Q_{cl}(\mathcal{R}(L))$ to describe the equality between different rings of quotients of $\mathcal{R}(L)$.

Let X be a topological space. To study the ring C(X), zero sets and z-ideals play important roles (see [4–6] for more details). The first author [15] studied a generalization of z-ideals in the ring C(X)of continuous real-valued functions on a completely regular Hausdorff space. Salehi [20] introduced multiplicative closed ξ -subsets of the ring C(X) and showed that the ring of fraction $S^{-1}C(X)$ and the ring of direct limits of continuous functions on the members of \mathcal{F}_S are isomorphic. In [10, 11, 13, 14], cozeros were used to introduce z-ideals in $\mathcal{R}(L)$ (also, see [3]).

This paper is organized as follows. Section 1 presents the basic concepts and preliminaries, which will be used in the next sections. In Section 2, we introduce the concepts of z-sets, the smallest z-set containing A, and the biggest z-set included in A, where A is a subset of $\mathcal{R}(L)$, and also, we give some properties of them. Section 3 is devoted to the study of the ring of fractions $S_{\mathcal{F}}^{-1}\mathcal{R}(L)$, where \mathcal{F} is a coz-filter on L and $S_{\mathcal{F}}$ is a multiplicatively closed subset related to \mathcal{F} . We show that this ring is isomorphic to the direct limits of the subrings $\mathcal{R}(A)$, where $A \in \{\mathfrak{o}_L(\operatorname{coz}(\alpha)) : \alpha \in S_{\mathcal{F}}\}$. In Corollary 3.17, we show that the classical quotient ring of $\mathcal{R}(L)$ is isomorphic to the following direct limit: $[\biguplus_{a \in \mathcal{V}} \mathcal{R}(\mathfrak{o}_L(a))]$, where $\mathcal{V} = \{\operatorname{coz}(\alpha) : \mathfrak{o}_L(\operatorname{coz}(\alpha)) \text{ is a dense sublocal of } L\}$. In the last section, we show that $\operatorname{Q}_{\operatorname{cl}} \mathcal{R}(L) = \mathcal{R}(L)$, if and only if $\mathcal{R}(L)$ is a special saturated ring.

2. z-Sets in point-free topology

Let A be a subset of $\mathcal{R}(L)$. In this section, we introduce the concepts of z-sets, the smallest z-set containing A, and the biggest z-set included in A and give some properties of them. For any $\alpha \in \mathcal{R}(L)$, M_{α} denotes the intersection of all maximal ideals containing α , and $m_{\alpha} = \{\beta \in \mathcal{R}(L) ; M_{\alpha} = M_{\beta}\}.$

Definition 2.1. A subset A of $\mathcal{R}(L)$ is called a z-set, if $M_{\alpha} = M_{\beta}$ and $\alpha \in A$ imply $\beta \in A$.

Lemma 2.2 ([9]). Let Q be an ideal of $\mathcal{R}(L)$. Then

$$M_Q = \left\{ \varphi \in \mathcal{R}(L) \mid r(\operatorname{coz}(\varphi)) \leq \bigvee_{\alpha \in Q} r(\operatorname{coz}(\alpha)) \right\}.$$

Hence, for any $\gamma \in \mathcal{R}(L)$, it holds that $M_{\gamma} = \{\varphi \in \mathcal{R}(L) \mid \cos(\varphi) \leq \cos(\gamma)\}.$

Lemma 2.3. Let $\alpha \in \mathcal{R}(L)$. Then $m_{\alpha} = \{\beta \in \mathcal{R}(L) ; \operatorname{coz}(\alpha) = \operatorname{coz}(\beta)\}.$

Proof. Let $T = \{\beta \in \mathcal{R}(L) : \cos(\alpha) = \cos(\beta)\}$, and let $\beta \in m_{\alpha}$. Then $M_{\alpha} = M_{\beta}$ and by Lemma 2.2,

$$\big\{\gamma \in \mathcal{R}(L) : \operatorname{coz}(\gamma) \le \operatorname{coz}(\alpha)\big\} = \big\{\gamma \in \mathcal{R}(L) : \operatorname{coz}(\gamma) \le \operatorname{coz}(\beta)\big\}.$$

Therefore, $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$ and $\beta \in T$. Now, let $\beta \in T$ and M be a maximal ideal of $\mathcal{R}(L)$ such that $\alpha \in M$. Then $\operatorname{coz}(\alpha) \in \operatorname{Coz}(M)$ and $\operatorname{coz}(\beta) \in \operatorname{Coz}(M)$. Hence $\beta \in \operatorname{Coz}(\operatorname{Coz}(M)) \subseteq M$, and so $\beta \in m_{\alpha}$.

Proposition 2.4. For any subset A of $\mathcal{R}(L)$, the following conditions are equivalent:

- (1) A is a z-set.
- (2) For any $\alpha, \beta \in \mathcal{R}(L), \alpha \in A$ and $\cos(\alpha) = \cos(\beta)$ imply $\beta \in A$.

Proof. It is straightforward.

Since the union and intersection of any arbitrary family of z-sets of $\mathcal{R}(L)$ are themselves z-sets, therefore for every subset A of $\mathcal{R}(L)$, two sets $\bigcap \{B : B \text{ is a } z \text{-set}, B \supseteq A\}$ and $\bigcup \{B : B \text{ is a } z \text{-set}, B \supseteq A\}$ $B \subseteq A$ are z-sets, which are denoted by A_z and A^z , respectively. It is observed that A_z is the smallest z-set containing A and that A^z is the biggest z-set included in A.

Proposition 2.5. Let A be a subset of $\mathcal{R}(L)$. Then the following properties hold:

(1)
$$A_z = \bigcup_{\alpha \in A} m_{\alpha}.$$

(2) $A^z = \{ \alpha \in A ; m_{\alpha} \subseteq A \} = \bigcup_{m_{\alpha} \subset A} m_{\alpha}.$

Proof. (1) Since m_{α} is a z-set for any $\alpha \in A$, we have $\bigcup_{\alpha \in A} m_{\alpha}$ is a z-set. Now, we show that $\bigcup_{\alpha \in A} m_{\alpha}$ is the smallest z-set containing A. It is clear that $A \subseteq \bigcup_{\alpha \in A} m_{\alpha}$. Now, suppose that B is a z-set such that $A \subseteq B$. Let $\beta \in \bigcup_{\alpha \in A} m_{\alpha}$. Then there exists an element α in A such that $\beta \in M_{\alpha}$, and hence $M_{\alpha} = M_{\beta}$. Since $\alpha \in B$ and B is a z-set, we have $\beta \in B$. Therefore $\bigcup_{\alpha \in A} m_{\alpha} \subseteq B$. Thus $\bigcup_{\alpha \in A} m_{\alpha} = A_z$ and the proof is complete.

(2) First, we show that $J = \{ \alpha \in A ; m_{\alpha} \subseteq A \}$ is a z-set. To do this, suppose that $M_{\beta} = M_{\varphi}$, where $\beta \in J$ and $\varphi \in \mathcal{R}(L)$. So $\beta \in J$ implies that $m_{\beta} \subseteq A$ and hence $m_{\varphi} \subseteq A$. Therefore $\varphi \in J$. Thus J is a z-set. Now, we show that J is the biggest z-set included in A. It is clear that $J \subseteq A$, because if $\alpha \in J$, then $m_{\alpha} \subseteq A$. Indeed $\alpha \in m_{\alpha}$ implies $\alpha \in A$. Now suppose that K is a z-set such that $K \subseteq A$. Let $\beta \in K$. Since K is a z-set, $m_{\beta} \subseteq K$. Indeed $K \subseteq A$; therefore $m_{\beta} \subseteq A$, and so $\beta \in J$. Hence $K \subseteq J$. Thus $J = A^z$.

We say that a subset S of a commutative ring R is multiplicative closed, when $1 \in S$ and whenever $s_1, s_2 \in S$, then $s_1 s_2 \in S$. Also, a multiplicative closed subset S of a commutative ring R is saturated precisely when $s_1s_2 \in S$ implies both s_1 and s_2 belong to S. Let S be any multiplicatively closed subset of A. The smallest saturated multiplicatively closed subset containing S is denoted by \overline{S} . For use in the upcoming proof, recall from [2, Lemma 3.2] that

$$M_{\alpha\beta} = M_{\alpha} \cap M_{\beta} = M_{\alpha}M_{\beta}$$
 for any $\alpha, \beta \in \mathcal{R}(L)$.

Proposition 2.6. Let S be a multiplicatively closed subset of $\mathcal{R}(L)$. Then

$$\overline{S}_z = \{ \alpha \in \mathcal{R}(L) \; ; \; M_\gamma \subseteq M_\alpha \text{ for some } \gamma \in S \}.$$

Proof. Put $T = \{ \alpha \in \mathcal{R}(L) ; M_{\gamma} \subseteq M_{\alpha} \text{ for some } \gamma \in S \}$. It is easy to see that T is a multiplicatively closed subset of $\mathcal{R}(L)$ and that $S_z \subseteq T$. Now, we show that T is a saturated set. For doing this, suppose that $\alpha\beta \in T$. Then there exists $\gamma \in S$ such that $M_{\gamma} \subseteq M_{\alpha\beta}$. Therefore $M_{\gamma} \subseteq M_{\alpha}$ and $M_{\gamma} \subseteq M_{\beta}$. Since $\gamma \in S$, we conclude that $\alpha \in T$ and $\beta \in T$. Thus T is a saturated set.

Finally, we show that T is the smallest saturated multiplicatively closed subset containing S_z . Suppose that K is a saturated multiplicatively closed subset such that $S_z \subseteq K$. Let $\alpha \in T$. Then there exists an element γ in S such that $M_{\gamma} \subseteq M_{\alpha}$, and hence $M_{\alpha\gamma} = M_{\alpha} \cap M_{\gamma} = M_{\gamma}$. Then $\alpha\gamma \in S_z$. It follows from $\gamma \in S$ and $S_z \subseteq K$ that $\alpha \gamma \in K$. Now, since K is a saturated set, we have $\alpha \in K$. Therefore $T \subseteq K$. Thus $T = \overline{S}_z$ and the proof is complete. **Remark 2.7.** For every multiplicatively closed subset S of $\mathcal{R}(L)$, it holds that $S \subseteq S_z \subseteq \overline{S}_z$.

Proposition 2.8. Let S be a multiplicatively closed subset of $\mathcal{R}(L)$. Then

$$\overline{S}_z = \{ \alpha \in \mathcal{R}(L) : M_\alpha \cap S \neq \emptyset \}.$$

Proof. Suppose that $\alpha \in \overline{S}_z$. Then, by Proposition 2.6, there exists $\gamma \in S$ such that $M_{\gamma} \subseteq M_{\alpha}$, implying $\gamma \in M_{\alpha}$. Consequently, $\gamma \in M_{\alpha} \cap S$, proving the inclusion \subseteq . For The reverse inclusion, pick $\alpha \in \mathcal{R}(L)$ such that $M_{\alpha} \cap S \neq \emptyset$. Now, choose $\gamma \in M_{\alpha} \cap S$. Then $M_{\gamma} \subseteq M_{\alpha}$ and so, by Proposition 2.6, $\alpha \in \overline{S}_z$. So the reverse inclusion also holds.

Proposition 2.9. If S is a multiplicatively closed z-set of $\mathcal{R}(L)$, then \overline{S} is a z-set of $\mathcal{R}(L)$.

Proof. We know that S is a z-set, which implies that $S_z = S$, and hence $\overline{S} = \overline{S}_z$. Now, we show that \overline{S}_z is a z-set. Suppose that $M_{\alpha} = M_{\beta}$, where $\alpha \in \overline{S}_z$ and $\beta \in \mathcal{R}(L)$. Then, there exists an element $\gamma \in S$ such that $M_{\gamma} \subseteq M_{\alpha}$. Therefore, $M_{\gamma} \subseteq M_{\beta}$ and $\gamma \in S$. Hence $\beta \in \overline{S}_z$.

Corollary 2.10. Let S be a multiplicatively closed subset of $\mathcal{R}(L)$. Then the following conditions are equivalent:

- (1) S is a saturated z-set.
- (2) If $\alpha \in \mathcal{R}(L)$ and $M_{\alpha} \cap S \neq \emptyset$, then $\alpha \in S$.
- (3) If $\alpha \in \mathcal{R}(L)$, $\gamma \in S$, and $\gamma \in M_{\alpha}$, then $\alpha \in S$.
- (4) If $\alpha \in \mathcal{R}(L)$, $\gamma \in S$, and $M_{\gamma} \subseteq M_{\alpha}$, then $\alpha \in S$.

Proof. (1) \Rightarrow (2) Since S is a saturated z-set, $S = \overline{S} = \overline{S}_z$. Now, suppose that $\alpha \in \mathcal{R}(L)$ and $M_{\alpha} \cap S \neq \emptyset$. So, by Proposition 2.8, $\alpha \in \overline{S}_z$, and hence $\alpha \in S$.

 $(2) \Rightarrow (3)$ It is immediate that (2) implies (3).

(3) \Rightarrow (4) Let $\alpha \in \mathcal{R}(L)$, let $\gamma \in S$, and let $M_{\gamma} \subseteq M_{\alpha}$. Then $\gamma \in M_{\gamma} \subseteq M_{\alpha}$, and so by (3), $\alpha \in S$. (4) \Rightarrow (1) First, we show that S is a z-set. Suppose that $M_{\alpha} = M_{\beta}$, where $\alpha \in S$ and $\beta \in \mathcal{R}(L)$. Then, by (4), $\beta \in S$. Thus S is a z-set. Now, we show that S is saturated. Suppose that $\alpha\beta \in S$, where $\alpha, \beta \in \mathcal{R}(L)$. Then

$$M_{\alpha\beta} = M_{\alpha} \cap M_{\beta} \subseteq M_{\alpha},$$

and so by (4), $\alpha \in S$. In a similar way, $\beta \in S$.

Definition 2.11. If \mathcal{F} is a subset of $\operatorname{Coz}(L)$ and \mathcal{F} is a filter, then it is called a coz-filter.

Lemma 2.12. Let \mathcal{F} be a coz-filter on Coz(L) or L. Then the following statements are true:

- (1) $\operatorname{Coz}^{\leftarrow}(\mathcal{F})$ is a z-set.
- (2) $\operatorname{Coz}^{\leftarrow}(\mathcal{F})$ is a multiplicatively closed subset of $\mathcal{R}(L)$.

Proof. (1) Suppose that $coz(\alpha) = coz(\beta)$, where $\alpha \in Coz^{\leftarrow}(\mathcal{F})$. Since $\alpha \in Coz^{\leftarrow}(\mathcal{F})$, we have $coz(\alpha) \in \mathcal{F}$, and hence $coz(\beta) \in \mathcal{F}$. Therefore $\beta \in Coz^{\leftarrow}(\mathcal{F})$. Thus by Prooposition 2.4, $Coz^{\leftarrow}(\mathcal{F})$ is a z-set.

(2) Suppose that $\alpha, \beta \in \operatorname{Coz}^{\leftarrow}(\mathcal{F})$. Then $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in \mathcal{F}$. Since $\operatorname{coz}(\alpha\beta) = \operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta)$ and \mathcal{F} is a coz-filter, we have $\operatorname{coz}(\alpha\beta) \in \mathcal{F}$, and hence $\alpha\beta \in \operatorname{Coz}^{\leftarrow}(\mathcal{F})$. Therefore $\operatorname{Coz}^{\leftarrow}(\mathcal{F})$ is a multiplicatively closed subset of $\mathcal{R}(L)$.

J. Iran. Math. Soc. 4 (2023), no. 2, 131-147

We put $S_{\mathcal{F}} = \operatorname{Coz}^{\leftarrow}(\mathcal{F})$. The set $S_{\mathcal{F}}$ is called *multiplicatively closed set related to* \mathcal{F} . Throughout the present paper,

$$Cozf[S] := \{ coz(\beta) : coz(\alpha) \le coz(\beta), \text{ for some } \alpha \in S \},\$$

for every multiplicatively closed subset S of $\mathcal{R}(L)$.

Proposition 2.13. Let S be a multiplicatively closed subset of $\mathcal{R}(L)$. Then Cozf[S] is a coz-filter on Coz(L).

Proof. To show our result, we must verify the three axioms of a filter.

(1) It is clear that for every $\alpha \in S$, $\operatorname{coz}(\alpha) \leq \top = \operatorname{coz}(1)$. Then $\top = \operatorname{coz}(1) \in \operatorname{Coz}(S)$.

(2) If $coz(\beta_1), coz(\beta_2) \in Cozf[S]$, then $coz(\alpha_1) \leq coz(\beta_1)$ and $coz(\alpha_2) \leq coz(\beta_2)$ for some $\alpha_1, \alpha_2 \in S$. Since S is multiplicatively subset of $\mathcal{R}(L), \alpha_1\alpha_2 \in S$. Then

$$\cos(\alpha_1\alpha_2) = \cos(\alpha_1) \wedge \cos(\alpha_2) \le \cos(\beta_1) \wedge \cos(\beta_2),$$

and so $coz(\beta_1) \wedge coz(\beta_2) \in Cozf[S]$.

(3) Suppose that $coz(\beta) \leq coz(\gamma)$ for some $coz(\beta) \in Cozf[S]$, and $coz(\gamma) \in Coz(L)$. Since $coz(\beta) \in Cozf[S]$, there exists $\alpha \in S$ such that $coz(\alpha) \leq coz(\beta)$. Hence, $coz(\alpha) \leq coz(\gamma)$, and so $coz(\gamma) \in Cozf[S]$.

Lemma 2.14. Let S be a multiplicatively closed subset of $\mathcal{R}(L)$. Then $Cozf[S] = Cozf[\bar{S}]$.

Proof. By Corollary 2.10 the proof is straightforward.

Proposition 2.15. Let S be a multiplicatively closed subset of $\mathcal{R}(L)$ and let \mathcal{F} be a filter on L. Then the following statements are true:

- (1) $S = \operatorname{Coz}^{\leftarrow} (\operatorname{Coz} f[S])$, if and only if S is a saturated z-set.
- (2) $\mathcal{F} = Cozf[\operatorname{Coz}^{\leftarrow}(\mathcal{F})]$ if and only if \mathcal{F} is a coz-filter on $\operatorname{Coz}(L)$.

Proof. (1) Necessity. Suppose that $S = \operatorname{Coz}^{\leftarrow}(\operatorname{Coz} f[S])$. By Lemma 2.12 and Proposition 2.13, S is a multiplicatively closed z-set. Now, let $\alpha\beta \in S$, where $\alpha, \beta \in \mathcal{R}(L)$. Since $\alpha\beta \in S$, we conclude that there exists $\gamma \in S$ such that $\operatorname{coz}(\gamma) \leq \operatorname{coz}(\alpha\beta)$. Therefore, $\operatorname{coz}(\gamma) \leq \operatorname{coz}(\alpha)$ and $\operatorname{coz}(\gamma) \leq \operatorname{coz}(\beta)$. Then $\operatorname{coz}(\alpha), \operatorname{coz}(\beta) \in \operatorname{Coz} f[S]$ and so $\alpha, \beta \in \operatorname{Coz}^{\leftarrow}(\operatorname{Coz} f[S]) = S$.

Sufficiency. Let S be a saturated z-set. It is immediate that $S \subseteq \operatorname{Coz}^{\leftarrow}(\operatorname{Coz} f[S])$. Conversely, let $\alpha \in \operatorname{Coz}^{\leftarrow}(\operatorname{Coz} f[S])$. Then $\operatorname{coz}(\alpha) \in \operatorname{Coz} f[S]$, and hence there exists $\gamma \in S$ such that $\operatorname{coz}(\gamma) \leq \operatorname{coz}(\alpha)$. Since S is a saturated z-sets, we deduce from Corollary 2.10 that $\alpha \in S$. Therefore $\operatorname{Coz}^{\leftarrow}(\operatorname{Coz} f[S]) \subseteq S$.

(2) Necessity. It follows from Lemma 2.12 and Proposition 2.13.

Sufficiency. Let \mathcal{F} be a coz-filter on $\operatorname{Coz}(L)$. Suppose that $\alpha \in \mathcal{R}(L)$ such that $\operatorname{coz}(\alpha) \in \mathcal{F}$. Then $\alpha \in \operatorname{Coz}^{\leftarrow}(\mathcal{F})$. Cleary $\operatorname{coz}(\alpha) \in \operatorname{Coz}f[\operatorname{Coz}^{\leftarrow}(\mathcal{F})]$, proving $\mathcal{F} \subseteq \operatorname{Coz}f[\operatorname{Coz}^{\leftarrow}(\mathcal{F})]$. Conversely, let $\operatorname{coz}(\beta) \in \operatorname{Coz}f[\operatorname{Coz}^{\leftarrow}(\mathcal{F})]$. Then, $\operatorname{coz}(\gamma) \leq \operatorname{coz}(\beta)$ for some $\gamma \in \operatorname{Coz}^{\leftarrow}(\mathcal{F})$. Since \mathcal{F} is a coz-filter on $\operatorname{Coz}(L)$ and $\operatorname{coz}(\gamma) \leq \operatorname{coz}(\beta)$, we conclude that $\operatorname{coz}(\beta) \in \mathcal{F}$ and so $\operatorname{Coz}f[\operatorname{Coz}^{\leftarrow}(\mathcal{F})] \subseteq \mathcal{F}$. \Box

3. Rings of quotients of the ring $\mathcal{R}(L)$ by coz-filters

This section is devoted to the study of the ring of fractions $S_{\mathcal{F}}^{-1}\mathcal{R}(L)$, where \mathcal{F} is a coz-filter on Land $S_{\mathcal{F}}$ is a multiplicatively closed subset related to \mathcal{F} . We show that this ring is isomorphic to the direct limits of the subrings $\mathcal{R}(A)$, where $A \in \{\mathfrak{o}_L(\operatorname{coz}(\alpha)) : \alpha \in S_{\mathcal{F}}\}$.

Let X be a topological space and let S be a family of nonvoid subsets of X. When S is a filter base (i.e., when S is closed under finite intersection), we are invited to consider the direct limit ring $\varinjlim_{S \in S} C(S)$, with respect to the restriction homomorphisms $f \to f|_{S'}$, where $f \in C(S)$ and $S' \subseteq S$. When S is a family of dense sets, all these homomorphisms are one-one, and $\varinjlim_{S \in S} C(S)$ may be considered as $\bigcup_{S \in S} C(S)$, where we identify $f_1 \in C(S_1)$ with $f_2 \in C(S_2)$ whenever f_1 and f_2 agree on $S_1 \cap S_2$ (see [17]).

Now, let S be a family of sublocales of L that is closed under finite intersection. It is evident that (S, \supseteq) is a partially ordered set. For every $A, B \in S$ with $A \leq B$ $(B \subseteq A)$, we define

$$\varphi_{AB}(\alpha \to \nu_B \alpha) \colon \mathcal{R}(A) \to \mathcal{R}(B),$$

where

$$\nu_{\scriptscriptstyle B} \alpha(v) = \bigwedge \{ b \in B \colon \alpha(v) \le b \},$$

for every $v \in \mathcal{L}(\mathbb{R})$. Then $(A, \varphi_{AB})_{A,B \in S}$ is a direct system over S in the category of rings. We define the equivalence relation \sim on $\biguplus_{A \in S} \mathcal{R}(A)$ by

$$\alpha \sim \beta \Leftrightarrow \nu_{\scriptscriptstyle A \cap B} \alpha = \nu_{\scriptscriptstyle A \cap B} \beta \text{ for all } (\alpha, \beta) \in \mathcal{R}(A) \times \mathcal{R}(B) \text{ and every } A, B \in \mathcal{S}$$

The equivalence relation \sim on $\biguplus_{A \in \mathcal{S}} \mathcal{R}(A)$ induces the ring $\biguplus_{A \in \mathcal{S}} \mathcal{R}(A) / \sim$, which is denoted by $[\biguplus_{A \in \mathcal{S}} \mathcal{R}(A)]$. Let $A \in \mathcal{S}$. We define

$$\varphi_A(\alpha \to [\alpha]) \colon \mathcal{R}(A) \to \left[\biguplus_{A \in \mathcal{S}} \mathcal{R}(A)\right].$$

Then $\varphi_A = \varphi_B \varphi_{AB}$ for every $A, B \in \mathcal{S}$ with $A \leq B$. We claim that $([\biguplus_{A \in \mathcal{S}} \mathcal{R}(A)], \varphi_A)_{A \in \mathcal{S}}$ is a direct limit of the direct system $(A, \varphi_{AB})_{A,B \in \mathcal{S}}$ in the category of rings. Let R be a ring, and let there be given morphisms $\psi_A \colon \mathcal{R}(A) \to R$ satisfying $\psi_B \varphi_{AB} = \psi_A$ for every $A, B \in \mathcal{S}$ with $A \leq B$. We define

$$\delta([\alpha] \to \psi_A(\alpha)) \colon \left[\biguplus_{A \in \mathcal{S}} \mathcal{R}(A)\right] \to R$$

for all $\alpha \in \mathcal{R}(A)$ and every $A \in \mathcal{S}$. Then the following diagram commutes for all $A, B \in \mathcal{S}$ with $A \leq B$:

DOI: https://dx.doi.org/10.30504/JIMS.2023.388284.1096

Hence, $\left(\left[\biguplus_{A\in\mathcal{S}}\mathcal{R}(A)\right],\varphi_A\right)_{A\in\mathcal{S}}$ is the direct limit of the direct system $(A,\varphi_{AB})_{A,B\in\mathcal{S}}$ over \mathcal{S} .

By the above explanation, we have the following proposition

Proposition 3.1. Let S be a family of sublocales of L that is closed under finite intersection. Then $([\biguplus_{A \in S} \mathcal{R}(A)], \varphi_A)_{A \in S}$ is the direct limit of the direct system $(A, \varphi_{AB})_{A,B \in S}$ over S.

Corollary 3.2. If $\mathcal{D}_o(L)$ is the family of all dense open sublocales in L, then $\mathcal{D}_o(L)$ is closed under finite intersection and

$$\varinjlim_{A \in \mathcal{D}_o(L)} \mathcal{R}(A) = \left(\left[\biguplus_{A \in \mathcal{D}_o(L)} \mathcal{R}(A) \right], \varphi_A \right)_{A \in \mathcal{S}}.$$

Let D be an ideal of a commutative ring A. We recall from [17] that D is (rationally) dense in A provided that Ann(D) = (0).

Proposition 3.3. An ideal D in $\mathcal{R}(L)$ (or $\mathcal{R}^*(L)$) is dense, if and only if $\bigvee_{\alpha \in D} \mathfrak{o}_L(\operatorname{coz}(\alpha))$ is dense in L.

Proof. Since

$$\begin{split} \boldsymbol{\beta} \in \operatorname{Ann}(D) \Leftrightarrow \text{ for all } \boldsymbol{\alpha} \in D(\boldsymbol{\alpha}\boldsymbol{\beta} = \mathbf{0}) \\ \Leftrightarrow \boldsymbol{\perp} = \bigvee_{\boldsymbol{\alpha} \in D} \operatorname{coz}(\boldsymbol{\alpha}\boldsymbol{\beta}) = \operatorname{coz}(\boldsymbol{\beta}) \wedge \bigvee_{\boldsymbol{\alpha} \in D} \operatorname{coz}(\boldsymbol{\alpha}) \\ \Leftrightarrow \mathbf{0} = \mathfrak{o}_L(\operatorname{coz}(\boldsymbol{\beta})) \wedge \mathfrak{o}_L(\bigvee_{\boldsymbol{\alpha} \in D} \operatorname{coz}(\boldsymbol{\alpha})) \\ \Leftrightarrow \mathbf{0} = \mathfrak{o}_L(\operatorname{coz}(\boldsymbol{\beta})) \wedge \bigvee_{\boldsymbol{\alpha} \in D} \mathfrak{o}_L(\operatorname{coz}(\boldsymbol{\alpha})), \end{split}$$

and L is completely regular, then D in $\mathcal{R}(L)$ is dense, if and only if $\bigvee_{\alpha \in D} \mathfrak{o}_L(\operatorname{coz}(\alpha))$ is dense in L.

Proposition 3.4. For every $a, b \in L$, if $b \notin \mathfrak{c}_L(a)$, then there exists $\alpha \in \mathcal{R}^*(L)$ such that $b \notin \mathfrak{c}_L(\operatorname{coz}(\alpha))$ and $\mathfrak{c}_L(a) \subseteq \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha)))$.

Proof. Since L is a completely regular locale and $a \not\leq b$, we conclude that there exists $\alpha \in \mathcal{R}^*(L)$ such that $\operatorname{coz}(\alpha) \not\leq b$ and $\operatorname{coz}(\alpha) \prec a$, which implies that $b \notin \mathfrak{c}_L(\operatorname{coz}(\alpha))$ and

$$\operatorname{coz}(\alpha) \prec a \Rightarrow \operatorname{coz}(\alpha)^* \lor a = \top \Rightarrow \mathfrak{c}_L(a) \subseteq \mathfrak{o}_L(\operatorname{coz}(\alpha)^*) = \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\alpha))).$$

Abedi [1] showed that $\mathcal{R}(L)$ is a ring of quotients of $\mathcal{R}^*(L)$ and that $\mathcal{R}(L)$ and $\mathcal{R}^*(L)$ have the same maximal ring of quotients and the same classical ring of quotients.

Proposition 3.5. Let A be a dense sublocale of L. Then $\mathcal{R}(A)$ is a ring of quotients of $\nu_A(\mathcal{R}(L)) := \{\nu_A \alpha : \alpha \in \mathcal{R}(L)\}.$

 \square

Proof. Let $\mathbf{0} \neq \alpha \in \mathcal{R}(A)$ be given. Then there exists $\top \neq b \in \mathfrak{o}_L(\operatorname{coz}(\alpha)) \cap A$, and so, by Proposition 3.4, there exists $\beta \in \mathcal{R}^*(L)$ such that $\mathfrak{c}_L(\operatorname{coz}(\alpha)) \subseteq \operatorname{int}_L(\mathfrak{c}_L(\operatorname{coz}(\beta)))$ and $b \notin \mathfrak{c}_L(\operatorname{coz}(\beta))$. Since $b \in \mathfrak{o}_L(\operatorname{coz}(\alpha)) \setminus \mathfrak{c}_L(\operatorname{coz}(\beta))$, we conclude that

$$\top \neq (\operatorname{coz}(\beta) \longrightarrow b) \in \mathfrak{o}_L(\operatorname{coz}(\alpha)) \cap \mathfrak{o}_L(\operatorname{coz}(\beta)) \neq \mathsf{O}.$$

Now, we claim that $\alpha \nu_A \beta \neq 0$. Suppose, by way of contradiction , that $\alpha \nu_A \beta = 0$. Then

$$\cos(\alpha) \wedge \cos(\beta) \le \cos(\alpha) \wedge \cos(\nu_A \beta) = \bot_A = \bot_L \Rightarrow \mathfrak{o}_L(\cos(\alpha)) \cap \mathfrak{o}_L(\cos(\beta)) = \mathbf{0},$$

which is a contradiction, and so, $\alpha \nu_A \beta \neq \mathbf{0}$. To complete the proof, it suffices to show that $\alpha \nu_A \beta \in \nu_A(\mathcal{R}(L))$. For this, define $\gamma(p,q) = \alpha \nu_A \beta(p,q)$ for each $p,q \in \mathbb{Q}$. Then $\gamma \in \mathcal{R}(L)$ and $\nu_A \gamma = \alpha \nu_A \beta$. Therefore $\alpha \nu_A \beta \in \nu_A(\mathcal{R}(L))$ and so $\mathcal{R}(L)$ is a ring of quotients of $\nu_A(\mathcal{R}(L))$.

Lemma 3.6. If $\alpha\beta = \mathbf{0}$, then $\nu_{\mathfrak{o}_L(\operatorname{coz}(\alpha))}\beta = \mathbf{0}$ for every $\alpha, \beta \in \mathcal{R}(L)$.

Proof. Suppose that $\alpha, \beta \in \mathcal{R}(L)$ and $\alpha\beta = 0$. Then $\cos(\alpha) \wedge \cos(\beta) = \bot$, which implies that $\mathfrak{o}_L(\cos(\alpha)) \subseteq \mathfrak{c}_L(\cos(\beta))$. Hence

$$\begin{aligned} \operatorname{coz}(\nu_{\mathfrak{o}_{L}(\operatorname{coz}(\alpha))}\beta) &= \nu_{\mathfrak{o}_{L}(\operatorname{coz}(\alpha))}(\operatorname{coz}(\beta)) \\ &= \bigwedge \mathfrak{o}_{L}(\operatorname{coz}(\alpha)) \cap \mathfrak{c}_{L}(\operatorname{coz}(\beta)) \\ &= \bigwedge \mathfrak{o}_{L}(\operatorname{coz}(\alpha)) \\ &= \bot. \end{aligned}$$

Therefore, $\nu_{\mathfrak{o}_L(\operatorname{coz}(\alpha))}\beta = \mathbf{0}$.

Let $\mathcal{F} \subseteq \operatorname{Coz}(L)$ be a coz-filter on L. Then by Lemma 2.12, $S_{\mathcal{F}}$ is a multiplicatively closed subset of $\mathcal{R}(L)$. Let $S_{\mathcal{F}}^{-1}\mathcal{R}(L)$ be the ring of fractions $\mathcal{R}(L)$ with respect to the multiplicatively closed subset $S_{\mathcal{F}}$.

Lemma 3.7. If $\mathcal{F} \subseteq \operatorname{Coz}(L)$ is a coz-filter on L, then $\frac{\alpha}{\beta} \in S_{\mathcal{F}}^{-1}\mathcal{R}(L)$, if and only if $\alpha \in \mathcal{R}(L)$ and $\operatorname{coz}(\beta) \in \mathcal{F}$.

Proof. The proof is straightforward.

Proposition 3.8. Let $\mathcal{F} \subseteq \operatorname{Coz}(L)$ be a coz-filter on L and let $\frac{f}{q}, \frac{h}{k} \in S_{\mathcal{F}}^{-1}\mathcal{R}(L)$. Then

$$\frac{f}{g} = \frac{h}{k} \Leftrightarrow there \ exists \ \operatorname{coz}(\alpha) \in \mathcal{F} \ : \nu_{\mathfrak{o}_L\left(\operatorname{coz}(\alpha)\right)}(fk - gh) = \mathbf{0}.$$

Proof. Necessity. Let $\frac{f}{g}$, $\frac{h}{k} \in S_{\mathcal{F}}^{-1} \mathcal{R}(L)$ and $\frac{f}{g} = \frac{h}{k}$. Then, there exists $\alpha \in S_{\mathcal{F}}$ such that $\alpha(fk-gh) = \mathbf{0}$. Since $\alpha \in S_{\mathcal{F}}$, so $\operatorname{coz}(\alpha) \in \mathcal{F}$, and by Lemma 3.6, $\nu_{\mathfrak{o}_L(\operatorname{coz}(\alpha))}(fk-gh) = \mathbf{0}$.

Sufficiency. We set $A := \mathfrak{o}_L(\operatorname{coz}(\alpha))$. Then we obtain

$$\begin{split} \nu_A(fk - gh) &= \mathbf{0} \Rightarrow \cos\left(\nu_A(fk - gh)\right) = \bot_A \\ \Rightarrow \nu_A(\cos(fk - gh)) &= \bigwedge A \\ \Rightarrow \bigwedge A \cap \mathfrak{c}_L(\cos(fk - gh)) &= \bigwedge A \\ \Rightarrow cl_L\left(A \cap \mathfrak{c}_L(\cos(fk - gh))\right) &= cl_LA \\ \Rightarrow \mathfrak{c}_L\left(\bigwedge \left(A \cap \mathfrak{c}_L(\cos(fk - gh))\right)\right) &= cl_L(\mathfrak{o}_L(\cos(\alpha))) \\ \Rightarrow \mathfrak{c}_L\left(\nu_A(\cos(fk - gh))\right) &= \mathfrak{c}_L\left((\cos(\alpha))^*\right) \\ \Rightarrow \mathfrak{c}_L(\cos(\alpha) \to \cos(fk - gh)) &= \mathfrak{c}_L((\cos(\alpha))^* \\ \Rightarrow (\cos(\alpha) \to \cos(fk - gh)) = (\cos(\alpha))^* \\ \Rightarrow (\cos(\alpha) \to \cos(fk - gh)) \land \cos(\alpha) &= (\cos(\alpha))^* \land \cos(\alpha) \\ \Rightarrow \cos(\alpha) \land \cos(fk - gh) &= \bot \\ \Rightarrow \cos(\alpha(fk - gh)) &= \bot \\ \Rightarrow \alpha(fk - gh) &= \mathbf{0}. \end{split}$$

Therefore, $\frac{f}{g} = \frac{h}{k}$.

which means that $[\beta]$ is invertible

Lemma 3.9. Let $\mathcal{F} \subseteq \operatorname{Coz}(L)$ be a coz-filter on L and let $\beta \in \mathcal{R}(L)$. Then $[\beta] = [\nu_{\mathfrak{o}_L(\operatorname{coz}(\beta))}\beta]$.

Proof. Let $\beta \in \mathcal{R}(L)$ and set $A := \mathfrak{o}_L(\operatorname{coz}(\beta))$. Then $\nu_A \beta \in \mathcal{R}(A)$ and $\nu_{A \cap L} \nu_A \beta = \nu_{A \cap L} \beta$, which means that $\nu_A \beta \sim \beta$, and so $[\beta] = [\nu_A \beta]$.

Proposition 3.10. Let $\mathcal{F} \subseteq \operatorname{Coz}(L)$ be a coz-filter on L, $\beta \in S_{\mathcal{F}}$ and $\mathcal{O}_L(S_{\mathcal{F}}) := \{\mathfrak{o}_L(\operatorname{coz}(\alpha)) : \alpha \in S_{\mathcal{F}}\}$. Then $[\beta]$ is invertible in $[\biguplus_{A \in \mathcal{O}_L(S_{\mathcal{F}})} \mathcal{R}(A)]$.

Proof. We set $A := \mathfrak{o}_L(\operatorname{coz}(\beta))$. First we show that $\nu_A \beta$ is invertible in $\mathcal{R}(A)$. We have

$$\operatorname{coz}(\nu_{A}\beta) = \nu_{A}(\operatorname{coz}(\beta))$$
$$= \bigwedge \left(A \cap \mathfrak{c}_{L}(\operatorname{coz}(\beta))\right)$$
$$= \nu_{A}(\operatorname{coz}(\beta))$$
$$= \nu_{\mathfrak{o}_{L}(\operatorname{coz}(\beta))}(\operatorname{coz}(\beta))$$
$$= \operatorname{coz}(\beta) \longrightarrow \operatorname{coz}(\beta)$$
$$= \top.$$

Hence $\nu_A \beta$ is invertible in $\mathcal{R}(A)$. Then, there exists $\gamma \in \mathcal{R}(A)$ such that $\gamma \nu_A \beta = 1$. Therefore by Lemma 3.9,

$$[\mathbf{1}] = [\gamma \nu_A \beta] = [\gamma] [\nu_A \beta] = [\gamma] [\beta],$$

le in $\left[\biguplus_{A \in \mathcal{O}_L(S_F)} \mathcal{R}(A) \right].$

DOI: https://dx.doi.org/10.30504/JIMS.2023.388284.1096

A. A. Estaji and T. haghdadi

Lemma 3.11. Let $A \in S\ell(L)$ be given. Then, for

$$\Psi(\alpha \to \nu_A \alpha) \colon \mathcal{R}(L) \to \mathcal{R}(A),$$

the following statements are true:

- (1) Ψ is an f-ring homomorphism.
- (2) If A is a dense sublocale of L, then Ψ is an f-ring monomorphism.

Proof. (1). This is evident that Ψ is a function. Let $\diamond \in \{+, ., \land, \lor\}$ be given. Suppose that $p, q \in \mathbb{Q}$ and $\alpha, \beta \in \mathcal{R}(L)$. Then

$$\begin{split} \nu_A(\alpha \diamond \beta)(p,q) &= \nu_A \left(\bigvee \left\{ \alpha(r,s) \land \beta(u,v) \colon < r, s > \diamond < u, v > \subseteq < p, q > \right\} \right) \\ &= \bigvee \left\{ \nu_A \left(\alpha(r,s) \right) \land \nu_A \left(\beta(u,v) \right) \colon < r, s > \diamond < u, v > \subseteq < p, q > \right\} \\ &= (\nu_A \alpha \diamond \nu_A \beta)(p,q) \end{split}$$

Hence, Ψ is an *f*-ring homomorphism.

(2). Let $\alpha \in \mathcal{R}(L)$ with $\Psi(\alpha) = \mathbf{0}$ be given. Since A is a dense sublocale of L and ν_A is a nucleus, we conclude that

$$\cos(\alpha) \le \nu_A(\cos(\alpha)) = \cos(\nu_A \alpha) = \cos(\Psi(\alpha)) = \cos(\mathbf{0}) = \bot_A = \bot_L$$

and so $\alpha = \mathbf{0}$. Therefore, Ψ is an *f*-ring monomorphism.

Let A be a sublocale of L. Consider homomorphisms $\Psi \colon \mathcal{R}(L) \to \mathcal{R}(A)$ and $\varphi_A \colon \mathcal{R}(A) \to \left[\biguplus_{A \in \mathcal{O}(S_{\mathcal{F}})} \mathcal{R}(A)\right]$. We put $\theta = \varphi_A \Psi$. Then θ is a homomorphism from $\mathcal{R}(L)$ to $\left[\biguplus_{A \in \mathcal{O}(S_{\mathcal{F}})} \mathcal{R}(A)\right]$, where $\theta(\alpha) = [\nu_A \alpha]$ for every $\alpha \in \mathcal{R}(L)$. Also, Consider the canonical homomorphism $\varphi \colon \mathcal{R}(L) \to S_{\mathcal{F}}^{-1} \mathcal{R}(L)$ such that $\varphi(\alpha) = \frac{\alpha}{1}$.

Remark 3.12 ([21]). Let S be a multiplicatively closed subset of the commutative ring R; also, let $f: R \to S^{-1}R$ denote the natural ring homomorphism. Let R' be a second commutative ring, and let $g: R \to R'$ be a ring homomorphism with the property that g(s) is a unit of R' for all $s \in S$. Then there is a unique ring homomorphism $h: S^{-1}R \to R'$ such that $h \circ f = g$. In fact, $h\left(\frac{a}{s}\right) = g(a)(g(s))^{-1}$ for all $a \in R, s \in S$.

Proposition 3.13. Let $\mathcal{F} \subseteq \operatorname{Coz}(L)$ be a coz-filter on L. Then, there exists a unique homomorphism π from $S_{\mathcal{F}}^{-1}\mathcal{R}(L)$ to $\left[\biguplus_{A\in\mathcal{O}(S_{\mathcal{F}})}\mathcal{R}(A)\right]$ such that $\pi \circ \varphi = \theta$. In fact, $\pi\left(\frac{\alpha}{\beta}\right) = \theta(\alpha)\left(\theta(\beta)\right)^{-1} = [\alpha][\beta]^{-1}$ for all $\alpha, \beta \in \mathcal{R}(L)$, where $\operatorname{coz}(\beta) \in \mathcal{F}$.

Proof. Combine Proposition 3.10 and Remark 3.12.

Lemma 3.14. Let $\beta \in \mathcal{R}(L)$, $B := \mathfrak{c}_L(\operatorname{coz}(\beta))$, $C := \mathfrak{o}_L(\operatorname{coz}(\beta))$, and $D := \operatorname{cl}_L C = \mathfrak{c}_L(\operatorname{coz}(\beta)^*)$ be given. If $\alpha \in \mathcal{R}^*(C)$, then there exists $\gamma \in \mathcal{R}(L)$ such that for all $u \in \mathcal{L}(\mathbb{R})$, $\gamma(u) \vee \operatorname{coz}(\beta)^* = \alpha \nu_C \beta(u)$ and $\gamma(u) \vee \operatorname{coz}(\beta) = \mathbf{0}(u)$, where $\mathbf{0} \in \mathcal{R}(B)$.

Proof. Let $\gamma_1 := \mathbf{0} \in \mathcal{R}(B)$ be given. We put $\gamma_2 := \alpha \nu_C \beta \in \mathcal{R}(D)$. We set $a := \operatorname{coz}(\beta) \vee \operatorname{coz}(\beta)^*$ and

$$\delta_i((u) \mapsto \gamma_i(u) \lor a) \colon \mathcal{L}(\mathbb{R}) \to \mathfrak{c}_L(a),$$

for every i = 1, 2. We must show that $\delta_1(u) = \delta_2(u)$ for every $u \in \mathcal{L}(\mathbb{R})$. Consider the following four cases:

Case 1: If $q \leq 0$, then

$$\delta_2(-,q) = \alpha \nu_C \beta(-,q) \lor a \ge a = a \lor \operatorname{coz}(\beta) = a \lor \bot_B = a \lor \gamma_1(-,q) = \delta_1(-,q)$$

Case 2: Let q > 0. Consider $\epsilon > 0$. Then

$$\alpha\nu_C\beta(-,q) = \bigvee \left\{ \alpha(r,s) \land \nu_C\beta(u,v) \colon \langle r,s \rangle \langle u,v \rangle \subseteq (-\infty,q) \right\} \ge \alpha(-\epsilon,\epsilon) \land \nu_C\beta\left(\frac{-q}{\epsilon},\frac{q}{\epsilon}\right)$$

Now,

define

$$\begin{split} \delta_2(-,q) &\geq a \lor \left(\alpha(-\epsilon,\epsilon) \land \nu_C \beta\left(\frac{-q}{\epsilon},\frac{q}{\epsilon}\right) \right) \\ &= \left(a \lor \alpha(-\epsilon,\epsilon) \right) \land \left(a \lor \nu_C \beta\left(\frac{-q}{\epsilon},\frac{q}{\epsilon}\right) \right) \\ &\geq \left(a \lor \alpha(-\epsilon,\epsilon) \right) \land \left(\cos(\beta) \lor \cos(\beta)^* \lor \beta\left(\frac{-q}{\epsilon},\frac{q}{\epsilon}\right) \right) \\ &= a \lor \alpha(-\epsilon,\epsilon). \end{split}$$

Then

$$\delta_2(-,q) \ge \bigvee_{\epsilon > 0} a \lor \alpha(-\epsilon,\epsilon) = a \lor \bigvee_{\epsilon > 0} \alpha(-\epsilon,\epsilon) = a \lor \alpha\Big(\bigvee_{\epsilon > 0} (-\epsilon,\epsilon)\Big) = \top,$$

which implies that

$$\delta_2(-,q) = \top = \mathbf{0}(-,q) \lor a = \delta_1(-,q).$$

Case 3: If $p \ge 0$, then

$$\delta_2(p,-) \ge a = a \lor \operatorname{coz}(\beta) = a \lor \gamma_1(p,-) = \delta_1(p,-).$$

Case 4: Let p < 0 and let $\epsilon > 0$. Similar to Case 2, we have

$$\delta_2(p,-) \ge \bigvee_{\epsilon > 0} a \lor \alpha(-\epsilon,\epsilon) = a \lor \bigvee_{\epsilon > 0} \alpha(-\epsilon,\epsilon) = a \lor \alpha\big(\bigvee_{\epsilon > 0} (-\epsilon,\epsilon)\big) = \top = a \lor \mathbf{0}(p,-) = \delta_1(p,-).$$

Therefore, $\delta_2(u) \ge \delta_1(u)$, for every $u \in \mathcal{L}(\mathbb{R})$. Since $\mathcal{L}(\mathbb{R})$ is a regular frame, $\delta_2 = \delta_1$. By [8, propositin 1.2], there exists $\gamma \in \mathcal{R}(L)$ such that

$$\gamma(u) \vee \cos(\beta)^* = \gamma_2(u) = \alpha \nu_C \beta(u)$$

and

$$\gamma(u) \lor \operatorname{coz}(\beta) = \gamma_1(u) = \mathbf{0}(u),$$

where $\mathbf{0} \in \mathcal{R}(B)$.

Theorem 3.15. Let $\mathcal{F} \subseteq \operatorname{Coz}(L)$ be a coz-filter on L. Then the homomorphism π in Proposition 3.13 is an isomorphism; that is, $S_{\mathcal{F}}^{-1}\mathcal{R}(L) \cong \left[\biguplus_{A \in \mathcal{O}_L(S_{\mathcal{F}})} \mathcal{R}(A)\right].$

A. A. Estaji and T. haghdadi 143

Proof. First we show that π is a monomorphism. Let $\frac{f}{g}, \frac{h}{k} \in S_{\mathcal{F}}^{-1}\mathcal{R}(L)$ and let $\pi\left(\frac{f}{g}\right) = \pi\left(\frac{h}{k}\right)$. Then $[f][g]^{-1} = [h][k]^{-1}$ and so [f][k] = [h][g]. By Lemma 3.9, $\left[\nu_{\mathfrak{o}_{L}(\operatorname{coz}(fk))}fk\right] = \left[\nu_{\mathfrak{o}_{L}(\operatorname{coz}(hg))}hg\right]$. We put $B := \mathfrak{o}_{L}(\operatorname{coz}(fk)), C = \mathfrak{o}_{L}(\operatorname{coz}(hg)), \text{ and } D = B \cap C$. Then

07

$$\begin{split} \nu_D \nu_B f k &= \nu_D \nu_C h g \Rightarrow \nu_{D \cap B} f k = \nu_{D \cap C} h g \\ \Rightarrow \nu_D f k &= \nu_D h g \\ \Rightarrow \nu_D (f k - h g) &= \mathbf{0}. \end{split}$$

Then by Proposition 3.8, $\frac{f}{g} = \frac{h}{k}$, and so π is a monomorphism. Now, let $[f] \in \left[\biguplus_{A \in \mathcal{O}(S_{\mathcal{F}})} \mathcal{R}(A)\right]$. Thus there exists $A \in \mathcal{O}_L(S_{\mathcal{F}})$ and $g \in \mathcal{R}(A)$ such that [f] = [g] and so there exists $h \in S_{\mathcal{F}}$, where $g \in \mathcal{R}(\mathfrak{o}_L(\operatorname{coz}(h)))$. We put $B = \mathfrak{c}_L(\operatorname{coz}(h))$, $C = \mathfrak{o}_L(\operatorname{coz}(h))$, and $D = \mathfrak{c}_L(\operatorname{coz}(h)^*)$. Now, let $r = \frac{1}{1+|g|}$ and let $s = \frac{g}{1+|g|}$. It is easy to see that $r, s \in \mathcal{R}^*(\mathfrak{o}_L(\operatorname{coz}(h)))$. Then by Lemma 3.14, there exist $\gamma, \delta \in \mathcal{R}(L)$ such that

$$\nu_{\mathfrak{c}_L(\operatorname{coz}(h^*))}\gamma = r\nu_C h, \ \nu_B\gamma = \mathbf{0} \in \mathcal{R}(B),$$

and

$$\nu_{\mathfrak{c}_L(\operatorname{coz}(h^*))}\delta = s\nu_C h, \ \nu_B\delta = \mathbf{0} \in \mathcal{R}(B).$$

First we show that $coz(\gamma) = coz(h)$. We have

$$\begin{aligned} \cos(\gamma) &= \cos(\gamma) \lor \bot \\ &= \cos(\gamma) \lor \left(\cos(h) \land (\cos(h))^*\right) \\ &= \left(\cos(\gamma) \lor \cos(h)\right) \land \left(\cos(\gamma) \lor (\cos(h))^*\right) \\ &= \nu_{\mathfrak{c}_L(\cos(h))} \cos(\gamma) \land \nu_{\mathfrak{c}_L\left((\cos(h))^*\right)} \cos(\gamma) \\ &= \cos(\mathbf{0}) \land \cos(r\nu_C h) \\ &= \bot_B \land \cos(r) \land \cos(\nu_C h) \\ &= \cos(h) \land \top \land \nu_C(\cos(h)) \\ &= \cos(h) \land \left(\cos(h) \longrightarrow \cos(h)\right) \\ &= \cos(h). \end{aligned}$$

Hence $\operatorname{coz}(\gamma) \in \mathcal{F}$, and so $\frac{\delta}{\gamma} \in S_{\mathcal{F}}^{-1}\mathcal{R}(L)$. Therefore

$$[\gamma]^{-1} = [s\nu_C h][r\nu_C h]^{-1} = [s][r]^{-1} = [\frac{g}{1+|g|}][\frac{1}{1+|g|}]^{-1} = [g][\frac{1}{1+|g|}][\frac{1}{1+|g|}]^{-1} = [g] = [f].$$

Therefore $\pi\left(\frac{\delta}{\gamma}\right) = [f]$, which means that π is an epimorphism.

Theorem 3.16. The following statements are true for any completely regular locale L:

- (1) If S is a multiplicatively closed z-set of $\mathcal{R}(L)$, then $S^{-1}\mathcal{R}(L) \cong \left[\biguplus_{A \in \mathcal{O}_L(S)} \mathcal{R}(A) \right]$.
- (2) If \mathcal{F} is a filter on L, then $S_{Cozf[Coz^{\leftarrow}(\mathcal{F})]}^{-1}\mathcal{R}(L) \cong \left[\biguplus_{A \in \mathcal{O}(S_{Cozf[Coz^{\leftarrow}(\mathcal{F})]})} \mathcal{R}(A) \right].$

Proof. (1) By Lemma 2.14, $Cozf[S] = Cozf[\bar{S}]$. Moreover, by [21, Exercise 5.12], $S^{-1}\mathcal{R}(L) \cong \bar{S}^{-1}\mathcal{R}(L)$. Therefore without loss of generality, we may assume that S is a saturated multiplicatively closed z-set of $\mathcal{R}(L)$. Then, by Proposition 2.15, we have $S_{\mathcal{F}} = S_{Cozf[S]} = \operatorname{Coz}^{\leftarrow} (Cozf[S]) = S$, and so by (1), $S^{-1}\mathcal{R}(L) \cong [\biguplus_{A \in \mathcal{O}_L(S)} \mathcal{R}(A)]$. (2) It is clear.

Corollary 3.17. If $\mathcal{V} = \{ \operatorname{coz}(\alpha) : \mathfrak{o}_L(\operatorname{coz}(\alpha)) \text{ is a dense sublocal of } L \}$, then \mathcal{V} is a coz-filter on L and

$$Q_{cl}(\mathcal{R}(L)) \cong \left[\biguplus_{a \in \mathcal{V}} \mathcal{R}(\mathfrak{o}_L(a)) \right].$$

4. Special saturated ring

A commutative ring R is said to be special saturated if it contains no finitely generated dense ideals. In this section, we consider the ring $\mathcal{R}(L)$ and give equivalent conditions for the ring $\mathcal{R}(L)$ such that it is special saturated. If the Jacobson radical, J(R), of a commutative reduced ring R is zero, then every exoteric ideal of R is a z-ideal. As an immediate consequence from [16, Theorem 5.4.], we now have the following result.

Proposition 4.1. If $\mathcal{R}(L)$ is a special saturated ring, then the classes of z-ideals and exoteric ideals coincide.

Proposition 4.2. For $\mathcal{R}(L)$, the following conditions are equivalent:

- (1) $\mathcal{R}(L)$ is a special saturated ring.
- (2) For every $\alpha \in \mathcal{R}(L)$ with $\cos(\alpha) \neq \top$, there exists $\mathbf{0} \neq \beta \in \mathcal{R}(L)$ such that $\cos(\alpha) \wedge \cos(\beta) = \bot$.
- (3) For the classical quotient ring of $\mathcal{R}(L)$, we have $Q_{cl}\mathcal{R}(L) = \mathcal{R}(L)$.

Proof. (1) \Rightarrow (2). Let $\alpha \in \mathcal{R}(L)$ with $\operatorname{coz}(\alpha) \neq \top$ be given. Then $I := \alpha \mathcal{R}(L) \neq \mathcal{R}(L)$ and by the hypothesis, $\operatorname{Ann}_{\mathcal{R}(L)}(I) \neq (0)$. Hence, there exists $\mathbf{0} \neq \beta \in \mathcal{R}(L)$ such that $\alpha\beta = \mathbf{0}$, which implies that $\operatorname{coz}(\alpha) \wedge \operatorname{coz}(\beta) = \bot$.

 $(2) \Rightarrow (1)$. Let $n \in \mathbb{N}$ and let $\alpha_1, \ldots, \alpha_n \in \mathcal{R}(L)$ with $I := (\alpha_1, \ldots, \alpha_n) \subsetneq \mathcal{R}(L)$ be given. Then Ann_{$\mathcal{R}(L)$} $(I) = \operatorname{Ann}_{\mathcal{R}(L)}(\sum_{i=1}^n \alpha_i^2)$ and $\operatorname{coz}(\sum_{i=1}^n \alpha_i^2) \neq \top$. By the hypothesis, there exists $\mathbf{0} \neq \beta \in \mathcal{R}(L)$ such that $\operatorname{coz}(\sum_{i=1}^n \alpha_i^2) \wedge \operatorname{coz}(\beta) = \bot$, which implies that $\beta \sum_{i=1}^n \alpha_i^2 = \mathbf{0}$, and so, $\beta \in \operatorname{Ann}_{\mathcal{R}(L)}(I)$; that is, I is not dense. Therefore, $\mathcal{R}(L)$ is a special saturated ring.

$$(1) \Leftrightarrow (3)$$
. It is evident.

Abedi [1, Proposition 4.5] showed that $Q_{cl}\mathcal{R}(L) = \mathcal{R}(L)$, if and only if L is an almost P-frame. Then by Proposition 4.2, we can conclude the next corollary.

Corollary 4.3. Frame L is an almost P-frame, if and only if $\mathcal{R}(L)$ is a special saturated ring.

Proposition 4.4. For a frame L, the following conditions are equivalent:

- (1) Every map $\varphi \colon \mathcal{R}(L) \to S$, where S is a regular ring, is an exoteric homomorphism.
- (2) Every prime ideal of $\mathcal{R}(L)$ is exoteric.

- (3) $\operatorname{Ann}_{\mathcal{R}(L)}\operatorname{Ann}_{\mathcal{R}(L)}(I) = \sqrt{I}$ for every finitely generated right ideal I of $\mathcal{R}(L)$.
- (4) L is a P-frame.

Proof. By [16, Proposition 5.8], (1), (2), and (3) are equivalent. It is clear that if $\mathcal{R}(L)$ satisfies the equivalent condition (1), (2), and (3), then it is a special saturated ring. Hence, (1) and (4) are equivalent.

Let I be an ideal of a commutative ring R. The ideal I is called a torsion ideal, if

for all $i \in I$, for all $r \in R$ ($r \notin I \Rightarrow$ there exists $r' \in R$ with ir' = 0 and $rr' \notin I$).

Proposition 4.5. Every torsion ideal of $\mathcal{R}(L)$ is a z-ideal.

Proof. Let I be a torsion ideal of $\mathcal{R}(L)$ and let $(\alpha, \beta) \in I \times \mathcal{R}(L)$ with $\operatorname{coz}(\alpha) = \operatorname{coz}(\beta)$ be given. If $\beta \notin I$, then there exists $\gamma \in \mathcal{R}(L)$ such that $\alpha \gamma = \mathbf{0}$ and $\beta \gamma \notin I$. hence

 $\bot = \cos(\alpha\gamma) = \cos(\alpha) \wedge \cos(\gamma) = \cos(\beta) \wedge \cos(\gamma) = \cos(\beta\gamma) \Rightarrow \beta\gamma = \mathbf{0} \in I,$

a contradiction, which implies that $\beta \in I$. Therefore, I is a z-ideal of $\mathcal{R}(L)$.

Acknowledgement

The authors are grateful to the referees for their valuable remarks and helpful suggestions.

References

- [1] M. Abedi, Rings of quotients of the ring $\mathcal{R}(L)$, Houston J. Math. 47 (2021), no. 2, 271–293.
- [2] M. Abedi, Some notes on z-ideal and d-ideal in $\mathcal{R}(L)$, Bull. Iranian Math. Soc. 46 (2020), no. 3, 593–611.
- [3] A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Zero sets in pointfree topology and strongly z-ideals, Bull. Iranian Math. Soc. 41 (2015), no. 5, 1071–1084.
- [4] A. R. Aliabad, F. Azarpanah and M. Paimann, Relative z-ideals and z⁰-ideals in the factor rings of C(X), Bull. Iranian Math. Soc. 36 (2010), no. 1, 211–226.
- [5] F. Azarpanah and A. Taherifar, Relative z-ideals in C(X), Topology Appl. 156 (2009), no. 9, 1711–1717.
- [6] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, On z^0 -ideals in C(X), Fund. Math. 160 (1999), no. 1, 15–25.
- [7] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathemática (Series B), 12, Universidade de Coimbra, Departamento de Matemtica, Coimbra, 1997.
- [8] B. Banaschewski, On the pointfree counterpart of the local definition of classical continuous maps, Categ. Gen. Algebr. Struct. Appl. 8 (2018), no. 1, 1–8.
- [9] T. Dube, Concerning P-frames, essential P-frames, and strongly zero-dimensional frames, Algebra Univers. 61 (2009), no. 1, 115–138.
- [10] T. Dube, Some algebraic characterizations of F-frames, Algebra Univers. 62 (2009), no. 2-3, 273–288.
- [11] T. Dube, Some ring-theoretic properties of almost P-frames, Algebra Univers. 60 (2009), no. 2, 145–162.
- [12] T. Dube, Contracting the Socle in Rings of Continuous Functions, Rend. Sem. Mat. Univ. Padova 123 (2010) 37-53.
- [13] T. Dube and O. Ighedo, On Z-ideals of pointfree function rings, Bull. Iranian Math. Soc. 40 (2014), no. 3, 657–675.
- [14] T. Dube and J. Walters-Wayland, Coz-onto frame maps and some applications, Appl. Categ. Structures 15 (2007), no. 1-2, 119–133.
- [15] A. A. Estaji, z- weak ideals and prime weak ideals, Iran. J. Math. Sci. Inform. 7 (2012), no. 2, 53-62.
- [16] M. W. Evans, Exoteric homomorphism, J. Pure Appl. Algebra 49 (1987), no. 1-2, 117–131

- [17] N. J. Fine, L. Gillman and J. Lambek, Rings of quotients of rings of functions, Lecture Note Series, McGill University Press, Montreal, Que. 1966.
- [18] R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951) 891–895.
- [19] J. Picado and A. Pultr, Frames and Locales: Topology without Points, Frontiers in Mathematics, Birkhäuser/Springer, Basel, 2012.
- [20] A. R. Salehi, Multiplicative closed ξ -subsets and rings of fractions of C(X), Journal of Advances in Mathematical Modeling 12 (2022), no. 1, 45–53.
- [21] R. Y. Sharp, Steps in commutative algebra, Cambridge University Press, (2000).
- [22] Y. Utumi, On quotient rings, Osaka J. Math. 8 (1956) 1–18.

Ali Akbar Estaji

Faculty of Mathematics and Computer Science, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran. Email: aaestaji@hsu.ac.ir

Toktam Haghdadi

Department of Basic Sciences, Birjand University of Technology, P.O.Box 226, Birjand, Iran. Email: haghdadi@birjandut.ac.ir