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A GENERALIZATION OF THE HEISENBERG GROUP

L. SZÉKELYHIDI

Abstract. In the former paper, author studied spectral synthesis on the Heisenberg group. This

problem is closely connected with the finite-dimensional representations of the Heisenberg group on the

space of continuous complex-valued functions. In this paper, we attempt to generalize the Heisenberg

group over any commutative topological group. Starting with a basic commutative topological group

we define a non-commutative topological group whose elements are triplets consisting of an element

of the basic group, an exponential on the basic group, and a nonzero complex number which serves

as a scaling factor. The group operation is a combination of the addition on the basic group, the

multiplication of the exponentials, and the multiplication of complex nonzero numbers. Although

there is no differentiability, our generalized Heisenberg group shares some basic properties with the

classical one. In particular, we describe finite-dimensional representations of this group on the space

of continuous functions, and we show that finite-dimensional translation invariant function spaces over

this group consist of exponential polynomials.

1. The classical Heisenberg group

In this paper, K denotes either the set of real numbers R, or the set of complex numbers C, and
K˚ denotes the set of nonzero numbers, and R` denotes the set of positive real numbers. For a

given positive integer d, LpK, dq denotes the algebra of all d ˆ d matrices with entries in K, GLpK, dq

denotes the multiplicative group of regular dˆd matrices with entries in K, and DpK˚, dq denotes the

multiplicative group of d ˆ d diagonal matrices with entries in K˚.
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We recall that the three-dimensional Heisenberg group is defined on the set H “ R ˆ R ˆ R, by the

following operation: for px, y, tq and pu, v, sq in H we let

px, y, tq ¨ pu, v, sq “ px ` u, y ` v, t ` s ` xvq.

Then H is a group with identity p0, 0, 0q and the inverse of px, y, tq is p´x,´y,´t ` xyq. This group

is obviously noncommutative, the commutator of px, y, tq and pu, v, sq is

px, y, tq ¨ pu, v, sq ¨ p´x,´y,´t ` xyq ¨ p´u,´v,´s ` uvq “ p0, 0, xv ´ uyq.

Using the Euclidean topology on R ˆ R ˆ R, the Heisenberg group H is a locally compact topological

group – in fact, it is a Lie group.

If we identify px, y, tq with the matrix

(1.1)

¨

˚

˝

1 x t

0 1 y

0 0 1

˛

‹

‚

,

then we set up an isomorphism between H and the subgroup of GLpR, 3q consisting of all matrices of

the given type. Indeed,

¨

˚

˝

1 x t

0 1 y

0 0 1

˛

‹

‚

¨

¨

˚

˝

1 u s

0 1 v

0 0 1

˛

‹

‚

“

¨

˚

˝

1 x ` y t ` s ` xv

0 1 y ` s

0 0 1

˛

‹

‚

.

We shall denote the Lie group of these matrices with H as well. The Lie algebra h of H can be

identified with the algebra of matrices of the form

(1.2)

¨

˚

˝

0 x t

0 0 y

0 0 0

˛

‹

‚

.

This construction can easily be generalized to Rd. Let Hd “ Rd ˆ Rd ˆ R, and for px, y, tq and

pu, v, sq in Hd, we define

px, y, tq ¨ pu, v, sq “ px ` y, u ` v, t ` s ` x•vq,

where • stands for the inner product in Rd. This product can also be represented by matrix multi-

plication. Let Id denote the d ˆ d unit matrix, and we identify px, y, tq with the pd ` 2q ˆ pd ` 2q

matrix
¨

˚

˝

1 x t

0 Id y

0 0 1

˛

‹

‚

.
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Here x is a row vector of type 1 ˆ d, and y is a column vector of type d ˆ 1. Then we have
¨

˚

˝

1 x t

0 Id y

0 0 1

˛

‹

‚

¨

¨

˚

˝

1 u s

0 Id v

0 0 1

˛

‹

‚

“

¨

˚

˝

1 x ` u t ` s ` x•v

0 Id y ` v

0 0 1

˛

‹

‚

.

The corresponding Lie algebra hd consists of all pd ` 2q ˆ pd ` 2q matrices of the form
¨

˚

˝

0 x t

0 0d y

0 0 1

˛

‹

‚

,

where x, y are in Rd, t is in R, and 0d is the dˆd zero matrix. The exponential mapping exp : hd Ñ Hd

is given by

exp

¨

˚

˝

0 x t

0 0d y

0 0 0

˛

‹

‚

“

¨

˚

˝

1 x t ` 1
2x•y

0 1d y

0 0 1

˛

‹

‚

.

It is well-known that the exponential map from hd onto Hd is bijective.

The Lie algebra hd has the basis

(1.3) Ai “

¨

˚

˝

0 ei 0

0 0 0

0 0 0

˛

‹

‚

, Bi “

¨

˚

˝

0 0 0

0 0 ei

0 0 0

˛

‹

‚

, C “

¨

˚

˝

0 0 1

0 0 0

0 0 0

˛

‹

‚

pi “ 1, 2, . . . , dq. The only nontrivial commutation relations are

rAi, Bis “ C, pi “ 1, 2, . . . , dq.

It follows that
“

rX,Y s, Z
‰

“ 0 for any three matrices X,Y, Z in hd. By the Campbell–Baker–Hausdorff

formula (see e.g. [7, Proposition 1.3.2], p.25), it follows that for any matrices X,Y in hd we have

(1.4) eXeY e´Xe´Y “ erX,Y s,

and

(1.5) eXeY “ eX`Y ` 1
2

rX,Y s.

2. Generalization for commutative topological groups

There is an analogue of the Heisenberg group on locally compact Abelian groups, which appears

implicitely in the paper of Mackey [5]. Generalizations on certain locally compact Abelian groups also

appear in a paper of Weil [10]. The idea of those generalizations was exhibited explicitely in [2]. Our

basic idea in the present generalization is that we focus on spectral synthesis on Abelian groups, where

one considers non-unitary representations. Accordingly, we move on from characters to exponentials,

and from unitary representations of L2pGq to non-unitary representations of CpGq. In order to do this,

we replace Gˆ pGˆT by GˆHom pG,C˚q ˆC˚, where G is not necessarily locally compact. The point

is that in this setting we show that every finite-dimensional variety on the generalized Heisenberg
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group consists of exponential polynomials in the classical sense: linear combinations of products of

exponential polynomials on G, Hom pG,C˚q and C˚.

Let G,H be commutative topological groups. The operation in G will be denoted by `, and for

each f : G Ñ H we write qfpxq “ fp´xq. The set of all continuous homomorphisms of G into H

is denoted by Hom pG,Hq. This is a group, if the operation in Hom pG,Hq is defined pointwise. In

fact, it is a topological group, when equipped with the topology of compact convergence. If H is the

multiplicative topological group of C˚, then the elements of Hom pG,C˚q are called exponentials. IfH is

the multiplicative topological group of T, the complex unit circle, then the elements of pG “ Hom pG,Tq

are called characters. If H is the additive topological group of C, then the elements of Hom pG,Cq are

called additive functions. If H is the additive topological group of R, then the elements of Hom pG,Rq

are called real characters. In fact, Hom pG,Cq, resp. Hom pG,Rq is a complex, resp. real linear space.

Given an exponential m : G Ñ C˚, we have m “ m| qm||m|. Here χ “ m| qm| is a character of G,

and a “ ln |m| is a real character, further we have the equation m “ χ exp a. This representation is

unique, and it is called the polar decomposition of the exponential m. It shows that Hom pG,C˚q is

topologically isomorphic to pG ˆ Hom pG,Rq.

Let HG “ GˆHom pG,C˚q ˆC˚ equipped with the product topology. We define the multiplication

on HG as follows:

px,m, uq ¨ py, n, vq “ px ` y,mn, uvnpxqq

whenever x, y are in G, m,n are in Hom pG,C˚q, and u, v are in C˚. The associativity of this operation

can be checked easily. The element p0, 1, 1q is the identity of this multiplication, where the first

component 0 is the zero element of the group G, the second component 1 is the exponential identically

1 on G, and the third component is the number 1 in C˚. The element p´x, qm,u´1mpxqq is the inverse

of px,m, uq. It follows that HG is a topological group.

A distinguished closed subgroup of HG is H`
G “ G ˆ Hom pG,R`q ˆ R`. Indeed, Hom pG,R`q

is a closed subgroup in Hom pG,C˚q, and R` is a closed subgroup in C˚, hence H`
G is topologically

closed, and it is also closed with respect to the multiplication defined above. If u is a nonzero complex

number, then we write it uniquely in the form u “ t ¨ eiθ, where t “ |u| and θ is in T. For θ we

may choose the principal value of the argument θ “ Arg u in the interval r´π, πr. It turns out that

the subgroup H`
Rd is isomorphic to the d-dimensional Heisenberg group Hd. Indeed, if px,m, uq is in

H`
Rd “ Rd ˆ Hom pRd,R`q ˆ R`, then we can write mpxq “ exp apxq “ expµ•x, where µ is in Rd.

Further, we can write u “ |u| “ exp t, where t is in R. Finally, if we define for each px,m, uq in

Hom pRd,R`q the mapping

px,m, uq ÞÑ Φpx,m, uq “ px, µ, tq,

then Φ : H`
Rd Ñ Hd is a continuous surjective isomorphism, as
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Φ
`

px,m, uqpy, n, vq
˘

“ Φ
`

x ` y,mn, uvnpxq
˘

“ px ` y, µ ` ν, t ` s ` ν•xq “ px, µ, tq ˝ py, ν, sq,

where npxq “ exp ν•x, and s “ ln v, and ˝ is the multiplication in classical the Heisenberg group

Hd.

The commutator subgroup of HG is generated by the elements

px,m, uqpy, n, vqpx,m, uq´1py, n, vq´1 “ px ` y,mn, uvnpxqqp´x, qm,u´1mpxqqp´y, qn, v´1npyqq

“ px ` y,mn, uvnpxqqp´x ´ y, qmqn, u´1v´1npxqmpxqnpyqq

“ p0, 1, npxqmpxqnpyqnpxq ¨ qmpxqqnpxq qmpyqqnpyqq “ p0, 1, npxq qmpyqq.

On the other hand,

px,m, uqp0, 1, vq “ px,m, uvq “ p0, 1, vqpx,m, uq,

hence the elements p0, 1, vq are in the center of HG. It follows that the second commutator subgroup

is trivial, hence the group HG is 2-nilpotent.

Let hG denote G ˆ Hom pG,Rq ˆ R, which we identify with the set of all matrices of the form

X “

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

with x in G, a in Hom pG,Rq, and t in R. Then hG is a ring with respect to matrix addition and a

formal multiplication of matrices, where the ”product” of x in G and a in Hom pG,Rq is interpreted

as apxq. As

X ¨ Y “

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

¨

¨

˚

˝

0 y s

0 0 a

0 0 0

˛

‹

‚

“

¨

˚

˝

0 0 apxq

0 0 0

0 0 0

˛

‹

‚

.

It follows that the product of any three elements in this ring is zero, hence hG is a 2-nilpotent ring.

We introduce Lie bracket in hG in the obvious way, by defining

rX,Y s “

»

—

–

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

,

¨

˚

˝

0 y s

0 0 b

0 0 0

˛

‹

‚

fi

ffi

fl

“

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

¨

¨

˚

˝

0 y s

0 0 b

0 0 0

˛

‹

‚

´

¨

˚

˝

0 y s

0 0 b

0 0 0

˛

‹

‚

¨

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

“

¨

˚

˝

0 0 bpxq ´ apyq

0 0 0

0 0 0

˛

‹

‚

.
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Accordingly, hG is a 2-nilpotent Lie algebra .

In the theory of Lie groups the exponential mapping is a basic tool. On hG we define the exponential

mapping using the (finite) matrix Taylor series

exp

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

“

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

`

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

`
1

2

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

2

,

all the other terms being zero, by 2-nilpotency. In other words

(2.1) exp

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

“

¨

˚

˝

1 x t ` 1
2apxq

0 1 a

0 0 1

˛

‹

‚

.

Unfortunately, exp does not map hG into HG. However, it turns out that H`
G , which is a subgroup of

HG, is isomorphic to the image of exp, which we denote by expphGq. We define Φ : H`
G Ñ expphGq as

follows. We note that every element of H`
G can uniquely be written in the form px, exp a, etq where t

is in R and a is in Hom pG,Rq. Then we define

Φpx, exp a, etq “

¨

˚

˝

1 x t

0 1 a

0 0 1

˛

‹

‚

,

which is clearly in expphGq, by (2.1).

Proposition 2.1. The mapping Φ defined above is an isomorphism of H`
G onto expphGq.

Proof. We can compute as follows:

Φrpx, exp a, etq ¨ py, exp b, esqs “ Φpx ` y, exp a exp b, etes exp bpxqq “

Φpx ` y, exppa ` bq, et`s`bpxqq “

¨

˚

˝

1 x ` y t ` s ` bpxq

0 1 a ` b

0 0 1

˛

‹

‚

“

¨

˚

˝

1 x t

0 1 a

0 0 1

˛

‹

‚

¨

¨

˚

˝

1 y s

0 1 b

0 0 1

˛

‹

‚

“ Φpx, exp a, etqΦpy, exp b, esq.

This proves that Φ is a homomorphism, which is clearly one-to-one, hence it is an isomorphism.

Finally, if

exp

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

“

¨

˚

˝

1 x t ` 1
2apxq

0 1 a

0 0 1

˛

‹

‚

DOI: https://dx.doi.org/10.30504/JIMS.2023.396137.1113

https://dx.doi.org/10.30504/JIMS.2023.396137.1113


J. Iran. Math. Soc. 4 (2023), no. 2, 105-119 L. Székelyhidi 111

is an arbitrary element in expphGq, then we have

¨

˚

˝

1 x t ` 1
2apxq

0 1 a

0 0 1

˛

‹

‚

“ Φpx, exp a, et`
1
2
apxqq

which shows that Φ is surjective, hence expphGq is isomorphic to H`
G . □

The inverse of exp is the logarithm, which is defined on expphGq by

log

¨

˚

˝

1 x t

0 1 a

0 0 1

˛

‹

‚

“

¨

˚

˝

0 x t ´ 1
2apxq

0 0 a

0 0 0

˛

‹

‚

.

We have the following commutation relation:

(2.2) expX expY expp´Xq expp´Y q “ exprX,Y s.

Indeed, for

X “

¨

˚

˝

0 x t

0 0 a

0 0 0

˛

‹

‚

, Y “

¨

˚

˝

0 y s

0 0 b

0 0 0

˛

‹

‚

we obtain

expX expY “

¨

˚

˝

1 x t ` 1
2apxq

0 1 a

0 0 1

˛

‹

‚

¨

¨

˚

˝

1 y s ` 1
2bpyq

0 1 b

0 0 1

˛

‹

‚

“

¨

˚

˝

1 x ` y t ` s ` 1
2apxq ` 1

2bpyq ` bpxq

0 1 a ` b

0 0 1

˛

‹

‚

,

and

expp´Xq expp´Y q “

¨

˚

˚

˝

1 ´x ´t ` 1
2apxq

0 1 ´a

0 0 1

˛

‹

‹

‚

¨

¨

˚

˚

˝

1 ´y ´s ` 1
2bpyq

0 1 ´b

0 0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 ´x ´ y ´t ´ s ` 1
2apxq ` 1

2bpyq ` bpxq

0 1 ´a ´ b

0 0 1

˛

‹

‹

‚

.

Finally

expX expY expp´Xq expp´Y q “
¨

˚

˚

˝

1 x ` y t ` s ` 1
2 papxq ` bpyqq ` bpxq

0 1 a ` b

0 0 1

˛

‹

‹

‚

¨
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¨

˚

˚

˝

1 ´x ´ y ´t ´ s ` 1
2 papxq ` bpyqq ` bpxq

0 1 ´a ´ b

0 0 1

˛

‹

‹

‚

“

¨

˚

˝

1 0 bpxq ´ apyq

0 1 0

0 0 1

˛

‹

‚

“ exp

¨

˚

˝

0 0 bpxq ´ apyq

0 0 0

0 0 0

˛

‹

‚

“ exprX,Y s.

Also we have the Campbell–Baker–Hausdorff formula:

expX expY “ exppX ` Y `
1

2
rX,Y sq,

for each X,Y in hG. Indeed, by the above computation

expX expY “

¨

˚

˝

1 x t ` 1
2apxq

0 1 a

0 0 1

˛

‹

‚

¨

¨

˚

˝

1 y s ` 1
2bpyq

0 1 b

0 0 1

˛

‹

‚

“

¨

˚

˝

1 x ` y t ` s ` 1
2apxq ` 1

2bpyq ` bpxq

0 1 a ` b

0 0 1

˛

‹

‚

,

and

exppX ` Y `
1

2
rX,Y sq “

exp

¨

˚

˝

0 x ` y t ` s ` 1
2bpxq ´ 1

2apyq

0 0 a ` b

0 0 0

˛

‹

‚

“

¨

˚

˝

1 x ` y t ` s ` 1
2bpxq ´ 1

2apyq ` 1
2apxq ` 1

2apyq ` 1
2bpxq ` 1

2bpyq

0 1 a ` b

0 0 1

˛

‹

‚

“

¨

˚

˝

1 x ` y t ` s ` 1
2apxq ` 1

2bpyq ` bpxq

0 1 a ` b

0 0 1

˛

‹

‚

,

which proves the statement.

3. finite-dimensional representations

Let CpGq denote the space of all continuous complex-valued functions on the topological group G.

Equipped with the topology of uniform convergence on compact sets and with the pointwise operations

(addition and multiplication by complex numbers) CpGq is a locally convex topological vector space.

For each px,m, uq in HG, we let

T px,m, uqφ “ um ¨ τxφ,
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whenever φ is in CpGq and τx denotes the translation operator on CpGq corresponding to x. In more

details:

T px,m, uqφpgq “ umpgq ¨ τxφpgq “ umpgq ¨ φpg ` xq

for each g in G. Clearly, T px,m, uq : CpGq Ñ CpGq is a linear operator on CpGq. Moreover, we have

rT px,m, uq ˝ T py, n, vqsφ “ T px,m, uq
`

v n ¨ τyφ
˘

“ uvm ¨ τxpnτyφq

“ uvnpxqmnτx`yφ

“ T px ` y,mn, uvnpxqqφ

“ T rpx,m, uq ¨ py, n, vqsφ.

In other words, px,m, uq ÞÑ T px,m, uq is a representation of HG on CpGq.

In [9] we studied and described finite-dimensional representations of the classical Heisenberg group

from the point of view of matrix functional equations. Now we generalize those results for our present

situation. We shall need some preliminary results.

Theorem 3.1. Let G be a commutative topological group, and d a positive integer. Every continuous

function f : G Ñ GLpC, dq satisfying

(3.1) fpg ` hq “ fpgqfphq

for each g, h in G, has the form

(3.2) fpgq “ Mpgq expApgq,

where M : G Ñ DpC˚, dq and A : G Ñ LpC, dq are continuous functions satisfying

(3.3) Mpg ` hq “ MpgqMphq, Apg ` hq “ Apgq ` Aphq, ApgqAphq “ AphqApgq,

for each g, h in G.

This theorem follows from [6, Theorem 0.], or from the Jordan–Chevalley decomposition theorem

of matrices (see e.g. [4, p.17]). From this result we derive the following particular cases.

Theorem 3.2. Let ρ : T Ñ GLpC, dq be a continuous homomorphism. Then there exists a real

diagonal matrix Λ such that

ρpeitq “ exp iΛt

holds for each real number t.

Proof. By the theorem above, we have ρpeitq “ Mpuq expApuq for u in T, where Mpuvq “ MpuqMpvq

and Apuvq “ Apuq ` Apvq. We define the function m : R Ñ DpC˚, dq by mptq “ Mpeitq, and

a : R Ñ LpC, dq by aptq “ Apeitq, then m, a are 2π-periodic. As the entries of a are periodic additive

functions, they must be zero, hence A is zero, and expApuq is the identity matrix, for each u. The
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matrix m is diagonal, hence its diagonal elements are exponential functions, having the form eλt with

λ in C. By 2π-periodicity, λ must be purely imaginary. □

We can write: ρpuq “ eiArg uΛ.

Theorem 3.3. Let ρ : C˚ Ñ GLpC, dq be a continuous homomorphism. Then there exists a matrix Γ

in LpC, dq, and a matrix Λ in LpR, dq, such that

ρpuq “ exppln |u| ¨ Γ ` iArg u ¨ Λq

holds for each u in C˚.

Proof. We have u “ |u| ¨ exppiArg uq, hence, by the previous theorem

ρpuq “ ρp|u|q ¨ ρpexp iArg uq “ ρp|u|q ¨ exppiArg u ¨ Λq,

where Λ is in LpR, dq. On the other hand, we can write

|u| “ exp ln |u|,

hence

ρp|u|q “ ρpexp ln |u|q,

and

ρp|u|q ¨ ρp|v|q “ ρp|u| ¨ |v|q “ ρpexppln |u| ` ln |v|qq,

or

pρ ˝ expqpt ` sq “ pρ ˝ expqptq ¨ pρ ˝ expqpsq,

for each t, s in R. Hence ρ˝exp is a one parameter subgroup in GLpC, dq, consequently, by [1, Theorem

I, p. 139], it has the form

ρp|u|q “ ρpexp ln |u|q “ exppln |u| ¨ Γq,

where Γ is in GLpC, dq. □

Using these results, we have the following theorem:

Theorem 3.4. Let G be a commutative topological group, and d a positive integer. The continuous

function F : HG Ñ GLpC, dq satisfies

(3.4) F px,m, uqF py, n, vq “ F px ` y,mn, uvnpxqq

for each x, y in G, m,n in Hom pG,C˚q and u, v in C˚ if and only if there are continuous homomor-

phisms M : G Ñ DpC˚, dq, M : Hom pG,C˚q Ñ DpC˚, dq, A : G Ñ LpC, dq, A : Hom pG,C˚q Ñ

LpC, dq, and there is a Λ matrix in LpR, dq such that

(3.5) iArgmpxqΛ “ rApxq,Apmqs

and

(3.6) F px,m, uq “
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MpxqMpmq exp
“

Apxq ` Apmq ` ln |u| ¨ Γ ` iΛ
`

Arg u ´
1

2
Argmpxq

˘‰

holds for each px,m, uq in HG.

We note that equation (3.5) expresses the canonical commutation relation for the position and the

momentum.

Proof. First we prove the necessity. The function

x ÞÑ F px, 1, 1q

is a continuous homomorphism of the commutative topological group G into the multiplicative group

GLpn,Cq. By Theorem 3.1, it has the form

(3.7) F px, 1, 1q “ Mpxq expApxq,

where M : G Ñ DpC˚, dq and A : G Ñ LpC, dq are continuous homomorphisms. By the same

argument, we have

(3.8) F p0,m, 1q “ Mpmq expApmq,

where M : Hom pG,C˚q Ñ DpC˚, dq and A : Hom pG,C˚q Ñ LpC, dq are continuous functions homo-

morphisms.

Finally, u ÞÑ F p0, 0, uq satisfies

F p0, 1, uqF p0, 1, vq “ F p0, 1, uvq

for each u, v in C˚, hence it has the form

F p0, 1, uq “ exppln |u| ¨ Γ ` iArg u ¨ Λq

with some matrices Γ in GLpC, dq and Λ in LpR, dq, by Theorem 3.3.

From (3.4), using the Campbell–Baker–Hausdorff formula, we derive

(3.9) F px,m, uq “ F p0,m, 1qF px, 1, 1qF p0, 1, uq “

MpmqMpxq expApmq expApxq exppln |u| ¨ Γ ` iArg uΛq “

MpmqMpxq exp
”

Apmq ` Apxq `
1

2

“

Apmq, Apxq
‰

` ln |u| ¨ Γ ` iArg uΛ
ı

.

Substitution into (3.4) gives (3.5), and putting it into (3.9) we obtain (3.6). In fact, this computation

shows that (3.5) is necessary and sufficient for (3.6), which completes the proof. □
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4. Varieties

Given the commutative topological group G the space of all continuous complex-valued functions

on HG is the space CpHGq, which is equipped with the topology of compact convergence. Its dual can

be identified with the space McpHGq of all compactly supported complex Borel measures on H. The

space McpHGq is equipped with the convolution:
ż

HG

f dpµ ˚ νq “

ż

G

ż

Hom pG,C˚q

ż

C˚

fpx ` y,mn, uvnpxqq dµpx,m, uq dνpy, n, vq

whenever f is in CpHGq and µ, ν are in McpHGq. With this convolution – together with the linear

operations – McpHGq is a topological algebra. The space CpHGq turns into a left module over McpHGq

under the action

µ ˚ fpx,m, uq “

ż

HG

fpx ´ y,mqn, uv´1npyq qmpyqq dµpy, n, vq

corresponding to the left translation on HG. Closed submodules of this module will be called varieties.

Proposition 4.1. The closed subspace of CpHGq is a variety, if and only if it is closed under left

translation.

Proof. Suppose that V is a variety in CpHq, and f is in V , py, n, vq is in HG. If δpy,n,vq´1 denotes the

point mass supported at the singleton py, n, vq´1, then we have

δpy,n,vq´1 ˚ fpx,m, uq “

ż

HG

fpx ´ z,mqk, uw´1kpzq qmpzqq dδpy,n,vq´1pz, k, wq “

fpx ` y,mn, uvmpyqq “ f
`

py, n, vq ¨ px,m, uq
˘

,

which is the left translation of f by py, n, vq. As V is a variety, the function δpy,n,vq´1 ˚ f is in V ,

hence V is left translation invariant. The converse statement follows from the fact, that point masses

span a weak*-dense subspace in McpHGq, hence if convolution with point mass from the left leaves

V invariant, then the same holds for their finite linear combinations and their weak*-limits as well,

which implies that V is a variety. □

As an illustration, we describe all one-dimensional varieties in CpHGq. If V is one-dimensional,

then let f be a nonzero function in V . Then for each py, n, vq in HG there exists a complex number

λpy, n, vq such that

(4.1) fpx ` y,mn, uvmpyqq “ λpy, n, vqfpx,m, uq

holds for each px,m, uq. Clearly, fp0, 1, 1q ‰ 0, hence we have that cλ “ f for some nonzero complex

number c. In particular, λ is continuous. It follows that λ maps HG into C˚ and

(4.2) λpx ` y,mn, uvmpyqq “ λpy, n, vqλpx,m, uq
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holds for each px,m, uq and py, n, vq. Putting y “ 0, v “ 1, m “ 1, we get

λpx, n, uq “ λp0, n, 1qλpx, 1, uq.

On the other hand, from (4.2) with y “ 0, m “ n “ 1 and v “ 1 we infer

λpx, 1, uq “ λpx, 1, 1qλp0, 1, uq

which implies that

λpx,m, uq “ λpx, 1, 1qλp0,m, 1qλp0, 1, uq,

and here x ÞÑ λpx, 1, 1q is an exponential on G, m ÞÑ λp0,m, 1q is an exponential on Hom pG,C˚q, and

u ÞÑ λp0, 1, uq is an exponential on C˚. Nevertheless, these exponentials are not arbitrary: in fact, we

have that λp0, 1,mpxqq “ 1 for each x in G and exponential m on G. Indeed

λp0, 1,mpxqq “ λpx, qm, 1qλp´x,m, 1q “ λp0, qm, 1qλpx, 1, 1qλp´x,m, 1q “

λp0, qm, 1qλp´x,m, 1qλpx, 1, 1q “ λp´x, 1, 1qλpx, 1, 1q “ 1.

Finally, we arrive at λpx, y, tq “ eµx`νy. It is easy to check that indeed, such functions span one-

dimensional varieties in CpHq for any choice of complex numbers µ, ν, hence we have proved the

following result:

Proposition 4.2. A variety in CpHGq is one-dimensional if and only if it is spanned by a function of

the form px,m, uq ÞÑ MpxqMpmqρpuq with some exponentials M : G Ñ C˚, M : Hom pG,C˚q Ñ C˚

and ρ : C˚ Ñ C˚ satisfying ρpmpxqq “ 1 for each x in G and exponential m : G Ñ C˚.

The problem of describing finite-dimensional varieties over HG is equivalent to the study offinite-

dimensional representations of HG. On commutative topological groups the representing functions of

finite dimensional representations are the so-called exponential polynomials: they are those continuous

complex-valued functions, which are the elements of the function algebra generated by continuous

homomorphisms into the additive group of complex numbers, and into the multiplicative group of

nonzero complex numbers. In fact, an exponential polynomial is a polynomial of such homomor-

phisms. The natural question arises also in our present non-commutative situation: is it true that

the representing functions, that is the matrix elements of finite-dimensional representations of HG are

have the similar form? Can they be described using polynomials of continuous homomorphisms of G,

Hom pG,C˚q and C˚?

In what follows we shall call a continuous complex-valued function onHG an exponential polynomial,

if it is a polynomial of continuous homomorphisms of G, Hom pG,C˚q and C˚ into the additive group

of complex numbers and the multiplicative group of nonzero complex numbers.

Theorem 4.3. Every finite-dimensional variety on the generalized Heisenberg group consists of expo-

nential polynomials.
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Proof. We recall the Jordan–Chevalley decomposition theorem (see e.g. [4, Section 4.2, p.17], which

asserts that any endomorphism X of a finite-dimensional vector space can be decomposed as the sum

of a semisimple Xs (diagonizable) and a nilpotent Xu endomorphism: X “ Xs ¨ Xn, which commute.

If V is a finite-dimensional variety on HG, then the corresponding finite-dimensional representation

of HG on V induces a continuous function F : HG Ñ GLpC, dq which satisfies the functional equation

(3.4) with the additional condition F p0, 1, 1q “ Id, the dˆd identity matrix. We have seen in Theorem

3.4 that F has the following form:

(4.3) F px,m, uq “
`

Mpmq expApmq
˘

¨
`

Mpxq expApxq
˘

¨ ρpuq,

where M : Hom pG,C˚q Ñ DpC˚, dq, A : Hom pG,C˚q Ñ LpC, dq, further M : G Ñ DpC˚, dq,

A : G Ñ LpC, dq and ρ : C˚ Ñ LpC, dq are continuous homomorphisms. To prove our statement it

is enough to show that the matrix elements of the matrices Mpmq expApmq and Mpxq expApxq are

exponential polynomials on the corresponding (commutative) groups, as the elements of the matrix

ρpuq are obviously exponential polynomials on C˚. First we consider Mpxq expApxq. The matrices

Mpxq for each x in G are diagonal, and all diagonal elements are exponentials on G. The matrices

Apxq for x in G commute, by (3.3), and they can be written in the form Apxq “ S´1AspxqS ` Anpxq,

where S´1AspxqS is diagonal and Anpxq is nilpotent, further Aspxq and Anpxq commute. Then we

have

S´1Mpxq expApxqS “ MpxqS´1 exppAspxq ` AnpxqqS “

Mpxq expS´1AspxqS ¨ expS´1AnpxqS.

As Anpxq is nilpotent, so is S´1AnpxqS, and we have pS´1AnpxqSqN “ 0 for some N and for each

x in G. It follows that S´1 expAnpxqS “ expS´1AnS is a polynomial of the matrix elements of

S´1AnS, which are additive functions. On the other hand, the matrix elements of the diagonal

matrix S´1AspxqS are additive functions as well, hence the matrix elements of the diagonal matrix

S´1 expAspxqS are exponentials on G. We conclude that the matrix elements of Mpxq expApxq are

exponential polynomials on G.

We can apply the same argument for Mpmq expApmq, on the topological group Hom pG,C˚q. We

arrive at the conclusion that all matrix elements of are exponential polynomials, and the theorem is

proved. □Acknowledgements
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