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REAL POWERS AND LOGARITHMS OF MATRICES

F. MIRZAPOUR AND R. ESKANDARI∗

Abstract. We define the logarithm function and the power function on the algebra of matrices.

Additionally, we study further properties of the logarithm and power functions. Utilizing the sign

function, we propose a new approach to representing the power function. Furthermore, we compute

the power function for various types of matrices, including Hermitian, orthogonal, and symmetric

matrices.

1. Introduction

Let Mn denote the C∗-algebra of all n-square matrices. Two matrices A and B are similar, if there

exists an invertible matrix T such that A = T−1BT . We say that A is diagonalizable, if there exist

λ1, . . . , λn such that A = T−1diag(λ1, . . . , λn)T , and A is called unitarily diagonalizable, if there is a

unitary matrix U such that A = U∗diag(λ1, . . . , λn)U . Any solution of the matrix equation eX = A,

where eX denotes the exponential of the matrix X, is called the logarithm of A. We say that a matrix

A is a real matrix , if its elements consist entirely of real numbers. In general, a nonsingular real

matrix may have an infinite number of real and complex logarithms. We denote by logA the principal

logarithm of A. From the other side, the matrix C is a square root of A, if A = C2. We say

that A is a root-approximable, if there exists a sequence {Ck} such that Ck −→ I and C2k

k = A,

for each k = 0, 1, 2, . . .; see, for example, [2, 6]. Matrix functions are studied in [1, 4, 5, 7]. In this

paper, the matrix functions f(A) = Aα (α is a real number) and f(A) = logA for specific matrices

are studied. The logarithms of orthogonal, Hermitian, and in particular real symmetric matrices are
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studied in [8, 9].

Fora square matrix A, we define

log(I +A) = A− A2

2
+

A3

3
− A4

4
+ · · · , ρ(A) < 1.

Here, ρ denotes the spectral radius, and the condition ρ(A) < 1 ensures the convergence of the

matrix series. If A is a nilpotent matrix of order k, then Ak = 0, and we can write

log(I +A) = A− A2

2
+

A3

3
− A4

4
+ · · ·+ (−1)k

Ak−1

k − 1
.

Let Q be an n-square matrix. We use the following product :

Qdiag(I, . . . , I) = diag(Q, . . . , Q)

We say that an n-square complex matrix A is involutory , if A2 = I. We have the following proposition.

Proposition 1.1. [10, Theorem 5.1] Let A be an n-square complex matrix. Then A is involutory, if

and only if A is similar to a diagonal matrix of the form

diag(1, . . . , 1,−1, . . . ,−1).

We need the following facts for our purposes.

Proposition 1.2. [10, Theorem 6.11] Let A and B be real square matrices of the same size. If P is

a complex invertible matrix such that P−1AP = B, then there exists a real invertible matrix Q such

that Q−1AQ = B.

Proposition 1.3. [10, Theorem 6.13] Let A and B be real square matrices of the same size. If A =

UBU∗ for some unitary matrix U , then there exists a real orthogonal matrix Q such that A = QBQT .

Proposition 1.4. [10, Theorem 6.4] Every real orthogonal matrix is real orthogonally similar to a

direct sum of real orthogonal matrices of order at most 2.

Now, we recall the definition of Jordan matrices and real Jordan matrices.

Definition 1.5. A Jordan block is an r × r matrix, Jr(λ), of the form

Jr(λ) =



λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · λ


,(1.1)

where λ ∈ C with J1(λ) = (λ). A real Jordan block is either

(1) a Jordan block as above with λ ∈ R,
or

DOI: https://dx.doi.org/10.30504/JIMS.2023.385127.1088

https://dx.doi.org/10.30504/JIMS.2023.385127.1088


J. Iran. Math. Soc. 4 (2023), no. 2, 95-104 F. Mirzapour and R. Eskandari 97

(2) a real 2r × 2r matrix, J2r(λ, µ), of the form

J2r(λ, µ) =



L(λ, µ) I 0 · · · 0

0 L(λ, µ) I · · · 0
...

...
. . .

. . .
...

0 0 0
. . . I

0 0 0 · · · L(λ, µ)


,(1.2)

where L(λ, µ) is a 2× 2 matrix of the form

L(λ, µ) =

(
λ −µ

µ λ

)
,

with λ, µ ∈ R and I is the 2× 2 identity matrix. Note that J2(λ, µ) = L(λ, µ).

A Jordan matrix J is an n× n block diagonal matrix of the form

J =


Jr1(λ1) · · · 0

...
. . .

...

0 · · · Jrm(λm)

 ,(1.3)

where each Jrk(λk) is a Jordan block associated with some λk ∈ C and r1 + · · · + rm = n. A real

Jordan matrix J is an n× n block diagonal matrix of the form

J =


Js1(α1) · · · 0

...
. . .

...

0 · · · Jsm(αm)

 ,(1.4)

where each Jsk(αk) is a real Jordan block either associated with some αk = λk ∈ R as in (1.1), or

associated with some αk = (λk, µk) ∈ R2, with µk ̸= 0, as in (1.2), in this case sk = 2rk.

It is a standard result that any matrix A ∈ Cn×n can be expressed in the Jordan canonical form

T−1AT = J = diag(Jr1(λ1), . . . , Jrm(λm)),

where T is nonsingular and r1 + r2 + · · ·+ rm = n. The Jordan matrix J is unique up to the ordering

of the blocks Jk = Jk(λk), but the transforming matrix T is not unique. Denote by λ1, . . . , λm ,the

eigenvalues of A. Let ni be the order of the largest Jordan block in which λi appears, which is called

the index of λi.

We need the following terminology.

Definition 1.6 (Matrix function via Jordan canonical form). Let f be defined on the spectrum of

A ∈ Cn×n and let A have the Jordan canonical form. Then

f(A) = Tf(J)T−1 = Tdiag(f(Jr1(λ1)), . . . , f(Jrm(λm)))T−1.

We use some results in [7] such as the existence of real logarithm as follows.
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Theorem 1.7 (Existence of real logarithm). [7, Theorem 1.23] The nonsingular matrix A ∈ Rn×n has

a real logarithm if and only if A has an even number of Jordan blocks of each size for every negative

eigenvalue.

Theorem 1.8 (Principal logarithm). [7, Theorem 1.31] Let A ∈ Cn×n have no eigenvalues on R−.

There is a unique logarithm X of A, all of whose eigenvalues lie in the strip {z : −π < Im(z) < π}.
We refer to X as the principal logarithm of A and write X = log(A). If A is real, then its principal

logarithm is real.

For A ∈ Cn×n with no eigenvalues on R− and α ∈ [−1, 1], it follows from [7, Theorem 11.2] that

log(Aα) = α log(A). In particular, log(A−1) = − log(A) and log(A1/2) = 1
2 log(A). Let B,C ∈

Cn×n have no eigenvalues on R−, and let BC = CB. It is shown in [7, Theorem 11.3] that if

every eigenvalue λj of B and the corresponding eigenvalue µj of C satisfy |argλj + argµj | < π, then

log(BC) = log(B) + log(C).

For A ∈ Cn×n and A = ZJZ−1, let J = diag(J1, J2), where J1 ∈ Cp×p, the eigenvalues of J1

lie in the open left half-plane, and J2 ∈ Cq×q lie in the open right half-plane. We define sign(A) =

Zdiag(−Ip, Iq)Z
−1. Now we have the following theorem.

Theorem 1.9. [7, Theorem 5.1] Let A ∈ Cn×n have no pure imaginary eigenvalues, and let S =

sign(A). Then S is involutory and SA = AS. Moreover, if A is real, then S is real.

2. Main results

Let A be a nonsingular real n× n matrix. We define

Aβ := exp(β logA) , β ∈ [−1, 1].(2.1)

In the next theorem, we show that Aβ is a real matrix.

Theorem 2.1. Let A be a nonsingular real n× n matrix, and let Jr1(α1), . . . , Jrm(αm) be the list of

its Jordan blocks. For every real eigenvalue αi < 0, suppose the number of Jordan blocks identical to

Jri(αi) is even. Then Aβ is a real matrix for all β ∈ [−1, 1].

Proof. By Proposition 1.2, there is a real invertible matrix Q such that A = Q−1J ′Q, where

J ′ = diag(Jl1(λ1), . . . , Jlk(λk))⊕ diag(J2p1(µ1, ζ1), . . . , J2pt(µt, ζt)),

in which {λ1, . . . , λk, (µ1, ζ1), . . . , (µt, ζt)} are eigenvalues of A, λi > 0, 1 ≤ i ≤ k, and (µj , ζj), 1 ≤ j ≤
t, are complex numbers. Let

Jli(λi) = λiIli(Ili +Ni), 1 ≤ i ≤ k,

where Ni ∈ Rli×li is nilpotent. Let Yi = Si + Mi where Si = diag(log(λi), . . . , log(λi)), and Mi =

log(Ili + Ni). Then, by [3, Theorem 3.4], Yi is a logarithm of Jli(λi) for i = 1, 2, . . . , k. The other

real Jordan blocks of J ′ are of the form J2pj (µj , ζj) with µj , ζj ∈ R, 1 ≤ j ≤ t. In this case, if we

define Sj = diag(S(ρj , θj), . . . , S(ρj , θj)), then by [3, Theorem 3.4], Yj = Sj + Mj is a logarithm of
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J2pj (µj , ζj) for j = 1, 2, . . . , t, where Mj is a logarithm of I2pj + D−1
j Hj , J2pj (µj , ζj) = Dj + Hj ,

Dj = diag(L(µj , ζj), . . . , L(µj , ζj)) and Hj is a real nilpotent matrix. Therefore, X = Q−1Y Q is a real

logarithm of A, where Y = diag(Y1, Y2, · · ·Ym). It follows from [7, Theorem 11.2] that

Aβ = exp(β logA) = exp(βQ−1 log(J ′)Q)

= Q−1 exp(βdiag(Y1, . . . , Ym))Q

= Q−1diag(eβY1 , . . . , eβYm)Q .(2.2)

Since SiMi = MiSi, we have eβYi = eβSieβMi = λβ
i exp(βMi), i = 1, . . . , k. Let λk + iµk = ρke

iθ, with

ρk > 0 and θk ∈ [−π, π) for j = 1, 2, . . . , t,

eβYj = eβSjeβMj

= ρβj

(
cosβθj − sinβθj

sinβθj cosβθj

)
diag(I2, . . . , I2) exp(βMj).

Hence, eβYj is a real matrix for each j = 1, 2, . . . , t. Since Q is a real invertible matrix, (2.2) yields

that Aβ is real. □

Remark 2.2. Consider A ∈ Cn×n with all eigenvalues in Tm = {reiθ; r > 0, −π
m < θ < π

m}, where m is

a positive integer. We extend (2.1) for any β ∈ [−m,m], that is,

Aβ = exp(β logA) .

Indeed, by Theorem 1.8, [7, Theorem 11.3], and induction, we have logAm = m logA, since Aβ =

(Am)β/m. From Theorem 2.1, we have logAβ = β
m logAm = β

m(m logA) = β logA and so Aβ =

exp(β logA).

Let A be positive definite. Then all eigenvalues of A are positive, so all eigenvalues are in Tm for each

m ∈ N. Hence we can extend (2.1) as follows:

Aα = exp(α logA) , α ∈ R.

Theorem 2.3. Let A ∈ Cn×n have no pure imaginary eigenvalues, and let S = sign(A). Then all

eigenvalues of SA lie in the open right half-plane.

Proof. Let A = ZJZ−1, J = diag(J1, J2), where J1 ∈ Cp×p, J2 ∈ Cq×q, the eigenvalues of J1 and

J2 lie in the open left half-plane and open right half-plane, respectively. Then S = sign(A) =

Zdiag(−Ip, Iq)Z
−1. Therefore, Theorem 1.9 implies that SA = AS = Zdiag(−J1, J2)Z

−1. Thus

all eigenvalues of SA lie in the open right half-plane. □

Theorem 2.4. Suppose that S is an involutory matrix, and let det(S) > 0. Then, for any α ∈ R,
Sα := exp(α logS) is well-defined.

Proof. By Proposition 1.1, there is an invertible matrix Z such that

S = Zdiag(−Ip, Iq)Z
−1, where p is an even number. If α ∈ R, then the equation α = 2[α+1

2 ] + β
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has a solution β in [−1, 1]. Therefore cosαπ = cosβπ and sinαπ = sinβπ, which gives exp(απE2) =

exp(βπE2), where E2 =

(
0 −1

1 0

)
. So

exp(α logS) = Z(exp(απE2)diag(I2, . . . , I2)⊕ Iq)Z
−1

= Z(exp(βπE2)diag(I2, . . . , I2)⊕ Iq)Z
−1 = exp(β logS) = Sβ.

Hence Sα = exp(α logS) = Sβ and so, by (2.1), Sα is well-defined. □

It is clearly seen that logS = Z[πE2diag(I2, . . . , I2)⊕Oq]Z
−1, so we conclude the following result.

Corollary 2.5. An involutory matrix has an invertible logarithm if and only if it is equal to −Ip where

p is an even number.

Now, by Remark 2.2, Theorem 2.3, and Theorem 2.4, we extend the definition of power function in

(2.1) to [−2, 2].

Definition 2.6. Let A ∈ Cn×n be such that det(S) > 0 where S = sign(A). Then we define

A[α] = Sα(SA)α for −2 ≤ α ≤ 2. Also, we set Log(A) = log(SA) + logS.

If the eigenvalues of matrix A are real nonzero and the number of negative eigenvalues is even, then

the above definition can be generalized to any α ∈ R. If all the eigenvalues of A lie in the open right

half-plane, then S = I. So it is clearly seen that A[α] and LogA are extensions of the definition of Aα

and logA, respectively.

Theorem 2.7. Let A be a nonsingular real n × n matrix such that A has no eigenvalue on the pure

imaginary axis, and let det(S) > 0, where S = sign(A). Then LogA, and for any β ∈ [−2, 2], A[β] are

a real matrix.

Proof. Since all eigenvalues of SA lie in the open right half-plane, it follows from Theorem 2.1 that

SA is a real logarithm. In addition, Remark 2.2 and Theorem 2.1 entail that (SA)β is real for all

β ∈ [−2, 2]. Thus LogA and A[β] are real. □

Let A ∈ Rn×n be a diagonalizable matrixand, such that A has no pure imaginary eigenvalues. If

detA > 0, then SA is diagonalizable too, where S = sign(A). We can write SA = Q−1DQ, where

D = diag(λ1, . . . , λk, L(µ1, ζ1), . . . , L(µt, ζt)),

with λi > 0 and (µj , ζj) are in open right half-plane, for any 1 ≤ i ≤ k and 1 ≤ j ≤ t. Suppose

α ∈ [−2, 2]. Then

Dα = diag

(
λα
1 , . . . , λ

α
k , ρ

α
1

(
cosαθ1 − sinαθ1

sinαθ1 cosαθ1

)
, . . . , ραt

(
cosαθt − sinαθt

sinαθt cosαθt

))
,
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where µj + iζj = ρje
iθj , ρj > 0 and −π < θj ≤ π. We have (SA)α = Q−1DαQ. Therefore,

A[α] = Sα(SA)α is real. Moreover,

LogA = log(SA) + logS

= Q−1diag(log λ1, . . . , log λk, S(ρ1, θ1), . . . , S(ρt, θt))Q+ logS.

Hence the following corollary is proved.

Corollary 2.8. Let A ∈ Rn×n be a diagonalizable matrix such that A has no pure imaginary eigen-

values, and let detA > 0. Then LogA and A[α] are real matrices for every α ∈ [−2, 2].

Applying Theorems 1.7 and 2.7, the following corollary can be proved.

Corollary 2.9. Let A be a nonsingular real n× n matrix such that A has no eigenvalue on the pure

imaginary axis. Let M1, . . . ,Mk be real square matrices, and let A be similar to diag(M1,M1, . . . ,Mk,Mk).

Then logA, Aβ for β ∈ [−1, 1], and also A[β] for β ∈ [−2, 2] are real matrices.

Corollary 2.10. Let A be a nonsingular real n×n matrix such that A has no eigenvalue on the pure

imaginary axis. Let M1, . . . ,Mk be real square matrices, and let A be similar to(
O I1

M1 O

)
⊕ · · · ⊕

(
O Ik

Mk O

)
,

where I1, . . . , Ik are identity matrices with the same size of M1, . . . ,Mk, respectively. Then logA, Aβ

for β ∈ [−2, 2], and also A[β] for β ∈ [−4, 4] are real.

Proof. The proof is easily obtained from(
O Ii

Mi O

)2

=

(
Mi O

O Mi

)
,

and Corollary 2.9. □

Theorem 2.11. Suppose that A is a Hermitian matrix of order n with det(A) > 0. Then for every

α ∈ R, LogA and A[α] are well-defined.

Proof. Since A is a Hermitian, it is unitarily diagonalizable, that is, there exists a unitary matrix U

such that

U∗AU = diag(λ1, . . . , λp, µ1, . . . , µq),

where λi < 0 and µj > 0. In this case, we have A = U(J1 ⊕ J2)U
∗, where J1 = diag(λ1, . . . , λp) and

J2 = diag(µ1, . . . , µq). If S = U(−Ip ⊕ Iq)U
∗, then S is an involutory. It follows from Definition 2.6

that

log(SA) = log[U∗diag(−J1, J2)U ]

= U∗[diag(log(−λ1), . . . , log(−λp))⊕ diag(log µ1, . . . , logµq)]U
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and logS = U∗[πE2diag(I2, . . . , I2)⊕Oq]U . Therefore

LogA = log(SA) + logS

= U∗[(diag(log(−λ1), . . . , log(−λp)) + πE2diag(I2, . . . , I2))

⊕ diag(log µ1, . . . , logµq)]U.

Note that by Remark 2.2 and Theorem 2.4, Sα and (SA)α are well-defined. For any α ∈ R, we have

Sα(SA)α = U [exp(απE2)diag(I2, . . . , I2)⊕ Iq][(−J1)⊕ J2]
αU∗

= U [exp(απE2)diag(I2, . . . , I2)⊕ Iq][(−J1)
α ⊕ (J2)

α]U∗

= U [exp(απE2)diag(I2, . . . , I2)diag((−λ1)
α, . . . , (−λp)

α)

⊕ diag(µα
1 , . . . , µ

α
q )]U

∗

Hence, A[α] = Sα(SA)α is well-defined. □

According to Proposition 1.4, for any real orthogonal matrix A, there exist α1, . . . , αs such that A

is similar to the matrix

C = Ir ⊕−Il ⊕

(
cosα1 sinα1

− sinα1 cosα1

)
⊕ · · · ⊕

(
cosαs sinαs

− sinαs cosαs

)
,(2.3)

where r and s are nonnegative integer numbers. We have the following theorem for real orthogonal

matrices.

Theorem 2.12. Let A be a real orthogonal matrix and l is even, where l is introduced in (2.3). Then

Aβ is orthogonal for all β ∈ [−1, 1].

Proof. By the assumption, there is a real orthogonal matrix P such that

C = P TAP = Ir ⊕−Il ⊕

(
cosα1 sinα1

− sinα1 cosα1

)
⊕ · · · ⊕

(
cosαs sinαs

− sinαs cosαs

)
.

Then logC = Or ⊕ πE2diag(I2, . . . , I2)⊕E2diag(α1I2, . . . , αsI2), which gives

logA = P (Or ⊕ πE2diag(I2, . . . , I2)⊕ E2diag(α1I2, . . . , αsI2)P
T .

Since, for β ∈ [−1, 1],

Cβ = exp(β logC) = Ir ⊕

(
cosβπ sinβπ

− sinβπ cosβπ

)
diag(I2, . . . , I2)

⊕

(
cosβα1 sinβα1

− sinβα1 cosβα1

)
⊕ · · · ⊕

(
cosβαs sinβαs

− sinβαs cosβαs

)
,

we have Aβ = (PCP T )β = PCβP T , where Aβ is real orthogonal. □
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If S = sign(C) and det(S) > 0, then

SC = Ir+l ⊕

(
cos γ1 sin γ1

− sin γ1 cos γ1

)
⊕ · · · ⊕

(
cos γs sin γs

− sin γs cos γs

)
,

where 
γi = αi + π if − π < αi < −π

2 ,

γi = αi if − π
2 < αi <

π
2 ,

γi = αi − π if π
2 < αi ≤ π,

i = 1, 2, . . . , s, which gives the following result.

Corollary 2.13. Let −2 ≤ β ≤ 2. Let A be similar to the matrix C in (2.3). If the number of

eigenvalues of C on the left half-plane is even, then A[β] = P (Sβ(SC)β)P T .

Remark 2.14. In Theorem 2.12, if we take β = 1
2k

and

Dk = Ir ⊕

(
cos π

2k
sin π

2k

− sin π
2k

cos π
2k

)
⊕ · · · ⊕

(
cos π

2k
sin π

2k

− sin π
2k

cos π
2k

)

⊕

(
cos α1

2k
sin α1

2k

− sin α1

2k
cos α1

2k

)
⊕ · · · ⊕

(
cos αs

2k
sin αs

2k

− sin αs

2k
cos αs

2k

)
,

then Dk −→ I as k → ∞ and (PDkP
T )2

k
= A, that is, A is root-approximable.
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