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COMMUTATORS AND HYPONORMAL OPERATORS ON A HILBERT SPACE

M. AKHMADIEV, H. ALHASAN, A. BIKCHENTAEV AND P. IVANSHIN∗

Abstract. Let H be an infinite-dimensional Hilbert space over the field C, B(H) be the ∗-algebra
of all linear bounded operators on H, let |X| =

√
X∗X for X ∈ B(H). An operator A ∈ B(H) is a

commutator, if A = [S, T ] = ST − TS for some S, T ∈ B(H). Let X,Y ∈ B(H) and X ≥ 0. If the

operator XY is a non-commutator, then XpY X1−p is a non-commutator for every 0 < p < 1. Let

A ∈ B(H) be p-hyponormal for some 0 < p ≤ 1. If |A∗|r is a non-commutator for some r > 0, then

|A|q is a non-commutator for every q > 0. Let H be separable and A ∈ B(H) be a non-commutator.

If A is hyponormal (or cohyponormal), then A is normal. We also present results in the case of a

finite-dimensional Hilbert space.

1. Introduction

Let H be a Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on

H. For a C∗-subalgebra A ⊂ B(H) put

A0 = {X ∈ A : X =
∑
n≥1

[Xn, X
∗
n] for (Xn)n≥1 ⊂ A, the series ∥ · ∥−converges}.

It is proved in [26, Theorem 2.6] that A0 coincides with the zero-space of all finite traces on Asa.

For a wide class of C∗-algebras that contains all von Neumann algebras, we can consider only finite

sums of the indicated form, see [28]. Elements of unital C∗-algebras without tracial states, can be

represented as finite sums of commutators. Moreover, the number of commutators involved in these
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sums is bounded and depends only on the given C∗-algebra [35]. The characterization of traces on C∗-

algebras is an urgent problem and attracts the attention of a large group of researchers. Commutation

relations allowed us to obtain characterizations of the traces in a broad class of weights on von Neumann

algebras and C∗-algebras [8, 10, 11]. An interesting problem is the representation of elements of C∗-

algebras via commutators of special form [3–5], [17–20,24,33,34].

Our paper continues article [21], that possesses the following results: Let H be a Hilbert space,

dimH = +∞.

(1) Let a Hermitian operator X ∈ B(H) be a non-commutator and σ(X) be the spectrum of X.

Then f(X) is a non-commutator for every continuous function f : σ(X) → R with f(x) ̸= 0.

(2) Let X = U |X| be the polar decomposition of an operator X ∈ B(H). Then the following

conditions are equivalent:

(a) X is a non-commutator;

(b) U and |X| are non-commutators.

(3) For a Hermitian operator X ∈ B(H), the following conditions are equivalent:

(a) X is a commutator;

(b) the Cayley transform K(X) is a commutator.

(4) Let H be a Hilbert space, and dimH ≤ +∞, A,B ∈ B(H) and P ∈ B(H), P = P 2. If

AB = λBA for some λ ∈ C \ {1}, then the operator AB is a commutator. The operator AP

is a commutator, if and only if PA is a commutator.

Our results here concern the facts stated above. Let dimH = +∞. The algebra B(H) is known to

possess a proper uniformly closed ideal J , that contains all other proper uniformly closed ideals of

B(H).

Let X,Y ∈ B(H) and X ≥ 0. If the operator XY is a non-commutator, then A = XpY X1−p is a

non-commutator for every 0 < p < 1 (Theorem 3.1).

Differences of idempotents in C∗-algebras are naturally related to the quantum Hall effect [1,2,13,

14, 29]. Let P,Q ∈ B(H) be idempotents, P⊥ = I − P . Then P − Q is a non-commutator, if and

only if exactly one of the following conditions holds: (i) Q,P⊥ ∈ J ; (ii) P,Q⊥ ∈ J (Theorem 3.6).

Let A = A+ − A− be the Jordan decomposition of a Hermitian operator A ∈ B(H). Then A is a

non-commutator, if and only if exactly one of A+ or A− is a non-commutator (Theorem 3.9). Let

A ∈ B(H) be p-hyponormal for some 0 < p ≤ 1. If |A∗|r is a non-commutator for some r > 0, then

|A|q is a non-commutator for every q > 0 (Theorem 3.10). Let H be separable and A ∈ B(H) be a

non-commutator. If A is hyponormal (or cohyponormal), then A is normal (Theorem 3.11).

We also present results in the setting of dimH < +∞. For instance, for any unitary matrix

U ∈ Mn(C) there exists φ ∈ [−π, π], such that the inverse Cayley transform of eiφU possesses zero

trace (Proposition 3.15).
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2. Preliminaries

Let A be an algebra, and let Aid = {A ∈ A : A2 = A} be the set of all idempotents in A. An

element X ∈ A is a commutator, if X = [A,B] = AB − BA for some A,B ∈ A. A C∗-algebra is a

complex Banach ∗-algebra A, such that ∥A∗A∥ = ∥A∥2 for all A ∈ A. For a C∗-algebra A by Apr,

Asa, and A+ we denote its projections (A = A∗ = A2), Hermitian elements, and positive elements,

respectively. If A ∈ A, then |A| =
√
A∗A ∈ A+. As is well known, in a unital C∗-algebra A the Cayley

transform

K(X) =
X + iI

X − iI
= (X − iI)−1(X + iI) = (X + iI)(X − iI)−1

of an element X ∈ Asa is a unitary element of A. The inverse Cayley transform of a unitary element

U of A is K−1(U) = 2i(I − U)−1 − iI, if (I − U)−1 ∈ A. If P ∈ Aid, then P⊥ := I − P ∈ Aid.

Let H be a Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators

on H. An operator X ∈ B(H), is called p-hyponormal for some 0 < p ≤ 1, if (A∗A)p ≥ (AA∗)p; p-

cohyponormal, if A∗ is p-hyponormal. By Gelfand–Naimark Theorem every C∗-algebra is isometrically

isomorphic to a concrete C∗-algebra of operators on a Hilbert space H [22, II.6.4.10]. For dimH =

n < ∞, the algebra B(H) can be identified with the full matrix algebra Mn(C).

Lemma 2.1. For X ∈ B(H), dimH = n < ∞, the following conditions are equivalent:

(i) X is a commutator;

(ii) tr(X) = 0;

(iii) X is unitarily equivalent to a matrix with zero diagonal;

(iv) tr(|I + zX|) ≥ n for all z ∈ C.

Proof. For (i)⇔(ii) see [32, Ch. 24, Problem 230]; for (ii)⇔(iii) see [30, Chap. II, Problem 209]; for

(ii)⇔(iv) see [12, Theorem 4.8]. □

Let H be an infinite-dimensional Hilbert space. The algebra B(H) is known to contain a proper

uniformly closed ideal J that carries all other proper uniformly closed ideals of B(H), see [23, Section

6]. In case H is separable, J is the ideal of compact operators. Combining Theorems 3 and 4 in [23]

we get the following assertion (see also [21, Theorem 2.2]).

Theorem 2.2 (Brown–Pearcy Theorem). An operator X ∈ B(H), dimH = +∞, is a non-commutator,

if and only if X = λI + J for some λ ∈ C \ {0} and J ∈ J .

3. Idempotents and commutators in B(H)

If dimH < +∞, X,Y ∈ B(H) and X ≥ 0, then the operator XY is a commutator, if and only if

XpY X1−p is a commutator for some (hence, for all) 0 < p < 1, see equivalence (i)⇔(ii) of Lemma 2.1.

Theorem 3.1. Let dimH = +∞, X,Y ∈ B(H) and X ≥ 0. If the operator XY is a non-commutator,

then A = XpY X1−p is a non-commutator for every 0 < p < 1.
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Proof. By Theorem 2.2 we have XY = λI + J , for some λ ∈ C \ {0}, and J ∈ J . We show that

A = λI + J0 for some operator J0 ∈ J (then A is a non-commutator by Theorem 2.2). Obviously,(
X +

1

n
I
)
Y = λI +

1

n
Y + J, n ∈ N.

Multiply these equalities by the operator
(
X+ 1

nI
)p−1

from the left, and by the operator
(
X+ 1

nI
)1−p

from the right, and obtain(
X +

1

n
I
)p

Y
(
X +

1

n
I
)1−p

= λI +
1

n

(
X +

1

n
I
)p−1

Y
(
X +

1

n
I
)1−p

+ Jn, (1)

where Jn =
(
X + 1

nI
)p−1

J
(
X + 1

nI
)1−p

∈ J , n ∈ N. Since

X +
1

n
I → X as n → ∞

in the operator norm, we have (X + 1
nI)

q → Xq as n → ∞ by the ∥ · ∥-continuity of the functional

calculus. Therefore, (
X +

1

n
I
)p

Y
(
X +

1

n
I
)1−p

→ A as n → ∞

in the operator norm by joint ∥ · ∥-continuity of the product operation in B(H). Let us show that

1

n

(
X +

1

n
I
)p−1

Y
(
X +

1

n
I
)1−p

→ 0 as n → ∞

in the operator norm. Consider an Abelian unital C∗-subalgebraA in B(H), generated by the operators

X and I. Then A ≃ C(Ω) for some compact topological space Ω (Gelfand representation) and

1

(X + 1
nI)

1−p
=

n1−p

(nX + I)1−p
≤ n1−pI for all n ∈ N,

hence ∥(X + 1
nI)

p−1∥ ≤ n1−p, n ∈ N. Therefore,∥∥∥ 1
n

(
X +

1

n
I
)p

Y
(
X +

1

n
I
)1−p∥∥∥ ≤ 1

n

∥∥∥(X +
1

n
I
)p∥∥∥ ∥Y ∥

∥∥∥(X +
1

n
I
)1−p∥∥∥

≤ n1−p

n
∥Y ∥

∥∥∥(X +
1

n
I
)1−p∥∥∥→ 0 as n → ∞.

Now it follows from (1) that the sequence (Jn)
∞
n=1 ⊂ J is ∥ · ∥-convergent as n → ∞ to some operator

J0 ∈ B(H). Since the ideal J is ∥ · ∥-closed, we get J0 ∈ J . Then by Theorem 2.2 the operator A is

a non-commutator. □

Since the exponential function λ ∈ C 7→ expλ ∈ C is an entire function, we can define expX for

all elements X of a unital Banach algebra A, see [36, Chap. I, Proposition 2.7]. It also admits the

representation as the absolutely convergent power series

expX =

∞∑
n=0

1

n!
Xn,

where X0 = I as usual.
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Theorem 3.2. Let A,B ∈ B(H) and X = AB + (I −B)A.

(i) If dimH < +∞ then A is a commutator, if and only if X is a commutator;

(ii) If dimH = +∞ and A is a non-commutator, then X and eA are non-commutators;

(iii) If dimH < +∞ and A = A∗, then eA is a non-commutator. There exists a normal non-

commutator T such that eT is a commutator.

Proof. The statement is obtained (i). We have tr(X) = tr(AB − BA) + tr(A) and apply equivalence

(i)⇔(ii) of Lemma 2.1.

(ii). By Theorem 2.2, we have A = λI + J for some λ ∈ C \ {0} and J ∈ J . Then

X = (λI + J)B + (I −B)(λI + J) = λI + J1

for J1 = JB −BJ + J ∈ J and we apply Theorem 2.2.

We also have eA = eλI + J2, for some J2 ∈ J . Indeed, consider the partial sums

I +A+A2 +
A2

2!
+ · · ·+ An

n!
= I + λI +

λ2

2!
I + · · ·+ λn

n!
I+

+ J + λJ +
λ2

2!
J2 + · · ·+ λn

n!
Jn, n ∈ N.

Since I + λI + λ2

2! I + · · ·+ λn

n! I → eλI as n → ∞ in the operator norm, the sequence J + λJ + λ2

2! J
2 +

· · · + λn

n! J
n is also ∥ · ∥-convergent to some operator J2 ∈ B(H) as n → ∞. Since the ideal J is

∥ · ∥-closed, we get J2 ∈ J . Then by Theorem 2.2 the operator eA is a non-commutator.

(iii). If dimH = n < +∞ and A = A∗ then without loss of generality put

A = diag(a1, . . . , an)

with a1, . . . , an ∈ R. Then eA = diag(ea1 , . . . , ean), tr(eA) = ea1 + · · · + ean > 0 and we apply

equivalence (i)⇔(ii) of Lemma 2.1.

Finally, put T = diag(0, iπ) in M2(C) and apply Lemma 2.1. □

Let X ∈ B(H), P ∈ B(H)id and S = 2P − I. Consider the following conditions:

(A) X is a non-commutator;

(B) PX +XP⊥ is a non-commutator;

(C) X + SXS is a non-commutator.

Theorem 3.3. Let operators X,P, S ∈ B(H) be as above.

(i) If dimH < +∞, then (A) ⇔ (B) ⇔ (C).

(ii) If dimH = +∞, then (A) ⇒ (B) ⇒ (C) and in the general case the implications (C) ⇒ (B),

(C) ⇒ (A) and (B) ⇒ (A) are false.

Proof. (i). Follows from equivalence (i)⇔(ii) of Lemma 2.1.

(ii), (A) ⇒ (B). Consider a non-commutator X = λI + J , for some λ ∈ C \ {0} and J ∈ J , see

Theorem 2.2. Then

PX = λP + PJ, XP⊥ = λP⊥ + JP⊥.
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We sum these equalities term-by-term, conclude that PX+XP⊥ = λI+J1, where J1 = PJ+P⊥J ∈ J ,

and apply Theorem 2.2.

(ii), (B) ⇒ (C). Consider a non-commutator PX + XP⊥ = λI + J with some λ ∈ C \ {0} and

J ∈ J , see Theorem 2.2. Then

PXP = (PX +XP⊥)P = λP + JP, P⊥XP⊥ = P⊥(PX +XP⊥) = λP⊥ + JP⊥.

By summing these equalities term-by-term we get

PXP + P⊥XP⊥ =
1

2
(X + SXS) = λI + J2,

where J2 = JP + P⊥J ∈ J , and apply Theorem 2.2.

Now we show that for an infinite dimensional separable Hilbert space H implications (C) ⇒ (B),

(C) ⇒ (A) and (B) ⇒ (A) are false. Fix some X ∈ B(H)pr with dimXH = dimX⊥H = +∞. Then

in the direct sum H = XH⊕X⊥H we have X = diag(1, 0) and for

P =
1

2

(
1 1

1 1

)
with S = 2P − I we obtain SXS = diag(0, 1) = X⊥. Hence X + SXS = I and condition (C) holds

by Theorem 2.2. It is clear that condition (A) does not hold by Theorem 2.2. Since

PX +XP⊥ =

(
1 −1/2

1/2 0

)
,

condition (B) is false by Theorem 2.2.

Consider now P ∈ B(H)pr with dimPH = dimP⊥H = +∞. Then in the direct sumH = PH⊕P⊥H
we have P = diag(1, 0), P⊥ = diag(0, 1). For

X =

(
λ b

c λ

)
with λ ∈ C \ {0}, b ∈ J and c /∈ J , the operator

PX +XP⊥ =

(
λ 2b

0 λ

)
is a non-commutator by Theorem 2.2, i.e., condition (B) holds. Since X is a commutator by Theorem

2.2, condition (A) does not hold. For S = 2P − I we obtain X +SXS = 2λI and condition (C) holds

by Theorem 2.2. □

Let A be an algebra, let A,B ∈ A be such that AB = −BA, i.e., A and B anticommute. Then AB

and BA are commutators: AB = [A2 , B], BA = [B, A2 ].

Example 3.4. Let A be a unital algebra. Then

(i) if P,Q ∈ Aid then A = P −Q and B = I − P −Q anticommute;

(ii) if P ∈ Aid, X ∈ A then A = 2P − I and B = [X,P ] anticommute;

(iii) if X,Y, T ∈ A and T is left invertible then T [X,Y ]T−1
l = [TXT−1

l , TY T−1
l ].
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Note that even matrices with zero trace may not only anticommute but enjoy more peculiar prop-

erties, cf. item (i) of [21, Theorem 3.19].

Example 3.5. For A =



0 1 0 0 . . . 0

0 0 λ 0 . . . 0

0 0 0 λ2 . . . 0

. . .

0 0 0 0 . . . λn−2

0 0 0 0 . . . 0


, B =



0 1 0 0 . . . 0

0 0 µ 0 . . . 0

0 0 0 µ2 . . . 0

. . .

0 0 0 0 . . . µn−2

0 0 0 0 . . . 0


,

λ, µ ∈ C, we have λAB = µBA.

Theorem 3.6. Let dimH = +∞ and P,Q ∈ B(H)id. Then A = P −Q is a non-commutator if and

only if exactly one of the following conditions holds:

(i) Q,P⊥ ∈ J ;

(ii) P,Q⊥ ∈ J .

Proof. Assume that A = P −Q is a non-commutator. Then by Theorem 2.2 we have

P −Q = λI + J (2)

for some λ ∈ C \ {0} and J ∈ J . Hence

P = Q+ λI + J = (Q+ λI + J)2

and

λI + J = λ2I + 2λQ+ J1, (3)

where J1 = J2 + 2λJ +QJ + JQ ∈ J . Consider two cases.

a) If Q ∈ J then λ = λ2. Since λ ̸= 0, we have λ = 1 and by (2) infer that P⊥ = −J − Q ∈ J .

Thus condition (i) holds.

b) If Q /∈ J then by (2) we know that Q⊥ = −J − Q ∈ J and λ2 + λ = 0. Since λ ̸= 0, we have

λ = −1 and by (2) achieve the equality P = −Q⊥ + J ∈ J . Thus condition (ii) holds.

Let us show the reverse implication of Theorem. If condition (i) holds then −I + P −Q := J ∈ J
and P −Q = I + J . If condition (ii) holds then P −Q+ I := J ∈ J and P −Q = −I + J . In both of

these cases A = P −Q is a non-commutator by Theorem 2.2. □

Let A be an algebra and A = A3 ∈ A. Then A = P −Q for some P,Q ∈ Aid with PQ = QP = 0,

see [7, Proposition 1].

Corollary 3.7. Let dimH = +∞ and A = A3 ∈ B(H), let A = P −Q be a representation as above.

Then A is a non-commutator if and only if exactly one of conditions (i) or (ii) of Theorem 3.6 holds.

Corollary 3.8. Let dimH = +∞ and P,Q ∈ B(H)id. Then A = P +Q is a non-commutator, if and

only if exactly one of the following conditions holds:

(i) P −Q⊥ ∈ J ;

(ii) P⊥, Q⊥ ∈ J .
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Proof. Assume that A = P +Q is a non-commutator. Then by Theorem 2.2 we have

P +Q = λI + J,

for some λ ∈ C \ {0} and J ∈ J . If λ = 1 then P −Q⊥ := J ∈ J and condition (i) holds. If λ /∈ {0, 1}
then the equality

P −Q⊥ = (λ− 1)I + J

allows us to apply Theorem 3.6 to the idempotent pair {P,Q⊥}. Therefore, P⊥, Q⊥ ∈ J by item (i)

of Theorem 3.6 and condition (ii) of Corollary 3.7 holds. Moreover, condition (ii) of Theorem 3.6 leads

us to P,Q ∈ J and corresponds to the prohibited value λ = 0.

Let us show the reverse implication of Corollary 3.8. If condition (i) holds then P −Q⊥ := J ∈ J
and P +Q = I + J . If condition (ii) holds then P⊥ +Q⊥ := J ∈ J and P +Q = 2I − J . In both of

these cases, A = P +Q is a non-commutator by Theorem 2.2. □

Theorem 3.9. Let dimH = +∞ and A = A+ − A− be the Jordan decomposition of an operator

A ∈ B(H)sa. Then A is a non-commutator if and only if exactly one of A+ or A− is a non-commutator.

Proof. “⇒”. Assume that A ∈ B(H)sa and A = A+ −A− with A+, A− ∈ B(H)+, A+A− = 0. Let P+

and P− be the support projections (=carriers) of A+ and A−, respectively; put S := P+ − P−. Then

the polar decomposition of A is A = S|A| with |A| = A+ + A−. By [21, Theorem 3.15] the operators

S and |A| are non-commutators. Thus by Theorem 3.6 we have one of the following conditions: either

(i) P−, P
⊥
+ ∈ J , or (ii) P+, P

⊥
− ∈ J . In case (i), the projection P+ is a non-commutator by Theorem

2.2 and A+ = P+A is a non-commutator by [21, Lemma 3.5]. In case (ii), the projection P− is a

non-commutator by Theorem 2.2 and A− = −P−A is a non-commutator by [21, Lemma 3.5]. □

Theorem 3.10. Let dimH = +∞ and A ∈ B(H) be p-hyponormal for some 0 < p ≤ 1. If |A∗|r is a

non-commutator for some r > 0 then |A|q is a non-commutator for every q > 0.

Proof. By [21, Remark 3.14] the operator |A∗|2p = (|A∗|r)
2p
r is also a non-commutator. By Theorem

2.2 we have

|A|2p ≥ |A∗|2p = λI + J (4)

for some λ > 0 and J ∈ J sa, J ≥ −λI.

If A = U |A| is the polar decomposition of A then A∗ = U∗|A∗| is the polar decomposition of A∗

and A = (A∗)∗ = |A∗|U , hence |A| = U∗A = U∗|A∗|U . Therefore, |A|n = U∗|A∗|nU for all n ∈ N. By
the Weierstrass Theorem there exists a sequence {fn}∞n=1 of polynomials, which converges uniformly

on the interval [0; 2∥A∥] to the function f(t) = tq as n → ∞. Hence |A|q = U∗|A∗|qU for all q > 0.

Therefore, by (4) we have

|A|2p = λU∗U + U∗JU = λP + J1

with the projection P = U∗U and J1 = U∗JU ∈ J sa, J1 ≥ −λP . Thus,

λP + J1 ≥ λI + J = λP + λP⊥ + J
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and 0 ≤ λP⊥ ≤ J1 − J2 ∈ J +. If X,Y ∈ B(H)+ and X ≤ Y then X = V Y V ∗ for some V ∈ B(H)

with ∥V ∥ ≤ 1, see [27, Chap. 1, Sect. 1, Lemma 2]. So, λP⊥ ∈ J + and |A|2p = λP + J1 = λI + J2

with J2 = J1 − λP⊥ ∈ J . Hence |A|2p is a non-commutator by Theorem 2.2 and |A|q = (|A|2p)
q
2p is a

non-commutator by [21, Remark 3.14]. □

If H is separableand dimH = +∞, then there exists a hyponormal operator A ∈ B(H) such that

A∗A is a non-commutator, but AA∗ is a commutator (hint: consider an isometry A ∈ B(H) with

dim (Ker(AA∗)) = +∞).

Theorem 3.11. Let H be separable, dimH = +∞ and A ∈ B(H) be a non-commutator. If A is

hyponormal (or cohyponormal) then A is normal.

Proof. By Theorem 2.2 we have

A = λI + J

for some λ ∈ C \ {0} and J ∈ J . Since A∗A ≥ AA∗, we obtain J∗J ≥ JJ∗. Since J is the set of

compact operators (when H is separable), by Ando–Berberian–Stampfli Theorem (see [32, Chap. 21,

Problem 206]) we obtain J∗J = JJ∗. Therefore, A∗A = AA∗, i.e., A is normal.

If A is cohyponormal (A∗A ≤ AA∗) then A∗ is hyponormal. If A is a ∗-algebra, then X ∈ A is a

commutator, if and only if X∗ is a commutator (hint: if X = [Y, Z] then X∗ = [Z∗, Y ∗]). □

Theorem 3.12. Let P1, . . . , Pn ∈ B(H)id and P1 + · · · + Pn = I. Put P(A) =
∑n

k=1 PkAPk for

A ∈ B(H).

(i) If dimH < +∞ then A is a commutator if and only if P(A) is a commutator;

(ii) If dimH = +∞ and A is a non-commutator then P(A) is a non-commutator.

Proof. (i). If dimH < +∞ then tr(A) = tr(P(A)) for all A ∈ B(H) by [15, Lemma 1] and the assertion

follows by equivalence (i)⇔(ii) of Lemma 2.1.

(ii). By Theorem 2.2 we have A = λI + J for some λ ∈ C \ {0} and J ∈ J . Then

P(A) = λI +

n∑
k=1

PkJPk = λI + J1

with J1 =
∑n

k=1 PkJPk ∈ J and P(A) is a non-commutator by Theorem 2.2. □

Recall that for P1, . . . , Pn ∈ B(H)pr, the mapping P coincides with the block projection operator,

which was investigated in [9, 25,31] and [16].

Example 3.13. For an infinite dimensional separable Hilbert space H, consider P1 ∈ B(H)pr with

dimP1H = dimP⊥
1 H = +∞, and put P2 = P⊥

1 , P(X) = P1XP1 + P2XP2 for all X ∈ B(H).

Let A ∈ B(H)+ admit the operator matrix

(
1 1

1 1

)
in the direct sum H = P1H ⊕ P2H. Then

P1 = diag(1, 0), P2 = diag(0, 1) and A is a commutator, but P(A) = I is a non-commutator by

Theorem 2.2.
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Note that the Cayley transform of a commutator in the finite dimensional case, is not necessarily a

matrix with zero trace, cf. the infinite dimensional case of [21].

Example 3.14. (i) Scalar multiples of the Pauli matrices are the unitary matrices with zero trace

whose inverse Cayley transform also possesses zero trace.

i

(
0 1

1 0

)
7→

(
0 1

1 0

)
, i

(
0 −i

i 0

)
7→

(
0 i

−i 0

)
, i

(
1 0

0 −1

)
7→

(
−1 0

0 1

)
.

(ii) A set of unitary matrices with zero trace whose inverse Cayley transform also possesses zero

trace: for a, b ∈ R with a2 + b2 ≤ 1, c :=
√
1− a2 − b2, we have(

ia b− ic

−b− ic −ia

)
7→

(
−a c+ ib

c− ib a

)
.

(iii) Unitary matrices with zero trace whose inverse Cayley transform possesses nonzero trace:(
eiφ 0

0 −eiφ

)
7→

(
sin(φ)

cos(φ)−1 0

0 sin(φ)
cos(φ)+1

)
, φ ̸= πk/2, k ∈ Z.

 0 eiα 0

0 0 eiβ

eiγ 0 0

 7→


i e

i(α+β+γ)+1
1−ei(α+β+γ)

2ieiα

1−ei(α+β+γ)
2iei(α+β)

1−ei(α+β+γ)

2iei(γ+β)

1−ei(α+β+γ) i e
i(α+β+γ)+1
1−ei(α+β+γ)

2ieiβ

1−ei(α+β+γ)

2ieiγ

1−ei(α+β+γ)
2iei(α+γ)

1−ei(α+β+γ) i e
i(α+β+γ)+1
1−ei(α+β+γ)

 ,

α+ β + γ ̸= πk, k ∈ Z.

Despite last of these examples we have a

Proposition 3.15. For any unitary matrix U ∈ Mn(C), there exists φ ∈ [−π, π] such that the inverse

Cayley transform of eiφU possesses zero trace.

Proof. Indeed, if we diagonalize U so that U = diag{z1, . . . , zn}, |zk| = 1 the inverse Cayley transform

of U is also a diagonal real matrix K−1(U) = diag{i1+z1
1−z1

, . . . , i1+zn
1−zn

}. Consider the adjacent numbers

zk, zk+1 of the unit circle S1. Now for zk → 1 from below the number i1+zk
1−zk

→ −∞ and for zk+1 → 1

from above the number i
1+zk+1

1−zk+1
→ +∞. The function tr(K−1(U)) is continuous. Hence there exists

φ ∈ [−π, π] so that the trace of K−1(eiφU) equals zero, thus K−1(eiφU) is a commutator by equivalence

(i)⇔(ii) of Lemma 2.1. □
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