Journal of the Iranian Mathematical Society
ISSN (on-line): 2717-1612
J. Iran. Math. Soc. 4 (2023), no. 1, 55-66
© 2023 Iranian Mathematical Society

ON THE MULTIPLIERS OF THE FIGÀ-TALAMANCA HERZ ALGEBRA

A. DERIGHETTI

Dedicated to Professor A. T.-M. Lau

ABSTRACT. Let G be a locally compact group and $p, q \in \mathbb{R}$ with p > 1, $p \neq 2$, and q between 2 and p (if p < 2 then p < q < 2, if p > 2 then 2 < q < p). The main result of the paper is that $A_q(G)$ multiplies $A_p(G)$, more precisely we show that the Banach algebra $A_p(G)$ is a Banach module on $A_q(G)$.

Let G be a locally compact group, in [1] an entirely self-contained proof of the following result was given (section 8.3 Theorem 8 p. 158): for every $1 , <math>A_p(G)$ is a Banach module over $A_2(G)$, i.e. for all $u \in A_2(G)$ and $v \in A_p(G)$, we have $uv \in A_p(G)$, and $||uv||_{A_p} \leq ||u||_{A_2} ||v||_{A_p}$. Now let $p, q \in \mathbb{R}$, with p > 1, $p \neq 2$, and q between 2 and p. We show (Theorem 1.10) that for every $u \in A_q(G)$, and $v \in A_p(G)$, we have $uv \in A_p(G)$ and $||uv||_{A_p} \leq ||u||_{A_q} ||v||_{A_p}$. We recall some definitions. For φ a map of G into \mathbb{C} , we set $\check{\varphi}(x) = \varphi(x^{-1})$, $_a\varphi(x) = \varphi(ax)$, and $\varphi_a(x) = \varphi(xa)$, $a, x \in G$. For 1 , $<math>L^p(G)$ is a L^p -space, concerning a left Haar measure on G. Let $\mathcal{L}(L^p(G))$, be the Banach algebra of all bounded linear operators on $L^p(G)$, the operator norm of an operator T is denoted by $||T||_p$. An element T of $\mathcal{L}(L^p(G))$, is said to be a p-convolution operator (written $T \in CV_p(G)$) if $T(_a\varphi) = _aT(\varphi)$, for every $a \in G$, and $\varphi \in L^p(G)$. We denote the set of all continuous complex valued functions on G with compact support, by $C_{00}(G)$. Let μ be a Radon measure on G, we put $\check{\mu}(\varphi) = \mu(\check{\varphi})$. Suppose that μ is a bounded Radon measure on G ($\mu \in M^1(G)$), then there is a unique $S \in \mathcal{L}(L^p(G))$, such that

$$S[\varphi] = \left[\varphi * \left(\Delta_G^{1/p'} \check{\mu}
ight)
ight]$$

for every $\varphi \in C_{00}(G)$.

Communicated by Alireza Medghalchi

MSC(2020): Primary: 6044.

Keywords: Locally compact group; Banach algebra.

Received: 11 October 2022, Accepted: 6 June 2023.

DOI: https://dx.doi.org/10.30504/JIMS.2023.365376.1076

(What is p', in the above definition? This symbol is repeated throughout the paper and is probably the dual scalar of p Please explain it once.)

The operator S is denoted by $\lambda_G^p(\mu)$. We have $\lambda_G^p(\mu) \in CV_p(G)$, and $\||\lambda_G^p(\mu)|||_p \leq \|\mu\|$. We also have $\lambda_G^p(\delta_a)\varphi = \varphi_a\Delta_G(a)^{1/p}$. In [1], the author proved that, for every $1 and for every amenable locally compact group G, the following deep inequality holds: <math>\||\lambda_G^2(\mu)||_2 \leq \||\lambda_G^p(\mu)||_p$, for all $\mu \in M^1(G)$. Even for finite abelian groups, this result is not trivial.

In this paper, we show (Corollary 2.2) that for every amenable locally compact group G, for $p, q \in \mathbb{R}$ with p > 1, $p \neq 2$, and q between 2 and p, we have $\||\lambda_G^q(\mu)||_q \leq \||\lambda_G^p(\mu)||_p$ for every $\mu \in M^1(G)$.

Let G be a locally compact group, and $1 . We denote by <math>\mathcal{A}_p(G)$ the set of all pairs $((k_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty})$ where $(k_n)_{n=1}^{\infty}$ is a sequence of $\mathcal{L}^p(G)$ and $(l_n)_{n=1}^{\infty}$ is a sequence of $\mathcal{L}^{p'}(G)$ with

$$\sum_{n=1}^{\infty} N_p(k_n) N_{p'}(l_n) < \infty.$$

The topology on $\mathcal{L}(L^p(G))$, associated to the family of seminorms

$$T \mapsto \left| \sum_{n=1}^{\infty} < T[k_n], [l_n] > \right|$$

with $((k_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty}) \in \mathcal{A}_p(G)$, is called the ultraweak topology. The ultraweak closure of $\lambda_G^p(M^1(G))$ in $\mathcal{L}(L^p(G))$ is denoted by $PM_p(G)$, and elements of $PM_p(G)$, are called *p*-pseudomeasures. The space $PM_p(G)$ can be identified as the dual of a Banach algebra $A_p(G)$ of continuous functions on G. We denote by $\mathcal{A}_p(G)$ the set:

We denote by $A_p(G)$, the set:

$$\left\{ u: G \to \mathbb{C} : \text{there is } ((k_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty})) \in \mathcal{A}_p(G) \text{ such that} \\ u(x) = \sum_{n=1}^{\infty} \left(\check{k_n} * \check{l_n} \right)(x) \text{ for every } x \in G \right\}.$$

For $u \in A_p(G)$, we put

$$\|u\|_{A_p} := \inf\left\{\sum_{n=1}^{\infty} N_p(k_n) N_{p'}(l_n) : ((k_n)_{n=1}^{\infty}, (k_n)_{n=1}^{\infty}) \in \mathcal{A}_p(G)\right\}$$

such that $u = \sum_{n=1}^{\infty} \overline{k_n} * \check{l_n}$.

Under the pointwise multiplication, the set $A_p(G)$ is a Banach algebra, called the Figà-Talamanca Herz of G. We have $A_p(G) \subset C_0(G)$ and for every $u \in A_p(G)$, the following inequality holds: $||u||_{\infty} \leq ||u||_{A_p}$. Moreover the space $A_p(G) \cap C_{00}(G)$, is dense in $A_p(G)$.

For every $T \in PM_p(G)$, we put

$$\Psi^{p}_{G}(T)(u) = \sum_{n=1}^{\infty} \overline{\langle T[\tau_{p}k_{n}], [\tau_{p'}l_{n}] \rangle}$$

for every $u \in A_p(G)$ and for every $((k_n)_{n=1}^{\infty}, (k_n)_{n=1}^{\infty}) \in \mathcal{A}_p(G)$, such that

$$u = \sum_{n=1}^{\infty} \overline{k_n} * \check{l_n},$$

where $\tau_p \varphi(x) = \varphi(x^{-1}) \Delta_G(x^{-1})^{1/p}$. Then Ψ_G^p is a conjugate linear isometry of $PM_p(G)$ onto $A_p(G)'$ with the following properties:

- (1) $\Psi^p_G(\lambda^p_G(\tilde{\mu})) = \mu$, for every $\mu \in M^1(G)$, where $\tilde{\varphi}(x) = \overline{\varphi(x^{-1})}$ and $\tilde{\mu}(\varphi) = \overline{\mu(\tilde{\varphi})}$.
- (2) Ψ_G^p is a homeomorphism of $PM_p(G)$ with the ultraweak topology, onto $A_p(G)'$, with the weak topology $\sigma(A_p', A_p)$. We will use the fact (see [1, Chapter 5]) that $CV_p(G)$ carries a natural structure of left normed $A_p(G)$ -module $(u, T) \mapsto uT$. We shortly recall the definition of uT: for $k \in \mathcal{L}^p(G), \ l \in \mathcal{L}^{p'}(G)$ and $T \in CV_p(G)$ there is a unique linear bounded operator of $L^p(G)$, denoted $(\overline{k} * \widetilde{l})T$, such that

$$\left\langle \left((\overline{k} * \check{l})T \right) [\varphi], [\psi] \right\rangle = \int_{G} \left\langle T[_{t^{-1}}(\check{k})\varphi], [_{t^{-1}}(\check{l})\psi] \right\rangle dt$$

for every $\varphi, \psi \in C_{00}(G)$. Then, for $u \in A_p(G)$, we put $uT = \sum_{n=1}^{\infty} (\overline{k_n} * \widetilde{l_n})T$ for every $((k_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty}) \in \mathcal{A}_p(G)$ such that $u = \sum_{n=1}^{\infty} \overline{k_n} * \widetilde{l_n}$.

1. The general case

In this paragraph, G is a arbitrary locally compact group, G is not assumed to be amenable.

Theorem 1.1. Let G be a locally compact group, $1 , <math>u \in A_p(G)$, $T \in CV_p(G)$ and $\varphi \in L^p(G) \cap L^2(G)$.

- (1) $\tau_p(uT)\tau_p\varphi \in L^2(G),$
- (2) $\||\tau_p(uT)\tau_p\varphi|\|_2 \le \|u\|_{A_p} \||T\||_p \|\varphi\|_2.$

Proof. See [1] Section 8.3 Theorem 1 p. 156.

Proposition 1.2. Let G be a locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$, and q between p and 2. We denote by S the set $\{[r] : r \in \mathcal{L}^1(G), r \text{ is a step function}\}$. Then for every $1 , and all <math>\varphi \in S$:

- (1) $\tau_p(uT)\tau_p\varphi \in L^q(G),$
- (2) $\||\tau_p(uT)\tau_p\varphi||_q \le ||u||_{A_p} ||T||_p ||\varphi||_q$.

Proof. Case(I) We prove the statement, if p < 2. Put

$$t = \frac{2(q-p)}{q(2-p)}.$$

We have 0 < t < 1, and

$$\frac{1}{q} = \frac{1-t}{p} + \frac{t}{2}.$$

According to Riesz-Thorin and Theorem 1.1 $\tau_p(uT)\tau_p\varphi \in L^q(G)$, and

$$|||\tau_p(uT)\tau_p\varphi|||_q \le |||uT|||_p^{1-t} (||u||_{A_p} |||T|||_p)^t ||\varphi||_q$$

DOI: https://dx.doi.org/10.30504/JIMS.2023.365376.1076

but

$$\begin{split} \| uT \|_{p}^{1-t} \left(\| u \|_{A_{p}} \| T \|_{p} \right)^{t} \| \varphi \|_{q} \leq \| u \|_{A_{p}}^{1-t} \| T \|_{p}^{1-t} \| u \|_{A_{p}}^{t} \| T \|_{p}^{t} \| \varphi \|_{q} \\ &= \| u \|_{A_{p}} \| T \|_{p} \| \varphi \|_{q} \,. \end{split}$$

Case(II) We prove the statement, if p > 2.

Put

$$t = \frac{(2-q)p}{(2-p)q}.$$

We have 0 < t < 1 and

$$\frac{1}{q} = \frac{1-t}{2} + \frac{t}{p}$$

As in (I) $\tau_p(uT)\tau_p\varphi \in L^q(G)$ and

$$\left\| \left| \tau_p(uT) \tau_p \varphi \right| \right\|_q \le \left(\left\| u \right\|_{A_p} \left\| T \right\|_p \right)^{1-t} \left\| uT \right\|_p^t \left\| \varphi \right\|_q$$

and consequently $\||\tau_p(uT)\tau_p\varphi||_q \leq \|u\|_{A_p} \||T\||_p \|\varphi\|_q$.

Theorem 1.3. Let G be a locally compact group, $p, q \in \mathbb{R}$ with p > 1, $p \neq 2$ and q between p and 2. Then for every $u \in A_p(G)$, for every $T \in CV_p(G)$ and every $\varphi \in L^p(G) \cap L^q(G)$ we have:

- (1) $\tau_p(uT)\tau_p\varphi \in L^q(G),$
- (2) $|||\tau_p(uT)\tau_p\varphi|||_q \le ||u||_{A_p} |||T|||_p ||\varphi||_q$.

Definition 1.4. Let G be a locally compact group, $p, q \in \mathbb{R}$ with p > 1, $p \neq 2$ and q between p and 2. We denote by $E_{p,q}$, the set of all $T \in CV_p(G)$, such that :

- (1) $\tau_p T \tau_p \varphi \in L^q(G)$, for every $\varphi \in L^p(G) \cap L^q(G)$,
- (2) There is C > 0, such that $|||\tau_p T \tau_p \varphi|||_q \le C ||\varphi||_q$, for every $\varphi \in L^p(G) \cap L^q(G)$.

Proposition 1.5. Let G be a locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between p and 2. The set $E_{p,q}$ is a subalgebra of $CV_p(G)$.

Proof. Let $S, T \in E_{p,q}$, C, C' the constants of Definition 1.4, and $\varphi \in L^p(G) \cap L^q(G)$. From $\tau_p T \tau_p \varphi \in L^p(G) \cap L^q(G)$ it follows $(\tau_p S \tau_p)(\tau_p T \tau_p \varphi) \in L^p(G) \cap L^q(G)$, and consequently $\tau_p S T \tau_p \varphi \in L^p(G) \cap L^q(G)$. Moreover

$$\|\tau_p ST\tau_p \varphi\|_q = \|\tau_p S\tau_p(\tau_p T\tau_p \varphi)\|_q \le C \|\tau_p T\tau_p \varphi\|_q \le CC' \|\varphi\|_q$$

this implies that $ST \in E_{p,q}$.

Proposition 1.6. Let G be a locally compact group, $p, q \in \mathbb{R}$ with p > 1, $p \neq 2$ and q between p and 2. For every $\mu \in M^1(G)$, we have $\lambda_G^p(\mu) \in E_{p,q}$, and for every $\varphi \in L^p(G) \cap L^q(G)$, $\tau_p \lambda_G^p(\mu) \tau_p \varphi = \rho_G^q(\mu) \varphi$.

Proof. For every $\varphi \in C_{00}(G)$ we have $\tau_p(\tau_p \varphi * \Delta_G^{1/p'}\check{\mu}) = \varphi * \mu$. Let $\varphi \in L^p(G) \cap L^q(G)$ we obtain $\tau_p \lambda_G^p(\mu) \tau_p \varphi = \rho_G^q(\mu) \varphi$. But $\rho_G^q(\mu) \varphi$ belongs to $L^q(G)$ and therefore $\tau_p \lambda_G^p(\mu) \tau_p \varphi \in L^q(G)$. Finally the inequality $\|\rho_G^q(\mu) \varphi\|_q \le \|\mu\| \|\varphi\|_q$ implies $\|\tau_p \lambda_G^p(\mu) \tau_p \varphi\|_q \le \|\mu\| \|\varphi\|_q$.

A. Derighetti

Proposition 1.7. Let G be a locally compact group, $p,q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between p and 2. For every $T \in E_{p,q}$, there is a unique $S \in \mathcal{L}(L^q(G))$, such that $S\varphi = \tau_p T \tau_p \varphi$, for every $\varphi \in L^p(G) \cap L^q(G)$. We have $\tau_q S \tau_q \in CV_q(G)$.

Definition 1.8. Let G be a locally compact group, $p, q \in \mathbb{R}$ with p > 1, $p \neq 2$ and q between p and 2, $T \in E_{p,q}$, and S as in Proposition 1.7. We define $\alpha_{p,q}(T) = \tau_q S \tau_q$.

Theorem 1.9. Let G be a locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between p and 2. *Then:*

- (1) $\alpha_{p,q}$ is a monomorphism of the algebra $E_{p,q}$ into $CV_q(G)$.
- (2) $\alpha_{p,q}(\lambda_G^p(\mu)) = \lambda_G^q(\mu)$ for every $\mu \in M^1(G)$.
- (3) for every $u \in A_p(G)$ and for every $T \in CV_p(G)$ we have $uT \in E_{p,q}$ and $||| \alpha_{p,q}(uT) |||_q \leq ||u||_{A_p} |||T|||_p$.
- (4) for every $T \in PM_p(G) \cap E_{p,q}$ we have $\alpha_{p,q}(T) \in PM_q(G)$.

Proof. (1) Let $T, T' \in E_{p,q} C, C' > 0$ $S, S' \in \mathcal{L}(L^q(G))$ such that $\|\tau_p T \tau_p \varphi\|_q \leq C \|\varphi\|_q, \|\tau_p T' \tau_p \varphi\|_q \leq C' \|\varphi\|_q, S\varphi = \tau_p T \tau_p \varphi$, and $S'\varphi = \tau_p T' \tau_p \varphi$ for every $\varphi \in L^p(G) \cap L^q(G)$. We have $\alpha_{p,q}(T) = \tau_q S \tau_q$ and $\alpha_{p,q}(T') = \tau_q S' \tau_q$. (I)₁ $\alpha_{p,q}(T+T') = \alpha_{p,q}(T) + \alpha_{p,q}(T')$.

There is $S'' \in \mathcal{L}(L^q(G))$ such that $\tau_p(T+T')\tau_p\varphi = S''\varphi$ for every $\varphi \in L^p(G) \cap L^q(G)$. We have $\alpha_{p,q}(T+T') = \tau_q S''\tau_q$. For $\varphi \in L^p(G) \cap L^q(G)$ we get $\tau_p(T+T')\tau_p\varphi = \tau_p(T\tau_p\varphi+T'\tau_p\varphi) = \tau_pT\tau_p\varphi + \tau_pT'\tau_p\varphi = S\varphi + S'\varphi = S''\varphi$. Consequently S + S' = S''. Thus $\alpha_{p,q}(T) + \alpha_{p,q}(T') = \alpha_{p,q}(T+T')$.

(I)₂ $\alpha_{p,q}(\gamma T) = \gamma \alpha_{p,q}(T)$ for $\gamma \in \mathbb{C}$ and $\alpha_{p,q}(TT') = \alpha_{p,q}(T)\alpha_{p,q}(T')$.

The proof of $(I)_2$, is similar to the one of $(I)_1$.

(I)₃ If $\alpha_{p,q}(T) = 0$ then T = 0.

We have $\tau_q S \tau_q = 0$, this implies S = 0. For every $\varphi \in L^p(G) \cap L^q(G)$ $S\varphi = \tau_p T \tau_p \varphi$, consequently $\tau_p T \tau_p \varphi = 0$, hence $T \tau_p \varphi = 0$. Consider $r \in C_{00}(G)$, we have $T[r] = T \tau_p \tau_p[r]$, taking into account that $\tau_p[r] \in L^p(G) \cap L^q(G)$ we get $T \tau_p \tau_p[r] = 0$ i.e T[r] = 0 and finally T = 0.

- (2) According to Proposition 1.6 $\lambda_G^p(\mu) \in E_{p,q}$. Let $S \in \mathcal{L}(L^q(G))$ such that $S\varphi = \tau_p \lambda_G^p(\mu) \tau_p \varphi$ for every $\varphi \in L^p(G) \cap L^q(G)$, we have $\alpha_{p,q}(\lambda_G^p(\mu)) = \tau_q S \tau_q$. By Proposition 3 for every $\varphi \in L^p(G) \cap L^q(G)$ we have $\tau_p \lambda_G^p(\mu) \tau_p \varphi = \rho_G^q(\mu) \varphi$. Consequently $S\varphi = \rho_G^q(\mu) \varphi$ every $\varphi \in L^p(G) \cap L^q(G)$, this implies $S = \rho_G^q(\mu)$. We obtain $\tau_q S \tau_q = \tau_q \rho_G^q(\mu) \tau_q$. It is straightforward to verify that $\tau_q \rho_G^q(\mu) \tau_q = \lambda_G^q(\mu)$, we finally conclude that $\alpha_{p,q}(\lambda_G^p(\mu)) = \lambda_G^q(\mu)$.
- (3) According to Theorem 1.3 $uT \in E_{p,q}$. Let $S \in \mathcal{L}(L^q(G))$ such that $S\varphi = \tau_p \lambda_G^p(\mu) \tau_p \varphi$ for every $\varphi \in L^p(G) \cap L^q(G)$. By Theorem 1.3 again for every $\varphi \in L^p(G) \cap L^q(G) ||S\varphi||_q \leq$ $||u||_{A_p} |||T||_p ||\varphi||_q$. Consequently, for every $\varphi \in L^q(G)$ we have $||S\varphi||_q \leq ||u||_{A_p} |||T||_p ||\varphi||_q$. It follows that for every $\varphi \in L^q(G)$ we have $||\tau_q S \tau_q \varphi||_q = ||S\tau_q \varphi||_q \leq u||_{A_p} |||T||_p ||\tau_q \varphi||_q =$ $||u||_{A_p} |||T||_p ||\varphi||_q$, thus $|||\tau_q S \tau_q||_q \leq |||T||_p ||u||_{A_p}$. We finally have $|||\alpha_{p,q}(T)||_q = ||\tau_q S \tau_q||_q \leq$ $|||T||_p ||u||_{A_p}$.

$$\sum_{n=1}^{\infty} \overline{k_n} * \widetilde{l_n} = 0.$$

We have $\langle \alpha_{p,q}(T)[\tau_q k_n], [\tau_{q'} l_n] \rangle_{L^q, L^{q'}} = \langle T[\tau_p k_n], [\tau_{p'} l_n] \rangle_{L^p, L^{p'}}$ for every $n \ge 1$. By [1, Lemma 5 Section 4.1 page 48]

$$\sum_{n=1}^{\infty} \left\langle T[\tau_p k_n], [\tau_{p'} l_n] \right\rangle_{L^p, L^{p'}} = 0$$

and therefore

$$\sum_{n=1}^{\infty} \left\langle \alpha_{p,q}(T)[\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}} = 0.$$

The Corollary 8 of [1] Section 4.1 page 52 implies that $\alpha_{p,q}(T) \in PM_q(G)$.

The following theorem is the main result of the paper.

Theorem 1.10. Let G be a locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between p and 2. Let $u \in A_q(G)$ and $v \in A_p(G)$. Then:

- (1) $uv \in A_p(G)$, and $||uv||_{A_p} \le ||u||_{A_q} ||u||_{A_p}$, i.e $A_p(G)$ is a Banach module on the Banach algebra $A_q(G)$,
- (2) for every $T \in PM_p(G)$ we have

$$\left\langle uv, T \right\rangle_{A_p, PM_p} = \left\langle u, \alpha_{p,q}(vT) \right\rangle_{A_q, PM_q}$$

(according to Theorem 1.9 $\alpha_{p,q}(vT) \in PM_q(G)$).

Proof. (I)

We define the linear map ω (depending on u) of $A_p(G)'$ into $A_p(G)''$. There is $((k_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty}) \in \mathcal{A}_q(G)$ such that

$$u = \sum_{n=1}^{\infty} \overline{k_n} * \check{l_n}.$$

Let F be an arbitrary element of $A_p(G)'$. We put

$$\omega(F) = \sum_{n=1}^{\infty} \overline{\left\langle \alpha_{p,q}(v(\Psi_G^p)^{-1}(F))[\tau_q k_n], [\tau_{q'} l_n] \right\rangle}_{L^q, L^{q'}}.$$

It is easy to verify that for $\gamma \in \mathbb{C}$ $\omega(\gamma F) = \gamma \omega(F)$ and that $\omega(F + F') = \omega(F) + \omega(F')$ for every $F, F' \in A_p(G)'$. Moreover

$$|\omega(F)| \le \sum_{n=1}^{\infty} \left\| \left\| \alpha_{p,q}(v(\Psi_G^p)^{-1}(F)) \right\| \right\|_q N_q(k_n) N_{q'}(l_n)$$

according to Theorem 1.10 part 3, the last expression is not larger than

$$\sum_{n=1}^{\infty} \|v\|_{A_p} \left\| \left(\Phi_G^p \right)^{-1}(F) \right\|_p N_q(k_n) N_{q'}(l_n)$$

A. Derighetti

$$= \|v\|_{A_p} \|F\|_{A'_p} \sum_{n=1}^{\infty} N_q(k_n) N_{q'}(l_n)$$

this implies that $\omega(F) \in A_p(G)''$.

(II) Let F be an element of $A_p(G)'$ and $(F_i)_{i \in I}$ a net of $A_p(G)'$, such that $\lim F_i = F$, with the topology $\sigma(A'_p, A_p)$. We assume the existence of C > 0, with $\|F_i\|_{A'_p} \leq C$, for every i. Then $\lim \omega(F_i) = \omega(F)$.

By [1, Theorem 6 Section 4.1 page 49] $\lim(\Psi_G^p)^{-1}(F_i) = (\Psi_G^p)^{-1}(F)$, with the ultraweak topology on $\mathcal{L}(L^p(G))$. We also have $\|\|(\Psi_G^p)^{-1}(F_i)\|\|_p \leq C$ for every $i \in I$.

(II)₁ Let $(S_i)_{i \in I}$ be a net of $PM_p(G)$ and $S \in PM_p(G)$. Suppose that $\lim S_i = S$, with the ultraweak topology on $\mathcal{L}(L^p(G))$. Then for every $v \in A_p(G)$, we have $\lim vS_i = vS$ with the ultraweak topology on $\mathcal{L}(L^p(G))$.

For every $a \in A_p(G)$ we have $\lim \langle a, S_i \rangle_{A_p, PM_p} = \langle a, S \rangle_{A_p, PM_p}$. In particular $\lim \langle av, S_i \rangle_{A_p, PM_p} = \langle av, S \rangle_{A_p, PM_p}$ hence $\lim \langle a, vS_i \rangle_{A_p, PM_p} = \langle a, vS \rangle_{A_p, PM_p}$ and consequently $\lim vS_i = vS$ for the ultraweak topology on $\mathcal{L}(L^p(G))$.

 $(\mathrm{II})_2 \mathrm{By} (\mathrm{II})_1$, $\lim v(\Psi_G^p)^{-1}(F_i) = v(\Psi_G^p)^{-1}(F)$ for the ultraweak topology on $\mathcal{L}(L^p(G))$. Moreover for every $i \in I$,

$$|||v(\Psi_G^p)^{-1}(F_i)|||_p \le ||v||_{A_p} |||(\Psi_G^p)^{-1}(F_i)|||_p \le ||v||_{A_p}C.$$

Let $r, s \in C_{00}(G)$. We have

$$\lim \left\langle v(\Psi_G^p)^{-1}(F_i)[\tau_p r], [\tau_{p'} s] \right\rangle_{L^p, L^{p'}} = \left\langle v(\Psi_G^p)^{-1}(F)[\tau_p r], [\tau_{p'} s] \right\rangle_{L^p, L^{p'}}.$$

Taking into account that, $[r] \in L^p(G) \cap L^q(G)$, and Theorem 1.3, we have

$$\tau_q \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F) \right) \tau_q[r] = \tau_p v(\Psi_G^p)^{-1}(F) \tau_p[r]$$

and

$$\tau_q \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F_i) \right) \tau_q[r] = \tau_p v(\Psi_G^p)^{-1}(F_i) \tau_p[r].$$

Consequently,

$$\left\langle v(\Psi_G^p)^{-1}(F)[\tau_p r], [\tau_{p'} s] \right\rangle_{L^p, L^{p'}} = \left\langle \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F) \right) [\tau_q r], [\tau_{q'} s] \right\rangle_{L^q, L^{q'}}$$

and

$$\langle v(\Psi_G^p)^{-1}(F_i)[\tau_p r], [\tau_{p'} s] \rangle_{L^p, L^{p'}} = \langle \alpha_{p,q} (v(\Psi_G^p)^{-1}(F_i))[\tau_q r], [\tau_{q'} s] \rangle_{L^q, L^{q'}}$$

But for every $i \in I$,

$$\left\| \left\| \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F_i) \right) \right\|_q \le \| v \|_{A_p} \left\| \left(\Psi_G^p \right)^{-1}(F_i) \right\|_p \le \| v \|_{A_p} C$$

It follows that,

$$\lim \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F_i) \right) = \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F) \right)$$

ultraweakly on $\mathcal{L}(L^q(G))$. In particular

$$\lim \sum_{n=1}^{\infty} \left\langle \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F_i) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}}$$

 ∞

$$=\sum_{n=1} \left\langle \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(F) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}}$$

i.e $\lim \omega(F_i) = \omega(F)$.

(III) There is $w \in A_p(G)$ such that $\omega(\Psi_G^p(T)) = \langle w, T \rangle_{A_p, PM_p}$, for every $T \in PM_p(G)$.

According to [1, Theorem 6 Section 4.2 page 54], there is $w \in A_p(G)$ with $\omega(F) = F(w)$ for every $F \in A_p(G)'$. For every $T \in PM_p(G)$, we get $\omega(\Psi^p_G(T)) = \Psi^p_G(T)(w) = \langle w, T \rangle_{A_p, PM_p}$.

(IV) For every $T \in PM_p(G)$, we have

$$< w, T >_{A_p, PM_p} = < u, \alpha_{p,q}(vT) >_{A_q, PM_q}$$

We have

$$\langle w, T \rangle_{A_p, PM_p} = \omega(\Psi^p_G(T))$$

$$= \sum_{n=1}^{\infty} \overline{\left\langle \alpha_{p,q} \left(v(\Psi_G^p)^{-1}(\Psi_G^p(T)) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle}_{L^q, L^{q'}}$$
$$= \sum_{n=1}^{\infty} \overline{\left\langle \alpha_{p,q} (vT) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle}_{L^q, L^{q'}} = \langle u, \alpha_{p,q} (vT) \rangle_{A_q, PM_q} .$$

(V) For every $\mu \in M^1(G)$ we have

$$\langle w, \lambda_G^p(\mu) \rangle_{A_p, PM_p} = \langle u, \alpha_{p,q}(v\lambda_G^p(\mu)) \rangle_{A_q, PM_q}$$

but $v\lambda_G^p(\mu) = \lambda_G^p(\tilde{v}\mu)$ and $\alpha_{p,q}(\lambda_G^p(\tilde{v}\mu)) = \lambda_G^q(\tilde{v}\mu)$. From $\langle w, \lambda_G^p(\mu) \rangle_{A_p,PM_p} = \Psi_G^p(\lambda_G^p(\mu))(w) = \tilde{\mu}(w)$ and

$$\left\langle u, \lambda_G^q(\tilde{v}\mu) \right\rangle_{A_q, PM_q} = \tilde{\mu}(uv),$$

it follows $\tilde{\mu}(uv) = \tilde{\mu}(w)$. This implies w = uv and therefore $uv \in A_p(G)$. We get moreover

$$\langle uv, T \rangle_{A_p, PM_p} = \langle u, \alpha_{p,q}(vT) \rangle_{A_q, PM_q}$$

for every $T \in PM_p(G)$. We obtain the following estimate

$$\begin{split} \left| \left\langle uv, T \right\rangle_{A_p, PM_p} \right| &= \left| \left\langle u, \alpha_{p,q}(vT) \right\rangle_{A_q, PM_q} \right| \le \|u\|_{A_q} \left\| \alpha_{p,q}(vT) \right\|_q \\ &\le \|u\|_{A_q} \|v\|_{A_p} \left\| T \right\|_p. \end{split}$$

We finally conclude that $||uv||_{A_p} \leq ||u||_{A_q} ||v||_{A_p}$.

Remark 1.11. For a related result see Theorem B of [3]. Our approach is based on properties of $A_p(G)$, studied in [1].

A. Derighetti

2. Amenable groups

We apply the results of the previous section, to the case of amenable groups.

Theorem 2.1. Let G be an amenable locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between 2 and p. Then for every $T \in CV_p(G)$, we have $T \in E_{p,q}$ and $||| \alpha_{p,q}(T) |||_q \leq |||T|||_p$.

Proof. For every $\varphi \in L^p(G) \cap L^q(G)$, we have $\tau_p T \tau_p \varphi \in L^q(G)$ and $\||\tau_p T \tau_p \varphi||_q \leq ||T||_p ||\varphi||_q$.

It suffices to verify (I) for $[\varphi]$ with $\varphi \in C_{00}(G)$. Let $\psi \in C_{00}(G)$ with $N_{q'}(\psi) \leq 1$ and $\varepsilon > 0$. By [1, Lemma 1 Section 5.4 page 80], there is $k, l \in C_{00}(G)$ with $k \geq 0, l \geq 0, N_p(k) = N_{p'}(l) = \int_G k(t)l(t)dt = 1$ and such that

$$\left|\left\langle \left((k * \check{l})T\right)[\tau_p \varphi], [\tau_{p'} \psi]\right\rangle_{L^p, L^{p'}} - \left\langle T[\tau_p \varphi], [\tau_{p'} \psi]\right\rangle_{L^p, L^{p'}}\right| < \varepsilon.$$

But

$$\left\langle \left((k * \check{l})T \right) [\tau_p \varphi], [\tau_{p'} \psi] \right\rangle_{L^p, L^{p'}} = \left\langle \tau_p \left((k * \check{l})T \right) \tau_p [\varphi], [\psi] \right\rangle_{L^p, L^{p'}}$$

and according to Theorem 1.3 $\tau_p((k*l)T)\tau_p[\varphi]$, belongs to $L^q(G)$ this implies that,

$$\left\langle \tau_p \left((k * \check{l}) T \right) \tau_p[\varphi], [\psi] \right\rangle_{L^p, L^{p'}} = \left\langle \tau_p \left((k * \check{l}) T \right) \tau_p[\varphi], [\psi] \right\rangle_{L^q, L^{q'}}$$

and therefore,

$$\left|\left\langle \left((k * \check{l})T\right)[\tau_p \varphi], [\tau_{p'} \psi]\right\rangle_{L^p, L^{p'}}\right| \le \|\tau_p \left((k * \check{l})T\right)\tau_p[\varphi]\|_q \|[\psi]\|_{q'}$$

Using Theorem 1.3 again, we have

$$\|\tau_p\big((k*\check{l})T\big)\tau_p[\varphi]\|_q \le \|k*\check{l}\|_{A_p} \, \|T\|_p \, \|[\varphi]\|_q \le \|T\|_p \, \|[\varphi]\|_q,$$

and we obtain,

$$\left|\left\langle \left((k*\check{l})T\right)[\tau_p\varphi], [\tau_{p'}\psi]\right\rangle_{L^p,L^{p'}}\right| \leq \left\|T\right\|_p \left\|[\varphi]\right\|_q \left\|\psi\right\|_{q'} \leq \left\|T\right\|_p \left\|[\varphi]\right\|_q$$

and therefore,

 $\left|\left\langle T[\tau_p \varphi].[\tau_{p'} \psi]\right\rangle_{L^p, L^{p'}}\right| < \varepsilon + \left\|\!\left| T \right\|\!\right|_p \left\|[\varphi]\right\|_q.$

Thus

$$\left|\left\langle T[\tau_p \varphi] . [\tau_{p'} \psi] \right\rangle_{L^p, L^{p'}}\right| \le |||T|||_p ||[\varphi]||_q,$$

and

$$\left|\left\langle\tau_pT\tau_p[\varphi].[\psi]\right\rangle_{L^p,L^{p'}}\right| \leq |||T|||_p \,||[\varphi]||_q$$

and finally $\tau_p T \tau_p[\varphi] \in L^q(G)$ with $\|\tau_p T \tau_p[\varphi]\|_q \le \|T\|_p \|[\varphi]\|_q$.

Now we conclude that, $\||\alpha_{p,q}(T)|||_q \leq |||T|||_p$.

There is a unique $S \in \mathcal{L}(L^q(G))$ such that $S\varphi = \tau_p T \tau_p \varphi$ for every $\varphi \in L^p(G) \cap L^q(G)$. By (I) $|||S|||_q \leq |||T|||_p$, consequently $|||\alpha_{p,q}(T)|||_q = |||\tau_q S \tau_q|||_q = |||S|||_q \leq |||T|||_p$.

Corollary 2.2. Let G be an amenable locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between 2 and p. Then:

- (1) $\alpha_{p,q}$ is a contractive Banach algebra monomorphism of $CV_p(G)$ into $CV_q(G)$,
- (2) for every $\mu \in M^1(G)$ we have $\|\|\lambda_G^q(\mu)\|\|_q \le \|\|\lambda_G^p(\mu)\|\|_p$.

Proof. It suffices to verify 2. By Theorem 2.1

$$\left\| \left| \alpha_{p,q}(\lambda_G^p(\mu)) \right| \right\|_q \le \left\| \left| \lambda_G^p(\mu) \right| \right\|_p$$
 but by Theorem 1.9 $\alpha_{p,q}(\lambda_G^p(\mu)) = \lambda_G^q(\mu)$.

Remark 2.3. (See [4, Corollary p. 512]) For another approach, for the unimodular case see [2].

We obtain other properties of $\alpha_{p,q}$ in the next theorem.

Theorem 2.4. Let G be an amenable locally compact group, $p, q \in \mathbb{R}$ with $p > 1, p \neq 2$ and q between 2 and p. Then:

- (1) for every $u \in A_q(G)$, we have $u \in A_p(G)$ and $||u||_{A_p} \le ||u||_{A_q}$,
- (2) for every $u \in A_q(G)$, and for every $T \in PM_p(G)$, we have

$$\langle u, T \rangle_{A_p, PM_p} = \langle u, \alpha_{p,q}(T) \rangle_{A_q, PM_q},$$

(3) for every $u \in A_q(G)$, and for every $T \in CV_p(G)$, we have

$$\alpha_{p,q}(uT) = u \alpha_{p,q}(T).$$

Proof. Let u be a function of $A_q(G)$.

(1) Definition of a linear map ω (depending on u) of $A_p(G)'$ into $A_p(G)''$.

There is $((k_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty}) \in \mathcal{A}_q(G)$, such that

$$u = \sum_{n=1}^{\infty} \overline{k_n} * \check{l_n}$$

For every $F \in A_p(G)'$, we put

$$\omega(F) = \sum_{n=1}^{\infty} \overline{\left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle}_{L^q, L^{q'}}$$

For every $\gamma \in \mathbb{C}$, and $F, F' \in A_p(G)'$, we have $\omega(\gamma F) = \gamma \omega(F)$ and $\omega(F + F') = \omega(F) + \omega(F')$. We now show that $\omega(F) \in A_p(G)''$. Observe at first that

$$|\omega(F)| \leq \sum_{n=1}^{\infty} \left| \left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}} \right|,$$

taking into account Theorem 1.9, we have for every $n \ge 1$

$$\left\| \left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}} \right\| \\ \leq \left\| \left\| (\Psi_G^p)^{-1}(F) \right\|_p N_q(k_n) N_{q'}(l_n) = \|F\|_{A_p'} N_q(k_n) N_{q'}(l_n) \right\|$$

hence

$$|\omega(F)| \le ||F||_{A'_p} \sum_{n=1}^{\infty} N_q(k_n) N_{q'}(l_n).$$

This implies that $\omega(F) \in A_p(G)''$.

(2) Let F be an element of $A_p(G)'$ and $(F_i)_{i \in I}$ a net of $A_p(G)'$ such that $\lim F_i = F$ for the topology $\sigma(A'_p, A''_p)$. We assume the existence of C > 0 such that $\|F_i\|_{A'_p} \leq C$ for every $i \in I$. Then $\lim \omega(F_i) = \omega(F)$.

We have $\lim(\Psi_G^p)^{-1}(F_i) = (\Psi_G^p)^{-1}(F)$, ultraweakly in $\mathcal{L}(L^p(G))$. We also have $\|\|(\Psi_G^p)^{-1}(F_i)\|\|_p \leq C$ for every $i \in I$.

Let $r, s \in C_{00}(G)$. We have

$$\lim \left\langle (\Psi_G^p)^{-1}(F_i)[\tau_p r], [\tau_{p'} s] \right\rangle_{L^p, L^{p'}} = \left\langle (\Psi_G^p)^{-1}(F)[\tau_p r], [\tau_{p'} s] \right\rangle_{L^p, L^{p'}}.$$

Taking into account that, $[r] \in L^p(G) \cap L^q(G)$ and that $(\Psi^p_G)^{-1}(F_i), (\Psi^p_G)^{-1}(F_i) \in E_{p,q}$, we get

$$\tau_q \alpha_{p,q} \left((\Psi_G^p)^{-1}(F_i) \right) \tau_q[r] = \tau_p (\Psi_G^p)^{-1}(F_i) \tau_p[r]$$

and

$$\tau_q \alpha_{p,q} \big((\Psi_G^p)^{-1}(F) \big) \tau_q[r] = \tau_p (\Psi_G^p)^{-1}(F) \tau_p[r].$$

This implies that,

$$\langle (\Psi_G^p)^{-1}(F)[\tau_p r], [\tau_{p'} s] \rangle_{L^p, L^{p'}} = \langle \tau_q \alpha_{p,q} ((\Psi_G^p)^{-1}(F)) \tau_q[r], [s] \rangle_{L^q, L^{q'}}$$

and for every $i \in I$,

$$\langle (\Psi_G^p)^{-1}(F_i)[\tau_p r], [\tau_{p'} s] \rangle_{L^p, L^{p'}} = \langle \tau_q \alpha_{p,q} ((\Psi_G^p)^{-1}(F_i)) \tau_q[r], [s] \rangle_{L^q, L^{q'}}.$$

We have therefore,

$$\lim \left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F_i) \right) [\tau_q r], [\tau_{q'} s] \right\rangle_{L^q, L^{q'}} \\ = \left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F) \right) [\tau_q r], [\tau_{q'} s] \right\rangle_{L^q, L^{q'}}.$$

But for every $i \in I$,

$$\left\| \left\| \alpha_{p,q} \left((\Psi_G^p)^{-1}(F_i) \right) \right\|_q \le \left\| \left\| (\Psi_G^p)^{-1}(F_i) \right\|_p \le C,$$

we obtain that

$$\lim \alpha_{p,q} \left((\Psi_G^p)^{-1}(F_i) \right) = \alpha_{p,q} \left((\Psi_G^p)^{-1}(F_i) \right)$$

ultraweakly on $\mathcal{L}(L^q(G))$. This finally implies that,

$$\lim \sum_{n=1}^{\infty} \left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F_i) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}}$$
$$= \sum_{n=1}^{\infty} \left\langle \alpha_{p,q} \left((\Psi_G^p)^{-1}(F) \right) [\tau_q k_n], [\tau_{q'} l_n] \right\rangle_{L^q, L^{q'}}$$

i.e. $\lim \omega(F_i) = \omega(F)$.

(3)As in the proof of Theorem 1.10 (see step (III)), there is $v \in A_p(G)$ such that $\omega(F) = F(v)$ for every $F \in A_p(G)'$. For every $T \in CV_p(G)$ we have

$$\omega(\Psi_G^p(T)) = \Psi_G^p(T)(v) = \langle v, T \rangle_{A_p, PM_p}$$
$$= \sum_{n=1}^{\infty} \overline{\langle \alpha_{p,q} ((\Psi_G^p)^{-1} (\Psi_G^p(T))) [\tau_q k_n], [\tau_{q'} l_n] \rangle}_{L^q, L^{q'}}$$

$$=\sum_{n=1}^{\infty} \overline{\left\langle \alpha_{p,q}(T)[\tau_q k_n], [\tau_{q'} l_n] \right\rangle}_{L^q, L^{q'}} = \left\langle u, \alpha_{p,q}(T) \right\rangle_{A_q, PM_q}.$$

In particular for every $\mu \in M^1(G)$, we have

$$\langle v, \lambda_G^p(\mu) \rangle_{A_p, PM_p} = \langle u, \alpha_{p,q}(\lambda_G^p(\mu)) \rangle_{A_q, PM_q} = \langle u, \lambda_G^q(\mu) \rangle_{A_q, PM_q}.$$

This implies $\tilde{\mu}(v) = \tilde{\mu}(u)$ and therefore u = v, we obtain that $u \in A_p(G)$. We also obtain for every $u \in A_q(G)$, and for every $T \in CV_p(G)$,

$$\langle u, T \rangle_{A_p, PM_p} = \langle u, \alpha_{p,q}(T) \rangle_{A_q, PM_q}$$

This implies the following estimate:

$$\begin{split} \left| \left\langle u, T \right\rangle_{A_p, PM_p} \right| &= \left| \left\langle u, \alpha_{p,q}(T) \right\rangle_{A_q, PM_q} \right| \le \|u\|_{A_q} \left\| \alpha_{p,q}(T) \right\|_q \\ &\le \|u\|_{A_q} \left\| T \right\|_p, \end{split}$$

thus $||u||_{A_p} \le ||u||_{A_q}$.

It remains to verify that for every $u \in A_q(G)$, and for every $T \in CV_p(G)$ we have,

$$\alpha_{p,q}(uT) = u\,\alpha_{p,q}(T).$$

Consider an arbitrary $v \in A_q(G)$. We have,

$$\left\langle v, \alpha_{p,q}(uT) \right\rangle_{A_q, PM_q} = \left\langle v, uT \right\rangle_{A_p, PM_p}$$

But

$$\langle v, uT \rangle_{A_p, PM_p} = \langle vu, T \rangle_{A_p, PM_p} = \langle vu, \alpha_{p,q}(T) \rangle_{A_q, PM_q}$$
$$= \langle v, u\alpha_{p,q}(T) \rangle_{A_q, PM_q}.$$

We get,

$$\left\langle v, \alpha_{p,q}(uT) \right\rangle_{A_q, PM_q} = \left\langle v, u \alpha_{p,q}(T) \right\rangle_{A_q, PM_q}$$

and finally,

$$\alpha_{p,q}(uT) = u\,\alpha_{p,q}(T).$$

References

- A. Derighetti, Convolution Operators on Groups, Lecture Notes of the Unione Matematica Italiana 11, Springer-Verlag Berlin Heidelberg, 2011.
- [2] A. Derighetti, Survey on the Figà-Talamanca Herz algebra, Σ Mathematics 2019, 7(8) 660; https://doi.org/ 10.3390/math7080660.
- [3] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Am. Math. 154 (1971), 69–82.
- [4] C. Herz and N. Rivière, Estimates for translation-invariant operators on spaces with mixed norms, Stud. Math. XLIV (1972), 511–515

Tsuyoshi Ando

MA A1 345 (Bâtiment MA) Station 8 CH-1015 Lausanne.

Email: antoine.derighetti@epfl.ch

A. Derighetti