Journal of the Iranian Mathematical Society
ISSN (on-line): 2717-1612
J. Iran. Math. Soc. 4 (2023), no. 2, 95-104
© 2023 Iranian Mathematical Society

REAL POWERS AND LOGARITHMS OF MATRICES

F. MIRZAPOUR AND R. ESKANDARI*

ABSTRACT. We define the logarithm function and the power function on the algebra of matrices. Additionally, we study further properties of the logarithm and power functions. Utilizing the sign function, we propose a new approach to representing the power function. Furthermore, we compute the power function for various types of matrices, including Hermitian, orthogonal, and symmetric matrices.

1. Introduction

Let \mathcal{M}_n denote the C^* -algebra of all *n*-square matrices. Two matrices A and B are similar, if there exists an invertible matrix T such that $A = T^{-1}BT$. We say that A is diagonalizable, if there exist $\lambda_1, \ldots, \lambda_n$ such that $A = T^{-1} \operatorname{diag}(\lambda_1, \ldots, \lambda_n)T$, and A is called unitarily diagonalizable, if there is a unitary matrix U such that $A = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_n)U$. Any solution of the matrix equation $e^X = A$, where e^X denotes the exponential of the matrix X, is called the logarithm of A. We say that a matrix A is a real matrix, if its elements consist entirely of real numbers. In general, a nonsingular real matrix may have an infinite number of real and complex logarithms. We denote by log A the principal logarithm of A. From the other side, the matrix C is a square root of A, if $A = C^2$. We say that A is a root-approximable, if there exists a sequence $\{C_k\}$ such that $C_k \longrightarrow I$ and $C_k^{2^k} = A$, for each $k = 0, 1, 2, \ldots$; see, for example, [2, 6]. Matrix functions are studied in [1, 4, 5, 7]. In this paper, the matrix functions $f(A) = A^{\alpha}$ (α is a real number) and $f(A) = \log A$ for specific matrices are studied. The logarithms of orthogonal, Hermitian, and in particular real symmetric matrices are

Communicated by Mohammad Sal Moslehian

MSC(2020): Primary: 15A16; Secondary: 47A60.

Keywords: Matrix; power and logarithm.

Received: 8 February 2023, Accepted: 13 June 2023.

^{*}Corresponding author

DOI: https://dx.doi.org/10.30504/JIMS.2023.385127.1088

96 J. Iran. Math. Soc. 4 (2023), no. 2, 95-104

studied in [8,9].

For asquare matrix A, we define

$$\log(I+A) = A - \frac{A^2}{2} + \frac{A^3}{3} - \frac{A^4}{4} + \cdots, \qquad \rho(A) < 1.$$

Here, ρ denotes the spectral radius, and the condition $\rho(A) < 1$ ensures the convergence of the matrix series. If A is a nilpotent matrix of order k, then $A^k = 0$, and we can write

$$\log(I+A) = A - \frac{A^2}{2} + \frac{A^3}{3} - \frac{A^4}{4} + \dots + (-1)^k \frac{A^{k-1}}{k-1}.$$

Let Q be an *n*-square matrix. We use the following product :

$$Q$$
diag $(I, \ldots, I) =$ diag (Q, \ldots, Q)

We say that an *n*-square complex matrix A is *involutory*, if $A^2 = I$. We have the following proposition.

Proposition 1.1. [10, Theorem 5.1] Let A be an n-square complex matrix. Then A is involutory, if and only if A is similar to a diagonal matrix of the form

$$diag(1, ..., 1, -1, ..., -1).$$

We need the following facts for our purposes.

Proposition 1.2. [10, Theorem 6.11] Let A and B be real square matrices of the same size. If P is a complex invertible matrix such that $P^{-1}AP = B$, then there exists a real invertible matrix Q such that $Q^{-1}AQ = B$.

Proposition 1.3. [10, Theorem 6.13] Let A and B be real square matrices of the same size. If $A = UBU^*$ for some unitary matrix U, then there exists a real orthogonal matrix Q such that $A = QBQ^T$.

Proposition 1.4. [10, Theorem 6.4] Every real orthogonal matrix is real orthogonally similar to a direct sum of real orthogonal matrices of order at most 2.

Now, we recall the definition of Jordan matrices and real Jordan matrices.

Definition 1.5. A Jordan block is an $r \times r$ matrix, $J_r(\lambda)$, of the form

(1.1)
$$J_r(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix},$$

where $\lambda \in \mathbb{C}$ with $J_1(\lambda) = (\lambda)$. A real Jordan block is either

(1) a Jordan block as above with $\lambda \in \mathbb{R}$,

or

J. Iran. Math. Soc. 4 (2023), no. 2, 95-104

(2) a real $2r \times 2r$ matrix, $J_{2r}(\lambda, \mu)$, of the form

(1.2)
$$J_{2r}(\lambda,\mu) = \begin{pmatrix} L(\lambda,\mu) & I & 0 & \cdots & 0 \\ 0 & L(\lambda,\mu) & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & I \\ 0 & 0 & 0 & \cdots & L(\lambda,\mu) \end{pmatrix},$$

where $L(\lambda, \mu)$ is a 2 × 2 matrix of the form

$$L(\lambda,\mu) = \left(\begin{array}{cc} \lambda & -\mu \\ \mu & \lambda \end{array}\right).$$

with $\lambda, \mu \in \mathbb{R}$ and I is the 2 × 2 identity matrix. Note that $J_2(\lambda, \mu) = L(\lambda, \mu)$.

A Jordan matrix J is an $n \times n$ block diagonal matrix of the form

(1.3)
$$J = \begin{pmatrix} J_{r_1}(\lambda_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & J_{r_m}(\lambda_m) \end{pmatrix},$$

where each $J_{r_k}(\lambda_k)$ is a Jordan block associated with some $\lambda_k \in \mathbb{C}$ and $r_1 + \cdots + r_m = n$. A real Jordan matrix J is an $n \times n$ block diagonal matrix of the form

(1.4)
$$J = \begin{pmatrix} J_{s_1}(\alpha_1) & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & J_{s_m}(\alpha_m) \end{pmatrix},$$

where each $J_{s_k}(\alpha_k)$ is a real Jordan block either associated with some $\alpha_k = \lambda_k \in \mathbb{R}$ as in (1.1), or associated with some $\alpha_k = (\lambda_k, \mu_k) \in \mathbb{R}^2$, with $\mu_k \neq 0$, as in (1.2), in this case $s_k = 2r_k$.

It is a standard result that any matrix $A \in \mathbb{C}^{n \times n}$ can be expressed in the Jordan canonical form

$$T^{-1}AT = J = \operatorname{diag}(J_{r_1}(\lambda_1), \dots, J_{r_m}(\lambda_m)),$$

where T is nonsingular and $r_1 + r_2 + \cdots + r_m = n$. The Jordan matrix J is unique up to the ordering of the blocks $J_k = J_k(\lambda_k)$, but the transforming matrix T is not unique. Denote by $\lambda_1, \ldots, \lambda_m$, the eigenvalues of A. Let n_i be the order of the largest Jordan block in which λ_i appears, which is called the index of λ_i .

We need the following terminology.

Definition 1.6 (Matrix function via Jordan canonical form). Let f be defined on the spectrum of $A \in \mathbb{C}^{n \times n}$ and let A have the Jordan canonical form. Then

$$f(A) = Tf(J)T^{-1} = T \operatorname{diag}(f(J_{r_1}(\lambda_1)), \dots, f(J_{r_m}(\lambda_m)))T^{-1}.$$

We use some results in [7] such as the existence of real logarithm as follows.

Theorem 1.7 (Existence of real logarithm). [7, Theorem 1.23] The nonsingular matrix $A \in \mathbb{R}^{n \times n}$ has a real logarithm if and only if A has an even number of Jordan blocks of each size for every negative eigenvalue.

Theorem 1.8 (Principal logarithm). [7, Theorem 1.31] Let $A \in \mathbb{C}^{n \times n}$ have no eigenvalues on \mathbb{R}^- . There is a unique logarithm X of A, all of whose eigenvalues lie in the strip $\{z : -\pi < \text{Im}(z) < \pi\}$. We refer to X as the principal logarithm of A and write $X = \log(A)$. If A is real, then its principal logarithm is real.

For $A \in \mathbb{C}^{n \times n}$ with no eigenvalues on \mathbb{R}^- and $\alpha \in [-1, 1]$, it follows from [7, Theorem 11.2] that $\log(A^{\alpha}) = \alpha \log(A)$. In particular, $\log(A^{-1}) = -\log(A)$ and $\log(A^{1/2}) = \frac{1}{2}\log(A)$. Let $B, C \in \mathbb{C}^{n \times n}$ have no eigenvalues on \mathbb{R}^- , and let BC = CB. It is shown in [7, Theorem 11.3] that if every eigenvalue λ_j of B and the corresponding eigenvalue μ_j of C satisfy $|\arg\lambda_j + \arg\mu_j| < \pi$, then $\log(BC) = \log(B) + \log(C)$.

For $A \in \mathbb{C}^{n \times n}$ and $A = ZJZ^{-1}$, let $J = \text{diag}(J_1, J_2)$, where $J_1 \in \mathbb{C}^{p \times p}$, the eigenvalues of J_1 lie in the open left half-plane, and $J_2 \in \mathbb{C}^{q \times q}$ lie in the open right half-plane. We define $\text{sign}(A) = Z\text{diag}(-I_p, I_q)Z^{-1}$. Now we have the following theorem.

Theorem 1.9. [7, Theorem 5.1] Let $A \in \mathbb{C}^{n \times n}$ have no pure imaginary eigenvalues, and let $S = \operatorname{sign}(A)$. Then S is involutory and SA = AS. Moreover, if A is real, then S is real.

2. Main results

Let A be a nonsingular real $n \times n$ matrix. We define

(2.1)
$$A^{\beta} := \exp(\beta \log A), \qquad \beta \in [-1, 1].$$

In the next theorem, we show that A^{β} is a real matrix.

Theorem 2.1. Let A be a nonsingular real $n \times n$ matrix, and let $J_{r_1}(\alpha_1), \ldots, J_{r_m}(\alpha_m)$ be the list of its Jordan blocks. For every real eigenvalue $\alpha_i < 0$, suppose the number of Jordan blocks identical to $J_{r_i}(\alpha_i)$ is even. Then A^{β} is a real matrix for all $\beta \in [-1, 1]$.

Proof. By Proposition 1.2, there is a real invertible matrix Q such that $A = Q^{-1}J'Q$, where

$$J' = \operatorname{diag}(J_{l_1}(\lambda_1), \dots, J_{l_k}(\lambda_k)) \oplus \operatorname{diag}(J_{2p_1}(\mu_1, \zeta_1), \dots, J_{2p_t}(\mu_t, \zeta_t)),$$

in which $\{\lambda_1, \ldots, \lambda_k, (\mu_1, \zeta_1), \ldots, (\mu_t, \zeta_t)\}$ are eigenvalues of $A, \lambda_i > 0, 1 \le i \le k$, and $(\mu_j, \zeta_j), 1 \le j \le t$, are complex numbers. Let

$$J_{l_i}(\lambda_i) = \lambda_i I_{l_i}(I_{l_i} + N_i), \quad 1 \le i \le k,$$

where $N_i \in \mathbb{R}^{l_i \times l_i}$ is nilpotent. Let $Y_i = S_i + M_i$ where $S_i = \text{diag}(\log(\lambda_i), \dots, \log(\lambda_i))$, and $M_i = \log(I_{l_i} + N_i)$. Then, by [3, Theorem 3.4], Y_i is a logarithm of $J_{l_i}(\lambda_i)$ for $i = 1, 2, \dots, k$. The other real Jordan blocks of J' are of the form $J_{2p_j}(\mu_j, \zeta_j)$ with $\mu_j, \zeta_j \in \mathbb{R}$, $1 \le j \le t$. In this case, if we define $S_j = \text{diag}(S(\rho_j, \theta_j), \dots, S(\rho_j, \theta_j))$, then by [3, Theorem 3.4], $Y_j = S_j + M_j$ is a logarithm of

 $J_{2p_j}(\mu_j,\zeta_j)$ for j = 1, 2, ..., t, where M_j is a logarithm of $I_{2p_j} + D_j^{-1}H_j$, $J_{2p_j}(\mu_j,\zeta_j) = D_j + H_j$, $D_j = \text{diag}(L(\mu_j,\zeta_j), ..., L(\mu_j,\zeta_j))$ and H_j is a real nilpotent matrix. Therefore, $X = Q^{-1}YQ$ is a real logarithm of A, where $Y = \text{diag}(Y_1, Y_2, \cdots, Y_m)$. It follows from [7, Theorem 11.2] that

(2.2)

$$A^{\beta} = \exp(\beta \log A) = \exp(\beta Q^{-1} \log(J')Q)$$

$$= Q^{-1} \exp(\beta \operatorname{diag}(Y_1, \dots, Y_m))Q$$

$$= Q^{-1} \operatorname{diag}(e^{\beta Y_1}, \dots, e^{\beta Y_m})Q.$$

Since $S_i M_i = M_i S_i$, we have $e^{\beta Y_i} = e^{\beta S_i} e^{\beta M_i} = \lambda_i^\beta \exp(\beta M_i), i = 1, \dots, k$. Let $\lambda_k + i\mu_k = \rho_k e^{i\theta}$, with $\rho_k > 0$ and $\theta_k \in [-\pi, \pi)$ for $j = 1, 2, \dots, t$,

$$e^{\beta Y_j} = e^{\beta S_j} e^{\beta M_j}$$
$$= \rho_j^\beta \begin{pmatrix} \cos\beta\theta_j & -\sin\beta\theta_j \\ \sin\beta\theta_j & \cos\beta\theta_j \end{pmatrix} \operatorname{diag}(I_2, \dots, I_2) \exp(\beta M_j).$$

Hence, $e^{\beta Y_j}$ is a real matrix for each j = 1, 2, ..., t. Since Q is a real invertible matrix, (2.2) yields that A^{β} is real.

Remark 2.2. Consider $A \in \mathbb{C}^{n \times n}$ with all eigenvalues in $T_m = \{re^{i\theta}; r > 0, \frac{-\pi}{m} < \theta < \frac{\pi}{m}\}$, where m is a positive integer. We extend (2.1) for any $\beta \in [-m, m]$, that is,

$$A^{\beta} = \exp(\beta \log A) \,.$$

Indeed, by Theorem 1.8, [7, Theorem 11.3], and induction, we have $\log A^m = m \log A$, since $A^{\beta} = (A^m)^{\beta/m}$. From Theorem 2.1, we have $\log A^{\beta} = \frac{\beta}{m} \log A^m = \frac{\beta}{m} (m \log A) = \beta \log A$ and so $A^{\beta} = \exp(\beta \log A)$.

Let A be positive definite. Then all eigenvalues of A are positive, so all eigenvalues are in T_m for each $m \in \mathbb{N}$. Hence we can extend (2.1) as follows:

$$A^{\alpha} = \exp(\alpha \log A), \quad \alpha \in \mathbb{R}.$$

Theorem 2.3. Let $A \in \mathbb{C}^{n \times n}$ have no pure imaginary eigenvalues, and let S = sign(A). Then all eigenvalues of SA lie in the open right half-plane.

Proof. Let $A = ZJZ^{-1}$, $J = \text{diag}(J_1, J_2)$, where $J_1 \in \mathbb{C}^{p \times p}$, $J_2 \in \mathbb{C}^{q \times q}$, the eigenvalues of J_1 and J_2 lie in the open left half-plane and open right half-plane, respectively. Then $S = \text{sign}(A) = Z\text{diag}(-I_p, I_q)Z^{-1}$. Therefore, Theorem 1.9 implies that $SA = AS = Z\text{diag}(-J_1, J_2)Z^{-1}$. Thus all eigenvalues of SA lie in the open right half-plane.

Theorem 2.4. Suppose that S is an involutory matrix, and let det(S) > 0. Then, for any $\alpha \in \mathbb{R}$, $S^{\alpha} := exp(\alpha \log S)$ is well-defined.

Proof. By Proposition 1.1, there is an invertible matrix Z such that $S = Z \operatorname{diag}(-I_p, I_q) Z^{-1}$, where p is an even number. If $\alpha \in \mathbb{R}$, then the equation $\alpha = 2[\frac{\alpha+1}{2}] + \beta$

has a solution β in [-1, 1]. Therefore $\cos \alpha \pi = \cos \beta \pi$ and $\sin \alpha \pi = \sin \beta \pi$, which gives $\exp(\alpha \pi E_2) = \exp(\beta \pi E_2)$, where $E_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. So

$$\exp(\alpha \log S) = Z(\exp(\alpha \pi E_2) \operatorname{diag}(I_2, \dots, I_2) \oplus I_q) Z^{-1}$$
$$= Z(\exp(\beta \pi E_2) \operatorname{diag}(I_2, \dots, I_2) \oplus I_q) Z^{-1} = \exp(\beta \log S) = S^{\beta}.$$

Hence $S^{\alpha} = \exp(\alpha \log S) = S^{\beta}$ and so, by (2.1), S^{α} is well-defined.

It is clearly seen that $\log S = Z[\pi E_2 \operatorname{diag}(I_2, \ldots, I_2) \oplus O_q]Z^{-1}$, so we conclude the following result.

Corollary 2.5. An involutory matrix has an invertible logarithm if and only if it is equal to $-I_p$ where p is an even number.

Now, by Remark 2.2, Theorem 2.3, and Theorem 2.4, we extend the definition of power function in (2.1) to [-2, 2].

Definition 2.6. Let $A \in \mathbb{C}^{n \times n}$ be such that $\det(S) > 0$ where $S = \operatorname{sign}(A)$. Then we define $A^{[\alpha]} = S^{\alpha}(SA)^{\alpha}$ for $-2 \leq \alpha \leq 2$. Also, we set $\operatorname{Log}(A) = \operatorname{log}(SA) + \operatorname{log} S$.

If the eigenvalues of matrix A are real nonzero and the number of negative eigenvalues is even, then the above definition can be generalized to any $\alpha \in \mathbb{R}$. If all the eigenvalues of A lie in the open right half-plane, then S = I. So it is clearly seen that $A^{[\alpha]}$ and $\log A$ are extensions of the definition of A^{α} and $\log A$, respectively.

Theorem 2.7. Let A be a nonsingular real $n \times n$ matrix such that A has no eigenvalue on the pure imaginary axis, and let det(S) > 0, where S = sign(A). Then LogA, and for any $\beta \in [-2, 2]$, $A^{[\beta]}$ are a real matrix.

Proof. Since all eigenvalues of SA lie in the open right half-plane, it follows from Theorem 2.1 that SA is a real logarithm. In addition, Remark 2.2 and Theorem 2.1 entail that $(SA)^{\beta}$ is real for all $\beta \in [-2, 2]$. Thus LogA and $A^{[\beta]}$ are real.

Let $A \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix and, such that A has no pure imaginary eigenvalues. If det A > 0, then SA is diagonalizable too, where $S = \operatorname{sign}(A)$. We can write $SA = Q^{-1}DQ$, where

$$D = \operatorname{diag}(\lambda_1, \ldots, \lambda_k, L(\mu_1, \zeta_1), \ldots, L(\mu_t, \zeta_t)),$$

with $\lambda_i > 0$ and (μ_j, ζ_j) are in open right half-plane, for any $1 \le i \le k$ and $1 \le j \le t$. Suppose $\alpha \in [-2, 2]$. Then

$$D^{\alpha} = \operatorname{diag}\left(\lambda_{1}^{\alpha}, \dots, \lambda_{k}^{\alpha}, \rho_{1}^{\alpha}\left(\begin{array}{c}\cos\alpha\theta_{1} & -\sin\alpha\theta_{1}\\\sin\alpha\theta_{1} & \cos\alpha\theta_{1}\end{array}\right), \dots, \rho_{t}^{\alpha}\left(\begin{array}{c}\cos\alpha\theta_{t} & -\sin\alpha\theta_{t}\\\sin\alpha\theta_{t} & \cos\alpha\theta_{t}\end{array}\right)\right),$$

DOI: https://dx.doi.org/10.30504/JIMS.2023.385127.1088

where $\mu_j + i\zeta_j = \rho_j e^{i\theta_j}$, $\rho_j > 0$ and $-\pi < \theta_j \le \pi$. We have $(SA)^{\alpha} = Q^{-1}D^{\alpha}Q$. Therefore, $A^{[\alpha]} = S^{\alpha}(SA)^{\alpha}$ is real. Moreover,

$$Log A = log(SA) + log S$$
$$= Q^{-1} diag(log \lambda_1, \dots, log \lambda_k, S(\rho_1, \theta_1), \dots, S(\rho_t, \theta_t))Q + log S.$$

Hence the following corollary is proved.

Corollary 2.8. Let $A \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix such that A has no pure imaginary eigenvalues, and let det A > 0. Then LogA and $A^{[\alpha]}$ are real matrices for every $\alpha \in [-2, 2]$.

Applying Theorems 1.7 and 2.7, the following corollary can be proved.

Corollary 2.9. Let A be a nonsingular real $n \times n$ matrix such that A has no eigenvalue on the pure imaginary axis. Let M_1, \ldots, M_k be real square matrices, and let A be similar to diag $(M_1, M_1, \ldots, M_k, M_k)$. Then log A, A^{β} for $\beta \in [-1, 1]$, and also $A^{[\beta]}$ for $\beta \in [-2, 2]$ are real matrices.

Corollary 2.10. Let A be a nonsingular real $n \times n$ matrix such that A has no eigenvalue on the pure imaginary axis. Let M_1, \ldots, M_k be real square matrices, and let A be similar to

$$\begin{pmatrix} O & I_1 \\ M_1 & O \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} O & I_k \\ M_k & O \end{pmatrix},$$

where I_1, \ldots, I_k are identity matrices with the same size of M_1, \ldots, M_k , respectively. Then $\log A$, A^{β} for $\beta \in [-2, 2]$, and also $A^{[\beta]}$ for $\beta \in [-4, 4]$ are real.

Proof. The proof is easily obtained from

$$\begin{pmatrix} O & I_i \\ M_i & O \end{pmatrix}^2 = \begin{pmatrix} M_i & O \\ O & M_i \end{pmatrix},$$

and Corollary 2.9.

Theorem 2.11. Suppose that A is a Hermitian matrix of order n with det(A) > 0. Then for every $\alpha \in \mathbb{R}$, LogA and $A^{[\alpha]}$ are well-defined.

Proof. Since A is a Hermitian, it is unitarily diagonalizable, that is, there exists a unitary matrix U such that

$$U^*AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q),$$

where $\lambda_i < 0$ and $\mu_j > 0$. In this case, we have $A = U(J_1 \oplus J_2)U^*$, where $J_1 = \text{diag}(\lambda_1, \ldots, \lambda_p)$ and $J_2 = \text{diag}(\mu_1, \ldots, \mu_q)$. If $S = U(-I_p \oplus I_q)U^*$, then S is an involutory. It follows from Definition 2.6 that

$$\log(SA) = \log[U^* \operatorname{diag}(-J_1, J_2)U]$$
$$= U^*[\operatorname{diag}(\log(-\lambda_1), \dots, \log(-\lambda_p)) \oplus \operatorname{diag}(\log \mu_1, \dots, \log \mu_q)]U$$

and $\log S = U^*[\pi E_2 \operatorname{diag}(I_2, \ldots, I_2) \oplus O_q]U$. Therefore

$$Log A = log(SA) + log S$$
$$= U^*[(diag(log(-\lambda_1), \dots, log(-\lambda_p)) + \pi E_2 diag(I_2, \dots, I_2))$$
$$\oplus diag(log \mu_1, \dots, log \mu_q)]U.$$

Note that by Remark 2.2 and Theorem 2.4, S^{α} and $(SA)^{\alpha}$ are well-defined. For any $\alpha \in \mathbb{R}$, we have

$$S^{\alpha}(SA)^{\alpha} = U[\exp(\alpha\pi E_2)\operatorname{diag}(I_2,\ldots,I_2) \oplus I_q][(-J_1) \oplus J_2]^{\alpha}U^*$$

= $U[\exp(\alpha\pi E_2)\operatorname{diag}(I_2,\ldots,I_2) \oplus I_q][(-J_1)^{\alpha} \oplus (J_2)^{\alpha}]U^*$
= $U[\exp(\alpha\pi E_2)\operatorname{diag}(I_2,\ldots,I_2)\operatorname{diag}((-\lambda_1)^{\alpha},\ldots,(-\lambda_p)^{\alpha})$
 $\oplus \operatorname{diag}(\mu_1^{\alpha},\ldots,\mu_q^{\alpha})]U^*$

Hence, $A^{[\alpha]} = S^{\alpha}(SA)^{\alpha}$ is well-defined.

According to Proposition 1.4, for any real orthogonal matrix A, there exist $\alpha_1, \ldots, \alpha_s$ such that A is similar to the matrix

(2.3)
$$C = I_r \oplus -I_l \oplus \begin{pmatrix} \cos \alpha_1 & \sin \alpha_1 \\ -\sin \alpha_1 & \cos \alpha_1 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} \cos \alpha_s & \sin \alpha_s \\ -\sin \alpha_s & \cos \alpha_s \end{pmatrix},$$

where r and s are nonnegative integer numbers. We have the following theorem for real orthogonal matrices.

Theorem 2.12. Let A be a real orthogonal matrix and l is even, where l is introduced in (2.3). Then A^{β} is orthogonal for all $\beta \in [-1, 1]$.

Proof. By the assumption, there is a real orthogonal matrix P such that

$$C = P^T A P = I_r \oplus -I_l \oplus \begin{pmatrix} \cos \alpha_1 & \sin \alpha_1 \\ -\sin \alpha_1 & \cos \alpha_1 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} \cos \alpha_s & \sin \alpha_s \\ -\sin \alpha_s & \cos \alpha_s \end{pmatrix}.$$

Then $\log C = O_r \oplus \pi E_2 \operatorname{diag}(I_2, \ldots, I_2) \oplus E_2 \operatorname{diag}(\alpha_1 I_2, \ldots, \alpha_s I_2)$, which gives

$$\log A = P(O_r \oplus \pi E_2 \operatorname{diag}(I_2, \ldots, I_2) \oplus E_2 \operatorname{diag}(\alpha_1 I_2, \ldots, \alpha_s I_2) P^T.$$

Since, for $\beta \in [-1, 1]$,

$$C^{\beta} = \exp(\beta \log C) = I_r \oplus \begin{pmatrix} \cos \beta \pi & \sin \beta \pi \\ -\sin \beta \pi & \cos \beta \pi \end{pmatrix} \operatorname{diag}(I_2, \dots, I_2)$$
$$\oplus \begin{pmatrix} \cos \beta \alpha_1 & \sin \beta \alpha_1 \\ -\sin \beta \alpha_1 & \cos \beta \alpha_1 \end{pmatrix} \oplus \dots \oplus \begin{pmatrix} \cos \beta \alpha_s & \sin \beta \alpha_s \\ -\sin \beta \alpha_s & \cos \beta \alpha_s \end{pmatrix},$$

we have $A^{\beta} = (PCP^T)^{\beta} = PC^{\beta}P^T$, where A^{β} is real orthogonal.

J. Iran. Math. Soc. 4 (2023), no. 2, 95-104

If $S = \operatorname{sign}(C)$ and $\det(S) > 0$, then

$$SC = I_{r+l} \oplus \begin{pmatrix} \cos \gamma_1 & \sin \gamma_1 \\ -\sin \gamma_1 & \cos \gamma_1 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} \cos \gamma_s & \sin \gamma_s \\ -\sin \gamma_s & \cos \gamma_s \end{pmatrix},$$

where

$$\begin{cases} \gamma_i = \alpha_i + \pi & \text{if } -\pi < \alpha_i < -\frac{\pi}{2}, \\ \gamma_i = \alpha_i & \text{if } -\frac{\pi}{2} < \alpha_i < \frac{\pi}{2}, \\ \gamma_i = \alpha_i - \pi & \text{if } \frac{\pi}{2} < \alpha_i \le \pi, \end{cases}$$

 $i = 1, 2, \ldots, s$, which gives the following result.

Corollary 2.13. Let $-2 \leq \beta \leq 2$. Let A be similar to the matrix C in (2.3). If the number of eigenvalues of C on the left half-plane is even, then $A^{[\beta]} = P(S^{\beta}(SC)^{\beta})P^{T}$.

Remark 2.14. In Theorem 2.12, if we take $\beta = \frac{1}{2^k}$ and

$$D_k = I_r \oplus \begin{pmatrix} \cos\frac{\pi}{2^k} & \sin\frac{\pi}{2^k} \\ -\sin\frac{\pi}{2^k} & \cos\frac{\pi}{2^k} \end{pmatrix} \oplus \dots \oplus \begin{pmatrix} \cos\frac{\pi}{2^k} & \sin\frac{\pi}{2^k} \\ -\sin\frac{\pi}{2^k} & \cos\frac{\pi}{2^k} \end{pmatrix} \\ \oplus \begin{pmatrix} \cos\frac{\alpha_1}{2^k} & \sin\frac{\alpha_1}{2^k} \\ -\sin\frac{\alpha_1}{2^k} & \cos\frac{\alpha_1}{2^k} \end{pmatrix} \oplus \dots \oplus \begin{pmatrix} \cos\frac{\alpha_s}{2^k} & \sin\frac{\alpha_s}{2^k} \\ -\sin\frac{\alpha_s}{2^k} & \cos\frac{\alpha_s}{2^k} \end{pmatrix},$$

then $D_k \longrightarrow I$ as $k \to \infty$ and $(PD_kP^T)^{2^k} = A$, that is, A is root-approximable.

Acknowledgement

The authors would like to sincerely thank the referees for some helpful comments improving the paper.

References

- [1] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997
- [2] A. Chademan and F. Mirzapour, Midconvex functions in locally compact groups, Proc. Amer. Math. Soc. 127 (1999), no. 10, 2961–2968.
- [3] J. H. Gallier, Logarithms and Square Roots of Real Matrices, Technical Reports (CIS) (2008) Paper 876.
- [4] N. J. Higham, Computing real square roots of a real matrix Linear Algebra Appl. 88/89 (1987), 405–430.
- [5] R. A Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- [6] S. Maghsoudi and F. Mirzapour, Root-approximability of the group of automorphisms of the unit ball in Cⁿ, Bull. Malays. Math. Sci. Soc. (2016), no. 4, 1477–1485.
- [7] N. J. Higham, Functions of matrices. Theory and computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
- [8] R. C. Thompson, The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil, Linear Algebra Appl. 14 (1976), no. 2, 136–177.
- [9] R. C. Thompson, Pencils of complex and real symmetric and skew symmetric matrices, *Linear Algebra Appl.* 147 (1991), 323–371.
- [10] F. Zhang, Matrix Theory, Basic results and techniques, Second edition, Universitext. Springer, New York, 2011.

Farzollah Mirzapour

Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran. Email: f.mirza@znu.ac.ir

Rasoul Eskandari

Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran. Email: Rasoul.eskandari@cfu.ac.ir;eskandarirasoul@yahoo.com