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REAL POWERS AND LOGARITHMS OF MATRICES

F. MIRZAPOUR AND R. ESKANDARI*

ABSTRACT. We define the logarithm function and the power function on the algebra of matrices.
Additionally, we study further properties of the logarithm and power functions. Utilizing the sign
function, we propose a new approach to representing the power function. Furthermore, we compute
the power function for various types of matrices, including Hermitian, orthogonal, and symmetric

matrices.

1. Introduction

Let M,, denote the C*-algebra of all n-square matrices. Two matrices A and B are similar, if there
exists an invertible matrix 7" such that A = T~'BT. We say that A is diagonalizable, if there exist
A1,y .., Ap such that A = T—1diag(A1,...,A\n)T, and A is called unitarily diagonalizable, if there is a
unitary matrix U such that A = U*diag(\y,...,\,)U. Any solution of the matrix equation eX = A,
where eX denotes the exponential of the matrix X, is called the logarithm of A. We say that a matrix
A is a real matriz, if its elements consist entirely of real numbers. In general, a nonsingular real
matrix may have an infinite number of real and complex logarithms. We denote by log A the principal
logarithm of A. From the other side, the matrix C' is a square root of A, if A = C?. We say
that A is a root-approximable, if there exists a sequence {C} such that Cpy — I and C’,%k = A,
for each k = 0,1,2,...; see, for example, [2,0]. Matrix functions are studied in [I,4,5,7]. In this
paper, the matrix functions f(A) = A® (« is a real number) and f(A) = log A for specific matrices

are studied. The logarithms of orthogonal, Hermitian, and in particular real symmetric matrices are
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studied in [8,9].

Fora square matrix A, we define

Here, p denotes the spectral radius, and the condition p(A) < 1 ensures the convergence of the

matrix series. If A is a nilpotent matrix of order k, then A* =0, and we can write

AQ A3 A4 kAk_l

Let @ be an n-square matrix. We use the following product :

Qdiag(I,...,I) = diag(@,...,Q)

We say that an n-square complex matrix A is involutory, if A2 = I. We have the following proposition.

Proposition 1.1. [10, Theorem 5.1] Let A be an n-square complex matriz. Then A is involutory, if

and only if A is similar to a diagonal matrixz of the form
diag(1,...,1,—1,...,—1).
We need the following facts for our purposes.

Proposition 1.2. [10, Theorem 6.11] Let A and B be real square matrices of the same size. If P is

a complex invertible matriz such that P~YAP = B, then there exists a real invertible matriz Q such
that Q TAQ = B.

Proposition 1.3. [10, Theorem 6.13] Let A and B be real square matrices of the same size. If A =
UBU* for some unitary matriz U, then there exists a real orthogonal matriz Q such that A = QBQT.

Proposition 1.4. [10, Theorem 6.4] Every real orthogonal matriz is real orthogonally similar to a

direct sum of real orthogonal matrices of order at most 2.
Now, we recall the definition of Jordan matrices and real Jordan matrices.

Definition 1.5. A Jordan block is an r x r matrix, J.()), of the form

where A € C with J;(A\) = (\). A real Jordan block is either
(1) a Jordan block as above with A € R,

or
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(2) areal 2r x 2r matrix, Jo,(A, 1), of the form

L\ p) I 0

0  L\p) I
(1.2) Jor(A, ) = : : : ,
0 0 I
0 LA, 1)

where L(A, n) is a 2 x 2 matrix of the form

with A\, u € R and I is the 2 x 2 identity matrix. Note that Ja(\, ) = L(\, ).
A Jordan matrix J is an n x n block diagonal matrix of the form
JTl ()\1) c. 0
(1.3) J = : : ;
0 .. er ()\m)

where each J;, (A\;) is a Jordan block associated with some A\, € C and 71 + -+ + 7, = n. A real

Jordan matrix J is an n x n block diagonal matrix of the form
JSI (al) ce 0
0 ce Jsm (am)
where each Js, (o) is a real Jordan block either associated with some o = A\, € R as in (1.1), or

associated with some oy = (A, ux) € R?, with pg # 0, as in (1.2), in this case s = 2ry.

It is a standard result that any matrix A € C"*™ can be expressed in the Jordan canonical form
T7YAT = J = diag(Jr, (A1), -+ -, Jr,, (M),

where T is nonsingular and ry +r9 + - - - + 7, = n. The Jordan matrix J is unique up to the ordering
of the blocks Ji = Jx(Ax), but the transforming matrix 7" is not unique. Denote by A1, ..., A, ,the
eigenvalues of A. Let n; be the order of the largest Jordan block in which A; appears, which is called
the index of A;.

We need the following terminology.

Definition 1.6 (Matrix function via Jordan canonical form). Let f be defined on the spectrum of

A € C"" and let A have the Jordan canonical form. Then
fA) =Tf(N)T™ =Tdiag(f(Jr, (M), -5 (T, M) )T

We use some results in [7] such as the existence of real logarithm as follows.
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Theorem 1.7 (Existence of real logarithm). [7, Theorem 1.23] The nonsingular matriz A € R™*™ has
a real logarithm if and only if A has an even number of Jordan blocks of each size for every negative

etgenvalue.

Theorem 1.8 (Principal logarithm). [7, Theorem 1.31] Let A € C™*™ have no eigenvalues on R™.
There is a unique logarithm X of A, all of whose eigenvalues lie in the strip {z : —m < Im(z) < 7}.
We refer to X as the principal logarithm of A and write X = log(A). If A is real, then its principal

logarithm is real.

For A € C™™ with no eigenvalues on R™ and o € [—1,1], it follows from [7, Theorem 11.2] that
log(A%®) = alog(A). In particular, log(A™") = —log(A) and log(AY/?) = +log(A). Let B,C €
C™*™ have no eigenvalues on R™, and let BC = CB. It is shown in [7, Theorem 11.3] that if
every eigenvalue \; of B and the corresponding eigenvalue 1; of C' satisfy |arg\; + argu;| < m, then
log(BC) = log(B) + log(C).

For A € C™" and A = ZJZ7 !, let J = diag(Jy,J2), where J; € CP*P, the eigenvalues of J;
lie in the open left half-plane, and Jo € C?7*? lie in the open right half-plane. We define sign(A) =
Zdiag(—1I,,1,)Z~'. Now we have the following theorem.

Theorem 1.9. [7, Theorem 5.1] Let A € C"*™ have no pure imaginary eigenvalues, and let S =
sign(A). Then S is involutory and SA = AS. Moreover, if A is real, then S is real.
2. Main results
Let A be a nonsingular real n x n matrix. We define
(2.1) AP .= exp(Blog A), ge[-1,1].
In the next theorem, we show that AP is a real matrix.

Theorem 2.1. Let A be a nonsingular real n x n matriz, and let Jp (a1),...,Jr, (am) be the list of
its Jordan blocks. For every real eigenvalue a; < 0, suppose the number of Jordan blocks identical to

Jr.(a;) is even. Then AP is a real matriz for all B € [—1,1].
Proof. By Proposition 1.2, there is a real invertible matrix @ such that A = Q~1J'Q, where

J, = diag(‘]ll ()‘1)7 ey Jlk (Ak)) S diag(J2p1 (:ula Cl), sy JQPt (:uta Ct))7
in which {A1,..., Ak, (111,€1), - -+, (e, C¢)} are eigenvalues of A, A; > 0,1 < i <k, and (p5,¢),1 <j <
t, are complex numbers. Let
Ji, (M) = N, (I, + Ng), 1<i<k,

where N; € RU*b is nilpotent. Let Y; = S; + M; where S; = diag(log();),...,log()\;)), and M; =
log(I;, + N;). Then, by [3, Theorem 3.4], Y; is a logarithm of Jj,(\;) for i = 1,2,..., k. The other
real Jordan blocks of J' are of the form Jop; (1, C5) with pj, ¢G € R, 1 < j < t. In this case, if we
define S; = diag(S(pj,0;),...,5(p;,0;)), then by [3, Theorem 3.4], Y; = S; + M; is a logarithm of
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Jop; (1, ¢5) for j = 1,2,...,t, where M; is a logarithm of Iy, + Dj_lHj, Jop; (13, ¢5) = Dj + Hj,
D; = diag(L(1j,¢;), - - -, L(14,¢;)) and Hj is a real nilpotent matrix. Therefore, X = Q'Y Q is a real
logarithm of A, where Y = diag(Y1,Ys, -+ Y},). It follows from [7, Theorem 11.2] that

A% = exp(Blog A) = exp(BQ " log(J)Q)
= Q lexp(Bdiag(Yi,...,Yn))Q
(2.2) = Q ldiag(e,...,e"™)Q.
Since S;M; = M;S;, we have ePYi = eBSiehMi — A? exp(BM;),i =1,..., k. Let A\ + i, = pre’?, with
pr > 0and 0y € [—m,m) for j =1,2,...,¢,
BYi — P55 BM;

3 ( cos 30; —sin 30;

; diag(ls,...,Is)e M).
J Slnﬁﬁj COS/BQJ‘ ) 1 g( 2 2) Xp(ﬁ ])

Hence, €7 is a real matrix for each j = 1,2,...,¢. Since @ is a real invertible matrix, (2.2) yields
that AP is real. O

Remark 2.2. Consider A € C™™ with all eigenvalues in T, = {re?;r > 0, - <0<}, where m is

a positive integer. We extend (2.1) for any 8 € [-m, m], that is,
AP = exp(Blog A).
Indeed, by Theorem 1.8, [7, Theorem 11.3], and induction, we have log A™ = mlog A, since A% =

(A™)#/™  From Theorem 2.1, we have log A®? = %logAm = %(mlogA) = Blog A and so AP =

exp(fSlog A).
Let A be positive definite. Then all eigenvalues of A are positive, so all eigenvalues are in T}, for each

m € N. Hence we can extend (2.1) as follows:
A% = exp(alogA), a€cR.

Theorem 2.3. Let A € C"™" have no pure imaginary eigenvalues, and let S = sign(A). Then all
eigenvalues of SA lie in the open right half-plane.

Proof. Let A = ZJZ71, J = diag(Jy, J2), where J; € CP*P| Jy € C9*9 the eigenvalues of J; and
Ja lie in the open left half-plane and open right half-plane, respectively. Then S = sign(4) =
Zdiag(—1I,,1,)Z~t. Therefore, Theorem 1.9 implies that SA = AS = Zdiag(—J1,J2)Z~ 1. Thus
all eigenvalues of SA lie in the open right half-plane. O

Theorem 2.4. Suppose that S is an involutory matriz, and let det(S) > 0. Then, for any o € R,
S = exp(alog S) is well-defined.

Proof. By  Proposition 1.1, there is an  invertible  matrix Z  such  that

S = Zdiag(—Ip, I;)Z 71, where p is an even number. If o € R, then the equation o = 2["%1] + 8
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has a solution § in [—1, 1]. Therefore cos am = cos 7 and sin am = sin 7, which gives exp(amFEs) =

0 —1
exp(8mEs), where Ey = ( Lo ) So

exp(alog ) = Z(exp(anEy)diag(Is,. .., Io) & I,)Z~*
= Z(exp(BrEs)diag(Is, ..., I2) ® Iq)Z_1 = exp(Blog S) = SP.

Hence S = exp(alog S) = S# and so, by (2.1), S is well-defined. O
It is clearly seen that log S = Z[mEadiag(ls, ..., I2) ® O4)Z 1, so we conclude the following result.

Corollary 2.5. An involutory matriz has an invertible logarithm if and only if it is equal to —I,, where

p is an even number.

Now, by Remark 2.2, Theorem 2.3, and Theorem 2.4, we extend the definition of power function in
(2.1) to [—2,2].

Definition 2.6. Let A € C™*" be such that det(S) > 0 where S = sign(A). Then we define
Al = §%(SA)> for —2 < o < 2. Also, we set Log(A) = log(SA) +log S.

If the eigenvalues of matrix A are real nonzero and the number of negative eigenvalues is even, then
the above definition can be generalized to any a € R. If all the eigenvalues of A lie in the open right
half-plane, then S = I. So it is clearly seen that Al and LogA are extensions of the definition of A%
and log A, respectively.

Theorem 2.7. Let A be a nonsingular real n X n matriz such that A has no eigenvalue on the pure
imaginary axis, and let det(S) > 0, where S = sign(A). Then LogA, and for any § € [-2,2], AP are

a real matriz.

Proof. Since all eigenvalues of SA lie in the open right half-plane, it follows from Theorem 2.1 that
SA is a real logarithm. In addition, Remark 2.2 and Theorem 2.1 entail that (SA)? is real for all
B € [~2,2]. Thus LogA and APl are real. O

Let A € R™*"™ be a diagonalizable matrixand, such that A has no pure imaginary eigenvalues. If
det A > 0, then SA is diagonalizable too, where S = sign(A). We can write SA = Q~'DQ, where

D= diag()‘lv sy )\k’a L(:ub Cl)v v 7L(/J’t? Ct))a

with A; > 0 and (u;,(;) are in open right half-plane, for any 1 < i < k and 1 < j < ¢. Suppose
€ [-2,2]. Then

cosafly —sinab cosalf; —sinab
D% =diag [ XS,... Ax,po [ TP TERATL e[ CORATE TERATE ) )
sinaf;  cosaby sinaf;  cosab;
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where pj +i¢; = pje, p; > 0 and —7 < ; < m. We have (SA)® = Q~'D®Q. Therefore,
Alel = §%(SA)* is real. Moreover,

LogA = log(SA) +log S
= Q tdiag(log A1, .. .,log M\, S(p1,61), ..., S(ps, 0:))Q + log S.

Hence the following corollary is proved.

Corollary 2.8. Let A € R™" be a diagonalizable matrix such that A has no pure imaginary eigen-

values, and let det A > 0. Then LogA and AlY are real matrices for every a € [—2,2].
Applying Theorems 1.7 and 2.7, the following corollary can be proved.

Corollary 2.9. Let A be a nonsingular real n X n matriz such that A has no eigenvalue on the pure
imaginary axis. Let My, ..., My, be real square matrices, and let A be similar to diag(My, My, ..., My, My).
Then log A, AP for B € [—1,1], and also AP} for B € [—2,2] are real matrices.

Corollary 2.10. Let A be a nonsingular real n X n matrixz such that A has no eigenvalue on the pure

imaginary axis. Let My, ..., My be real square matrices, and let A be similar to

O L O I
DD )
M; O M, O
where I, ..., I are identity matrices with the same size of My, ..., M, respectively. Then log A, AP

for B € [—2,2], and also AP for B € [—4,4] are real.

Proof. The proof is easily obtained from

2
o0 I [ M; O
M, 0) o0 M)
and Corollary 2.9. O

Theorem 2.11. Suppose that A is a Hermitian matriz of order n with det(A) > 0. Then for every
a € R, LogA and Al®) are well-defined.

Proof. Since A is a Hermitian, it is unitarily diagonalizable, that is, there exists a unitary matrix U
such that

UrAU = diag()\l, . .,)\p,,ul, e ,Mq),

where \; < 0 and p; > 0. In this case, we have A = U(J1 @ Jo)U*, where J; = diag(Ay,...,\p) and
Jo = diag(p1, ..., pq). I S =U(—1I, ® I,)U*, then S is an involutory. It follows from Definition 2.6
that

log(SA) = log[U*diag(—J1, J2)U]
= U*[diag(log(—A1),...,log(—A,)) & diag(log 1, . . ., log pug) U
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and log S = U*[rEadiag(la, ..., I2) ® O4|U. Therefore

LogA = log(SA) +log S
= U”|[(diag(log(—A1),...,log(—Ap)) + mEadiag (Lo, . . ., I2))
@ diag(log p1, . . ., log 114)]U.

Note that by Remark 2.2 and Theorem 2.4, S¢ and (SA)* are well-defined. For any o € R, we have

S*(SA)* = Ulexp(anEy)diag(la, . .., I2) @ I|[(—=J1) ® Jo]*U*
Ulexp(amEy)diag(ls, ..., I2) & I |[(=J1)* & (J2)*|U™
Ulexp(amEy)diag(1s, . .., Io)diag((—A1)%, ..., (=Ap)%)
@ diag(uf, ..., ug) U
Hence, Al®l = §2(SA4) is well-defined. O
According to Proposition 1.4, for any real orthogonal matrix A, there exist aq, ..., as such that A

is similar to the matrix

(2.3) C=TIa I@( Cos arp Simoq)EB @( COS Olg sinas>
) =4 w4 ,

—sina; cosag —sinags  €oS o

where r and s are nonnegative integer numbers. We have the following theorem for real orthogonal

matrices.

Theorem 2.12. Let A be a real orthogonal matriz and | is even, where [ is introduced in (2.3). Then
AP is orthogonal for all B € [—1,1].

Proof. By the assumption, there is a real orthogonal matrix P such that

C—PTAP—TI. & Lo ( co§a1 sin o ) T ( co's.ozS sin g ) '
—sinoy cosaq —sina, cos oy
Then log C = O, ® mEydiag(1ls, ..., Is) ® Esdiag(ayls,. .., asls), which gives
log A = P(O, @ nEydiag(la, . .., ) ® Exdiag(an Iy, . . ., asly) PT.

Since, for g € [-1,1],

cos B sinfw

CP =exp(BlogC) = I, & < ) diag(Is, ..., I2)

—sin B cos Bw

cos Ba sin fo cos Bas  sin fag
@< Ban /31>@...@< 8 8 )

—sinBa;  cos fBay —sin fag  cos Bag

we have A® = (PCPT)# = PCPPT, where A” is real orthogonal. O
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If S =sign(C) and det(S) > 0, then

SC =16 co.s*yl sinyp ©m Co.s% sin 7y 7
—siny; cosmy —sinys cosvs
where
Yi=ai+m if —m <oy <7,
Vi = if =5 <a; <73,
vi=oap—m if § <o <,
1=1,2,...,s, which gives the following result.

Corollary 2.13. Let —2 < 8 < 2. Let A be similar to the matriz C in (2.3). If the number of
eigenvalues of C' on the left half-plane is even, then AP} = P(SP(SC)?)PT.

Remark 2.14. In Theorem 2.12, if we take 8 = & and

Qk

T : s s : s
cos 7= sin cos & sin
Dp=1& 2 > )e-e 2 >
— Sin ok COS ok — Sin ok COS ok

cos % sin % cos g—g sin %

s aq D -« a )
—sin & cos & —sin g¢  cos ¢

then D, — I as k — oo and (PDkPT)2k = A, that is, A is root-approximable.
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