Journal of the Iranian Mathematical Society ISSN (on-line): 2717-1612
J. Iran. Math. Soc. 4 (2023), no. 2, 121-129
© 2023 Iranian Mathematical Society

CERTAIN MODULES WITH THE NOETHERIAN DIMENSION

S. M. JAVDANNEZHAD AND N. SHIRALI*

Dedicated to Prof. O. A. S. Karamzadeh

ABSTRACT. An *R*-Module *M* with a small submodule *S*, such that $\frac{M}{S}$ is Noetherian, is called a *SN*-module. In this paper, we introduce the concept of α -*SN*-modules, for any ordinal $\alpha \geq 0$ (*SN*-modules are just 0-*SN*-modules). Some of the basic results of *SN*-modules extended to α -*SN*-modules. It is shown that an *fs*-module *M*, which is α -*SN*, has Noetherian dimension $\leq \alpha$. In particular, if *M* is quotient finite-dimensional and all of its submodules are α -*SN*, then *M* has Noetherian dimension $\leq \alpha$. Furthermore, the concepts of *qn*-submodules (a proper submodule *N* of *M* is called a *qn*-submodule if $\frac{M}{N}$ has Noetherian dimension) and *qn*-modules are introduced. It is proved that if *M* is quotient finite-dimensional and each of its submodules has at least a *qn*-submodule, then *M* has Noetherian dimension.

1. Introduction

Motivated by the concept of the Krull dimension of modules, Lemmonier in [12], introduced the concept of the deviation and it's dual, the codeviation for any arbitrary poset (E, \leq) . The codeviation of E which is also called the Noetherian dimension (the dual Krull dimension in other texts), is just the deviation of E^0 , the opposite poset of E. Note that the Noetherian dimension of an R-module M, which is denoted by n-dim M, measures the deviation of M from being Noetherian. It is convenient, when we are dealing with the above dimensions, to begin our list of ordinals with -1. For more details and some basic facts about the deviation and the codeviation refer to [2, 7, 9-13].

Communicated by Alireza Abdollahi

MSC(2020): Primary: 16P20; Secondary: 16P40, 16P60.

Keywords: Noetherian dimension; small submodules; α -SN-modules; qn-modules.

Received: 27 May 2023, Accepted: 14 June 2023.

^{*}Corresponding author

DOI: https://dx.doi.org/10.30504/JIMS.2023.399248.1118

An *R*-module *M* is called a *SN*-module, if it has a small submodule *S* such that $\frac{M}{S}$ is Noetherian, see [4]. More generally, for any ordinal α , M is called an α -SN-module, if it has a small quotient module with Noetherian dimension at most α and α is the least ordinal with this property. Using this concept, we extend some of the basic results of SN-modules to α -SN-modules. We should remind the reader that by a quotient finite-dimensional (briefly, qfd) module, we mean an R-module M such that $\frac{M}{N}$ has finite Goldie dimension, for every submodule N of M. We shall see that if M is qfd, and all of its submodules are α -SN, for some α , then the Noetherian-dimension of M exists and n-dim $M \leq \alpha$. Further, if α is countable, then every submodule of M is countably generated. An R-module M with only finitely many non-zero small submodules is said to be an fs-module. A ring R is called an fs-ring, if it is an *fs*-module as an *R*-module, see [6]. We show that an *fs*-module M is α -SN, if and only if $\frac{M}{Rad(M)}$ is β -SN, for some $\beta \leq \alpha$. Furthermore, we prove that if an fs-module M is α -SN, then n-dim $M \leq \alpha$. A proper submodule N of M, is called a qn-submodule (α -qn-submdule) and denoted by $N \subsetneq^{qn} M$ $(N \overset{\alpha-qn}{\subsetneq} M)$ if $\frac{M}{N}$ has Noetherian dimension $(\leq \alpha)$. Moreover, M is called a *qn*-module $(\alpha - qn - module)$, if any of its submodules is contained in a qn-submodule (an $\alpha - qn - submodule)$. It is easy to see that M is an α -qn-module, if and only if for each proper submodule N of M, there exists a proper submodule K of M, such that $N \subseteq K$ and $\frac{M}{K}$ has Noetherian dimension $\leq \alpha$. In other words, every nonzero quotient module of M has a proper α -qn-submodule.

Throughout this paper, rings are associative with $1 \neq 0$, and modules are unital right modules. $N \subseteq_e M$ denotes that N is an essential submodule of M, that is $N \cap A \neq 0$, for all non-zero submodules A of M. M has finite Goldie (resp., hollow) dimension, if for any ascending (resp., descending) chain $N_1 \subseteq N_2 \subseteq \cdots$ (resp., $N_1 \supseteq N_2 \supseteq \cdots$) of submodules of M, there exists an integer $n \geq 1$, such that $N_n \subseteq_e N_k$ (resp., $\frac{N_n}{N_k} \ll \frac{M}{N_k}$) for all $k \geq n$. The radical of M is denoted by Rad(M)and is equal to the intersection of all of the maximal submodules of M. Equivalently, Rad(M) is the sum of all the small submodules of M. If M fails to have maximal submodules, we set Rad(M) = Mand in case, M fails to have a proper nonzero small submodule, then Rad(M) = 0.

2. Preliminaries

We begin with the following definition.

Definition 2.1. Let M be an R-module. A proper submodule S of M is small in M, if $S + N \neq M$ for every proper submodule N of M. We indicate that S is a small submodule of M, by notation $S \ll M$.

In the following, we recall some basic properties of small submodules, see [15].

Lemma 2.2. Let M be a module with submodules $K \subseteq N \subseteq M$, and let $P \subseteq M$. Then

- (1) $N \ll M$, if and only if $K \ll M$ and $\frac{N}{K} \ll \frac{M}{K}$.
- (2) $P + K \ll M$, if and only if $P \ll M$ and $K \ll M$.
- (3) If $K \ll N$, then $K \ll M$.
- (4) Rad(M) is the sum of all the small submodules of M.

We cite the following facts from [6].

Definition 2.3. Let R be a ring. An R-module M with only finitely many non-zero small submodules is said to be an fs-module. In particular, R is called an fs-ring, if as an R-module, it is an fs-module.

We note that if M is an *fs*-module, then $S \ll M$ if and only if $S \subseteq Rad(M)$.

Proposition 2.4. Let R be a ring and M be an R-module. Then M is an fs-module, if and only if Rad(M) has only finitely many submodules.

Corollary 2.5. If M is an fs-module, then

- (1) Rad(M) has finite length, so it is both Artinian and Noetherian.
- (2) M is Noetherian (Artinian) if and only if $\frac{M}{Rad(M)}$ is Noetherian (Artinian).

Theorem 2.6. Let M be an fs-module with finite hollow dimension over a ring R. The following holds.

- (1) M is an Artinian module.
- (2) M is a Noetherian module.
- (3) Rad(M) is finitely-generated.
- (4) M has a finite-composition series.
- (5) M has finite-length.
- (6) M has finite-Goldie-dimension.

Definition 2.7. Let M be an R-module, and let $S \ll M$, then $\frac{M}{S}$ is called a small quotient module of M.

The following result shows that the class of all fs-modules are closed under sumodules with non-zero small submodule and small quotient modules.

Proposition 2.8. The following are equivalent for any *R*-module *M*.

- (1) M is an fs-module.
- (2) Every submodule of M, with non-zero small submodule, is an fs-module.
- (3) Every small quotient module of M is an fs-modules.

3. α -SN-modules and their properties

According to [4], an *R*-module *M* is called a *SN*-module if $\frac{M}{S}$ is Noetherian, for some small submodule *S* of *M*. In this section, we generalize this concept and introduce the concept of α -*SN*-modules. We extend the basic results of *SN*-modules to α -*SN*-modules.

Next, we give our definition of α -SN-modules.

Definition 3.1. A non-zero R-module M is called an α -SN-module, if it has a small quotient module with Noetherian-dimension at most α and α is the least ordinal with this property.

Clearly 0-SN-modules are just SN-modules.

- **Remark 3.2.** (1) If M is an R-module with n-dim $M = \alpha$, then M is β -SN for some $\beta \leq \alpha$. But the converse is not true in general. For example, every local ring (i.e., a ring with a unique one sided maximal ideal) R is a SN-ring, since $\frac{R}{Rad(R)}$ is Noetherian, but R need not to have the Noetherian-dimension.
 - (2) An essential extension of any α-SN-module is not necessarily a β-SN-module for some ordinal β. For example, as Z-module, we have Z ⊆_e Q and Z is a SN-module, but Q is not an α-SN-module, for some α.

Definition 3.3. Let L and N be submodules of M. Then N is called a supplement of L in M, if N is minimal with respect to N + L = M. A submodule N of M is called supplement submodule, if it is supplement of some submodule L of M.

Note that, N is a supplement of L in M, if and only if N + L = M and $N \cap L \ll N$. Also, if $K \subseteq N$ and $K \ll M$, then $K \ll N$, see [15, ch. 41].

Remark 3.4. Let M be an α -SN- module. There exists a small submodule S such that $\frac{M}{S}$ has Noetherian-dimension at most α . Now, let N be a supplement in M containing S. Then $S \ll N$ and $\frac{N}{S}$ has Noetherian-dimension. Hence N is a β -SN-module for some ordinal $\beta \leq \alpha$.

Proposition 3.5. Let M be an α -SN-module. Then every factor module of M is β -SN, for some $\beta \leq \alpha$.

Proof. Let N be a proper submodule of M. Since M is α -SN, it has a small submodule S such that n-dim $\frac{M}{S} \leq \alpha$. Clearly $\frac{S+N}{N} \ll \frac{M}{N}$ and $\frac{M/N}{(N+S)/N} \simeq \frac{M}{N+S} \simeq \frac{M/S}{(N+S)/S}$. Thus n-dim $\frac{M/N}{(N+S)/N} = n$ -dim $\frac{M/S}{(N+S)/S} \leq n$ -dim $\frac{M}{S} \leq \alpha$.

Theorem 3.6. The following statements are equivalent for every R-module M and every ordinal α .

- (1) M is an α -SN-module.
- (2) $\frac{M}{S}$ is an α -SN-module, for every small quotient $\frac{M}{S}$.
- (3) $\frac{M}{S}$ is an α -SN-module, for some small quotient $\frac{M}{S}$.

Proof. (1) \Rightarrow (2) Suppose that M is an α -SN-module and $S \ll M$. Thus $\frac{M}{S}$ is β -SN, for some $\beta \leq \alpha$, by the previous proposition. That is, there exists a small submodule $\frac{N}{S}$ of $\frac{M}{S}$ such that n-dim $\frac{M}{N} = n$ -dim $\frac{M/S}{N/S} \leq \beta$. But Lemma 2.2(1) implies that $N \ll M$ and by definition $\alpha \leq \beta$ and so $\alpha = \beta$.

 $(2) \Rightarrow (3)$ It is clear.

(3) \Rightarrow (1) By assumption, there exists a small submodule $\frac{N}{S}$ of $\frac{M}{S}$ such that n-dim $\frac{M/S}{N/S} \leq \alpha$. Since $S \ll M$, $\frac{N}{S} \ll \frac{M}{S}$, thus $N \ll M$, by Lemma 2.2(1), and we have n-dim $\frac{M}{N} \leq \alpha$. It follows that M is β -SN for some $\beta \leq \alpha$. On the other hand $\alpha \leq \beta$, by Proposition 3.5. This shows that $\alpha = \beta$.

Corollary 3.7. Let M be an R-module and $Rad(M) \ll M$. Then M is an α -SN if and only if $\frac{M}{Rad(M)}$ is α -SN.

In view of Proposision 3.5 and Theorem 3.6, we conclude the following result.

Corollary 3.8. Let $0 \to N \to M \to K \to 0$ be a short exact sequence of *R*-modules where $N \ll M$. Then

- (1) If M is α -SN, then K is β -SN, for some $\beta \leq \alpha$.
- (2) If K is α -SN, then M is α -SN.

Corollary 3.9. Let M be an fs-module. Then M is α -SN if and only if $\frac{M}{Rad(M)}$ is β -SN, for some $\beta \leq \alpha$.

The proof of the following two results is straightforward.

Lemma 3.10. Let M be an R-module and Rad(M) = 0. Then M is an α -SN-module, if and only if n-dim $M \leq \alpha$.

Lemma 3.11. Let M be an R-module and $Rad(M) \ll M$. Then $\frac{M}{Rad(M)}$ is an α -SN -module, if and only if n-dim $\frac{M}{Rad(M)} \leq \alpha$.

The following fact is also presented in [12, Theorem 2.4] and [1, Proposition 2.2].

Proposition 3.12. The following statements are equivalent for any *R*-module *M* and any ordinal $\alpha \geq 0$.

- (1) *M* is qfd and for any submodules $N \subset P \subseteq M$, there exists a submodule *X* with $N \subseteq X \subset P$ such that n-dim $\frac{P}{X} \leq \alpha$.
- (2) $n \operatorname{-dim} M \leq \alpha$.

Theorem 3.13. Let M be a qfd-module such that any of its submodules is γ -SN, for some ordinal γ . Then M has Noetherian-dimension and n-dim $M \leq \alpha$, where $\alpha = \sup\{\gamma : M \text{ has } a \gamma$ -SN submodule}.

Proof. It suffices to prove that M satisfies the part (1) of Proposition 3.12. For each $N \subset P \subseteq M$, $B = \frac{P}{N}$ has small quotient module, say $\frac{B}{C}$, such that n-dim $\frac{B}{C} \leq \alpha$, by Lemma 3.5.

In [11], it is shown that every submodule of a module with countable Noetherian-dimension is countably generated. Thus, the following result is immediate.

Corollary 3.14. Let M be a qfd-module such that all of its submodules are α -SN, where α is a countable ordinal. Then, every submodule of M is countably generated.

Definition 3.15. An *R*-module *M* is said to have property $AB5^*$ (or is said to be an $AB5^*$ -module) if, for every submodule *N* and inverse system $\{M_i\}_{i \in I}$ of submodules of *M*, $N + \bigcap_{i \in I} M_i = \bigcap_{i \in I} (N + M_i)$.

Artinian modules and more generally, linearly compact modules are $AB5^*$, see [15, 29.8]. The next fact is in [5, Lemma 6] and [3].

Lemma 3.16. Let M be an $AB5^*$ -module. Then M is qfd, if and only if every submodule of M has finite-hollow-dimension.

The following result is now immediate.

Corollary 3.17. Let M be an $AB5^*$ -module with finite-hollow-dimension. If any submodule of M is γ -SN, then n-dim $M \leq \alpha$, where $\alpha = \sup\{\gamma : M \text{ has a } \gamma$ -SN submodule}.

Proposition 3.18. Let M be an fs-module which is α -SN. Then n-dim $M \leq \alpha$.

Proof. If M is an α -SN-module, then there exists a small submodule S such that n-dim $\frac{M}{S} \leq \alpha$. By Proposition 2.4, S is Noetherian. We infer that, $n-\dim(M) = \sup\{n-\dim\frac{M}{S}, n-\dim S\} = n-\dim\frac{M}{S} \leq n-\dim\frac{M}{S}$ α .

4. Quotient Noetherian modules and their properties

It is well-known that an R-module M has Noetherian-dimension, if and only if $\frac{M}{N}$ does too, for every non-zero submodule N of M. Thus, if M failes to have Noetherian-dimension, it has a non-zero submoule N, such that $\frac{M}{N}$ has not Noetherian-dimension. In this section we focus on submodules N such that $\frac{M}{N}$ has Noetherian-dimension. We are going to see that how far is for M from having Noetherian-dimension. We begin this section by introducing the concept of qn-submodules and qnmodules.

Definition 4.1. A proper submodule N of M is a quotient Noetherian (briefly, qn-submodule) if $\frac{M}{N}$ has Noetherian-dimension. More generally, N is a α -qn-submodule if $\frac{M}{N}$ has Noetherian-dimension $\leq \alpha$.

In order to show that N is a qn-submodule (α -qn-submodule), we use the notation $N \stackrel{qn}{\subsetneq} M (N \stackrel{\alpha-qn}{\subsetneq} M)$.

Definition 4.2. An *R*-module *M* is called a qn-module (α -qn-module), if any of its proper submodules is contained in a qn-submodule (α -qn-submodule) of M.

Note that, M is a qn-module if and only if every nonzero quotient module of M has a proper qn-submodule.

- (1) If $N \subsetneq^{qn} M$ and $N \subseteq K \subsetneq M$, then $K \subsetneq^{qn} M$. Because $\frac{M}{K} \simeq \frac{M/N}{K/N}$ and $\frac{M}{N}$ has Remark 4.3. Noetherian-dimension. That is, every extension of a qn-submodule is qn-submodule. (2) If $N \subsetneq^{qn} M$ and $K \subsetneq^{qn} M$, then $N \cap K \subsetneq^{qn} M$, for $\frac{M}{N \cap K}$ is isomorphism to an submodule of $\frac{M}{N} + \frac{M}{K}$
 - which it has Noetherian-dimension.
 - (3) If M has Noetherian-dimension and n-dim $M = \alpha$, then M is a β -qn-module for some $\beta \leq \alpha$. But the converse is not true in general, for example, the \mathbb{Z} -module $M = \mathbb{Z}_2 \oplus \mathbb{Q}$ has an qn-submodule \mathbb{Q} but M does not have Noetherian-dimension.
 - (4) Every α -SN has at least an α -qn-submdule, and it is clear that its converse is not true in general.

(5) A ring R is a Max-ring if and only if, every nonzero R-module M has a maximal submodule. Hence every module over a Max-ring R, has a qn-submodule. In particular, every ring R with identity as an R-module has a qn-submodule.

Lemma 4.4. Let M be a qn-module and N a proper submodule of M. Then so is $\frac{M}{N}$.

Proof. Let $\frac{K}{N}$ be a proper submodule of $\frac{M}{N}$. Then K is a proper submodule of M and so there exists a qn-submodule D of A such that $K \subseteq D$ and $\frac{M}{D} \cong \frac{M/N}{D/N}$ has Noetherian-dimension. Hence $\frac{D}{N}$ is a qn-submodule of $\frac{M}{N}$ and $\frac{K}{N} \subseteq \frac{D}{N}$. Therefore $\frac{M}{N}$ is a qn-module.

Lemma 4.5. Let N be a proper submodule of M. If N and $\frac{M}{N}$ are qn-modules, then so is M.

Proof. Let K be a proper submodule of M. If K + N = M, then $K \cap N \subsetneq N$. So there exists a qn-submodule D of N such that $K \cap N \subseteq D \subsetneq^{qu} N$. But $\frac{M}{K+D} = \frac{K+N}{K+D} \cong \frac{N}{D}$, so $K + D \subsetneq^{qn} M$ and $K \subseteq K + D$. Now, if $N + K \subsetneq M$, $\frac{K+N}{N}$ may be zero. Then $\frac{K+N}{N} \subsetneq \frac{M}{N}$, so there exists a qn-submodule $\frac{D}{N}$ of $\frac{M}{N}$ such that $\frac{K+N}{N} \subseteq \frac{D}{N} \overset{qn}{\subsetneq} \frac{M}{N}$. So $K \subseteq K + N \subseteq D \overset{qn}{\subsetneq} M$. Thus M is a qn-module.

In view of Lemmas 4.4 and 4.5, we conclude the following.

Corollary 4.6. Let $0 \to K \to M \to N \to 0$ be an exact sequence of R-modules. Then

- (1) If M is a qn-module, then N is a qn-module.
- (2) If K and N are qn-modules, then M is a qn-module.

Corollary 4.7. Let $M = \sum_{i=1}^{n} \oplus M_i$. If each M_i is a qn-module, then so is M.

The next important result is now immediate.

Theorem 4.8. Let M be a qfd-module, such that any of its submodules has at least a γ -qn-submodule. Then M has Noetherian-dimension and n-dim $M \leq \alpha$, where $\alpha = \sup\{\gamma : M \text{ has a } \gamma\text{-qn submodule}\}$. Further, if α is countable, then every submodule of M is countably generated.

Proof. It suffices to prove that M satisfies part (1) of Proposition 3.12. For every $N \subset P \subseteq M$, $B = \frac{P}{N}$ has quotient module, say $\frac{B}{C}$, such that n-dim $\frac{B}{C} \leq \alpha$, by Lemma 3.5 and the comment after of Theorem 3.13, every submodule of M is countably generated.

A module M is called finitely-embedded (briefly, *f.e.*), if Soc(M) is finitely generated and essential in M. It is easy to see that every module has an *f.e.*-factor-module, see [11, Comments, preceding Lemma 1.1]. It is also well-known that over a commutative ring R, every finitely embedded module is Artinian, if and only if R is a locally Noetherian ring (i.e., R_M is Noetherian for every maximal ideal M of R), see [14, Theorem 2]. Moreover, if R is a Noetherian duo ring, then an R-module M is *f.e.*, if and only if it is Artinian, see [8, Theorem 2.4]. In view by this comment and Proposition 3.12, we have the following results.

Theorem 4.9. Let M be a qfd-module over a locally Noetherian (or, a Noetherian right duo) ring R. Then M has Noetherian-dimension.

Proof. It suffices to prove that M satisfies the part (1) of Proposition 3.12. For each $N \subset P \subseteq M$, $B = \frac{P}{N}$ has a nonzero quotient module- which is finitely embedded, say $\frac{B}{C}$, by the previous comment. Thus, $\frac{B}{C}$ is an Artinian module and so has Noetherian-dimension and we are done

Theorem 4.10. Let N be a small submodule of M. Then $\frac{M}{N}$ is a qn-module, if and only if A is so.

Proof. We suppose that $\frac{M}{N}$ is a qn-module. Let K be a proper submodule of M. Since N is a small submodule of M, we infer that K+N is a proper submodule of M. Hence, there exists a qn-submodule $\frac{X}{N}$ of $\frac{M}{N}$ such that $\frac{K+N}{N} \subseteq \frac{X}{N}$. Thus X is a qn-submodule of M such that $K \subseteq X$. This shows that M is qn-module. Conversely, let M be a qn-module. By Lemma 4.4, we infer that $\frac{M}{N}$ is a qn-module. \Box

Acknowledgments

The authors want to thank the referee for careful reading, and useful comments which improved this paper. The research of the second named author was partially supported by a grant from Shahid Chamran University.

References

- T. Albu and S. Rizvi, Chain condition on quotient finite dimensional modules, Comm. Algebra 29 (2001), no. 5, 1909–1928.
- [2] T. Albu and P. Vamos, Global Krull dimension and Global dual Krull dimension of valuation rings, Lecture Notes in Pure and Appl. Math., 201, Dekker, New York, 1998.
- [3] G. M. Brodskii, Modules lattice isomorphic to linearly compact modules, Math. Notes. 56 (1996), no. 1-2, 123–127
- [4] J. Hashemi and N. Shirali, On a dual of finitely embedded modules, Far East J. Math. Sci. (FJMS). 27 (2007), no. 1, 241–248.
- [5] D. Herbera and A. Shamsuddin, Modules with semi-local endomorphism ring, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3593–3600.
- [6] S. M. Javdannezhad and N. Shirali, On multiplications fs-modules and dimensions symmetry, J. Mahani math. res. 12 (2023), no. 2, 363–374.
- [7] O. A. S. Karamzadeh, Noetherian-dimension, Ph.D. Thesis, Exeter. 1974.
- [8] J. Hashemi, O. A. S. Karamzadeh and N. Shirali, Rings over which the Krull dimension and the Noetherian dimension of all modules coincide, *Comm. Algebra* 37 (2009), no. 2, 650–662.
- [9] O. A. S. Karamzadeh and M. Motamedi, On α -DICC modules, Comm. Algebra 22 (1994), no. 6, 1933–1944.
- [10] O. A. S. Karamzadeh and M. Motamedi, a-Noetherian and Artinian modules, Comm. Algebra 23 (1995), no. 10, 3685–3703.
- [11] O. A. S. Karamzadeh and N. Shirali, On the countability of Noetherian dimension of Modules, Comm. Algebra 32 (2004) 4073–4083.
- [12] B. Lemonnier, Déviation des ensembles et groupes abéliens totalement ordonnés, Bull. Sci. Math. (2) 96 (1972) 289–303.
- [13] J. C. McConell and J. C. Robson, Noncommutative Noetherian Rings, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1987.
- [14] P. Vamos, The dual of the notion of finitely generated, J. London. Math. Soc. 43 (1968) 643-646.
- [15] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

Sayed Malek Javdannezhad

Department of Science, Shahid Rajaee Teacher Training University, P.O.Box 1678815811, Tehran, Iran. Email: sm.javdannezhad@gmail.com

Nasrin Shirali

Department of Mathematics, Shahid Chamran University of Ahvaz, P.O.Box 6135783151, Ahvaz, Iran. Email: shirali_n@scu.ac.ir;nasshirali@gmail.com