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TWO CLASSES OF J-OPERATORS
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Abstract. We define two classes A and B in the space B(H) of operators acting on a Hilbert space

on the basis of J-order relation and spectra, and discuss various properties related to these classes.

1. Introduction

Let J be a non-trivial selfadjoint involution in B(H), the space of bounded linear operators on a

Hibert space H, that is,

J∗ = J, J2 = I and J ̸= I,

where I denotes the identity operator. Such selfadjoint involutions are closely connected to the theory

of indefinite inner product spaces; see [1,3,4]. When both A,B are J-selfadjoint, that is, JA and JB

are selfadjoint,

JA = A∗J and JB = B∗J,

we will use the notation

A ≥J B for JA ≥ JB.

Here, for selfadjoint operators X and Y , the order relation X ≥ Y means, as usual, that X − Y is

positive semi-definite.

In this connection, the following fact is used without explicit mention (see [2] and [6, Lemma 2.2]):

A ≥J B =⇒ CAC ≥J CBC for all J − selfadjoint C.
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The J-adjoint A♯ of A is defined as

A♯ = JA∗J.

Then clearly

σ(A♯) = σ(A∗) = σ(A)

where σ(A) denotes the set of spectra of A and σ(A) does its complex conjugation.

With a J-control for a J-selfadjoint A, we understand something like

J · I = J ≥ JA or JA ≥ 0 = J · 0

Under such a J-control, it is immediate to see

σ(A) ⊂ (−∞,∞).

Our question is whether, with some additional J-control for A2, we can press σ(A) into [0,∞).

In this paper, we introduce two sub-classes A and B in the space B(H) on the basis of J-order

relation and spectra as

A ∈ A
Def⇐⇒ I ≥J A and σ(A) ⊂ [0,∞)

and

A ∈ B
Def⇐⇒ A ≥J 0 and σ(A) ⊂ [0,∞).

and discuss various properties related to those classes.

For instance, it is remarkable to see that

A,B ∈ A =⇒ ABA ∈ A,

and the corresponding result for B.

Throughout the paper, we use the following basic fact without any mention;

X,Y ∈ B(H) =⇒ σ(XY ) ⊂ σ(Y X) ∪ {0}.

2. Basic facts

Our first result reads as follows.

Theorem 2.1.

I ≥J A =⇒ σ(A) ⊂ (−∞,∞)

and

min σ(A) ≤ 1 ≤ max σ(A)

where, for instance,

min σ(A)
Def
= min{λ; λ ∈ σ(A)}.
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Proof. Let K := J − JA ≥ 0, so that

JK = I −A and σ(JK) = 1− σ(A).

Therefore, since K1/2JK1/2 is selfadjoint,

σ(A) = 1− σ(JK)

= 1− σ(K1/2JK1/2) ⊂ (−∞,∞).

Suppose next, by contradition, that

min σ(A) > 1.

Then

max σ(JK) = 1−min σ(A) < 0.

This implies that K ≥ 0 is invertible. Then

max σ(JK) = max σ(K1/2JK1/2) < 0,

hence

K1/2JK1/2 ≤ 0

which leads to a contradiction J < 0.

In a similar way, max σ(A) < 1 leads to a contradiction that J > 0. □

3. Class A

Let us introduce a class A in B(H) as follows:

A ∈ A ⇐⇒ I ≥J A and σ(A) ⊂ [0,∞).

The spectral requirement σ(A) ⊂ [0,∞) in the definition of the class A can be replaced by an operator

inequality.

Theorem 3.1.

A ∈ A ⇐⇒ I ≥J A and A ≥J A2.

Proof. Let us write as usual:

K := J(I −A) ≥ 0.

Since

A = I − JK

it is seen that

σ(A) ⊂ [0,∞) ⇐⇒ σ(JK) ≤ 1.

Since K ≥ 0, this is further reduced to the requirement

σ(K1/2JK1/2) ≤ 1 or K1/2JK1/2 ≤ I
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which is equivalent, by K ≥ 0, to

KJK ≤ K or K(I − JK) ≥ 0.

Finally this last inequality means that

J(I −A)A ≥ 0 or A ≥J A2.

□

Corollary 3.2.

A ∈ A ⇐⇒ A∗ ∈ A ⇐⇒ A♯ ∈ A.

Proof. It follows from the facts:

I ≥J A ⇐⇒ I ≥J A∗ ⇐⇒ I ≥J A♯

and

σ(A) ∩ (−∞,∞) = σ(A∗) ∩ (−∞,∞) = σ(A♯) ∩ (−∞,∞).

□

It follows from Theorem 3.1 also that

A ∈ A =⇒ An ∈ A n = 2, 3, . . . .

But this is a consequence of Theorem 3.5 below.

An element of A can be invertible, for instance, A = I.

Here is a special position for invertible A ∈ A. The essence of the following result was established

by Hassi and Nordstroem [5] and stated in the present form by Sano [6].

Corollary 3.3.

I ≥J A and σ(A) ⊂ (0,∞) ⇐⇒ A invertible, A−1 ≥J I ≥J A.

Proof. First suppose that

I ≥J A and σ(A) ⊂ (0,∞).

Then by Theorem 3.1 A ≥J A2. Since A−1 is J-selfadjoint, this implies

A−1 = A−1AA−1 ≥J A−1A2A−1 = I.

Therefore A−1 ≥J I.

Conversely

A−1 ≥J I =⇒ A = A ·A−1 ·A ≥J AIA = A2,

so by Theorem 3.1 σ(A) ⊂ [0,∞). Finally since A is invertible, σ(A) ⊂ (0,∞). □
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An operator A ∈ B(H) is called a J-contraction if I ≥J A♯A or equivalently J ≥ A∗JA. It is called

a J-bicontraction if both A and A♯ are J-contractions, that is,

I ≥J A♯A and I ≥J AA♯,

or equivalently

J ≥ A∗JA and J ≥ AJA∗.

Corollary 3.4. For every J-bicontraction A, both A♯A and AA♯ belong to the class A, that is,

I ≥J A♯A, I ≥J AA♯ =⇒ σ(A♯A) ⊂ [0,∞).

Proof. On the basis of Theorem 3.1, it should be shown, for instance, that

A♯A ≥J (A♯A) · (A♯A),

or equivalently

A∗JA − A∗JAJA∗JA ≥ 0.

But this is guaranteed as follows:

A∗{J − JAJA∗J}A = A∗{J − JAA♯}A ≥ 0.

□

Corollary 2.1.4 Let A be invertible with σ(A♯A) ⊂ [0,∞). Then

I ≥J A♯A ⇐⇒ I ≥J AA♯.

Proof. First observe that

σ(A♯A) = σ(AA♯).

Therefore it should be shown that

I ≥J A♯A and σ(A♯A) ⊂ [0,∞) =⇒ I ≥J AA♯.

In other words:

I ≥J (A♯A) ≥J (A♯A)2 =⇒ I ≥J AA♯.

To see this, obverse the following

0 ≤ J{A♯A − (A♯A)2} = A∗JA− J · JA∗JA · JA∗JA

= A∗J{J −AJA∗}JA = A∗{J − JAA♯}A.

Since A is invertible by assumption, this implies I ≥J AA♯. □
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Theorem 3.5.

A, B ∈ A =⇒ ABA ∈ A.

Proof. Since A is J-selfadjoint

I ≥J B =⇒ A2 ≥J ABA.

Since I ≥J A ≥J A2 by Theorem 3.1, this implies I ≥J ABA.

Further since B ≥J B2 by Theorem 3.1

ABA ≥J AB2A ≥J ABA2BA = (ABA)2

hence ABA ∈ A again by Theorem 3.1. □

For a proof of the next theorem we need an analytic tool, the square root.

Lemma 3.6. Let C be a J-selfadjoint operator with σ(C) ⊂ (0,∞). Then its square root C1/2 is

defined according to the Riesz-Dunford functional calculus:

C1/2 :=
1

2πi

∫
Γ

√
ζ(ζI − C)−1dζ

where Γ is a rectifiable contour in C+ (the open-right half-plane), surrounding σ(C) in positiive direc-

tion.

The square-root C1/2 is J-selfadjoint, and commutes with all X which commutes with C, and

(C1/2)2 = C.

Theorem 3.7. A, B ∈ A, AB = BA =⇒ AB ∈ A.

Proof. Let, for each ϵ > 0,

Aϵ := A+ ϵI.

Since σ(Aϵ) ⊂ (0,∞), we can consider its square root (Aϵ)
1/2.

Then since A
1/2
ϵ B = BA

1/2
ϵ and I ≥J B

JAϵB = JA1/2
ϵ BA1/2

ϵ = (A1/2
ϵ )∗JBA1/2

ϵ

≤ (A1/2
ϵ )∗J(Aϵ)

1/2 = JAϵ.

Letting ϵ → 0, we can see

JAB ≤ JA ≤ J.

Finally the commutativity AB = BA implies σ(AB) ⊂ [0,∞). □

The class A is not bounded in norm.

In fact,

Aλ := λ(I − J) for all λ ≥ 1

belongs to the class A.
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Theorem 3.8. The class A is not convex.

Proof. Let us consider M2 with J =

[
1 0

0 −1

]
.

Let

A =

[
0 0

0 1

]
and B =

[
−1

√
2

−
√
2 2

]
.

Then

J(I −A) =

[
1 0

0 0

]
≥ 0

and

J(I −B) =

[
2 −

√
2

−
√
2 1

]
≥ 0.

Clearly since

σ(A) = σ(B) = {0, 1}

both A and B belong to the class A, and

A+B

2
=

1

2

[
−1

√
2

−
√
2 3

]
.

Since

det
(A+B

2

)
=

1

4
(−3 + 2) < 0

The matrix A+B
2 does not belong to the class A, so that A is not convex. □

4. Class B

Let us introduce another class B in B(H) as follows:

A ∈ B
Def⇐⇒ A ≥J 0 and σ(A) ⊂ [0,∞).

The spectral requirement, σ(A) ⊂ [0,∞) in the definition of the class B, can be replaced by an

operator inequality.

Theorem 4.1.

A ∈ B ⇐⇒ A ≥J 0 and A2 ≥J 0.

Proof. Let K := JA ≥ 0. Then as usual

σ(A) ⊂ [0,∞) ⇐⇒ σ(JK) ⊂ [0,∞)

⇐⇒ σ(K1/2JK1/2) ⊂ [0,∞)

⇐⇒ K1/2JK1/2 ≥ 0

⇐⇒ KJK ≥ 0 ⇐⇒ JA2 ≥ 0.
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□

It follows from this theorem that

A ∈ B =⇒ An ∈ B n = 2, 3, . . . .

But this statement is also included in Theorem 4.3 and Theorem 4.4 below.

Neither A ∈ B is invertible. In fact, if A ∈ B is invertible, then

JA2 ≥ 0 =⇒ J ≥ 0,

which is a contradicion.

The following is a counter-part of Corollary 3.3.

Corollary 4.2.

A♯A ≥J 0, AA♯ ≥J 0 =⇒ σ(A♯A), σ(AA♯) ⊂ [0,∞).

Proof. By Theorem 4.1 we have to show that

A♯A ≥J 0, AA♯ ≥J 0 =⇒ (A♯A)2 ≥J 0.

First notice that

A♯A ≥J 0 ⇐⇒ A∗JA ≥ 0

and

AA♯ ≥J 0 ⇐⇒ AJA∗ ≥ 0.

Now

J(A♯A)2 = A∗JAJA∗JA ≥ A∗J · 0 · JA = 0

so that (A♯A)2 ≥J 0. □

The following theorem is a counter part of Theorem 3.5.

Theorem 4.3.

A ∈ B, B ≥J 0 =⇒ ABA ∈ B.

Proof. Since A is J-selfadjoint

B ≥J 0 =⇒ ABA ≥J A · 0 ·A = 0,

and

(ABA)2 = ABA2BA ≥J AB · 0 ·BA = 0.

Therefore by Theorem 4.1 ABA ∈ B. □

The following theorem is a counter part of Thereom 3.7.

Theorem 4.4.

A ∈ B, B ≥J 0, AB = BA =⇒ AB ∈ B.
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Proof. Let, for each ϵ > 0,

Aϵ := A+ ϵI.

Then Aϵ is J-selfadjoint and σ(Aϵ) ⊂ (0,∞). Therefore we can consider its square root (Aϵ)
1/2,

which is J-selfadjoint and commutes with B. Now

JAϵB = J(Aϵ)
1/2B(Aϵ)

1/2

= ((Aϵ)
1/2)∗JB(Aϵ)

1/2 ≥ ((Aϵ)
1/2)∗ · 0 · (Aϵ)

1/2 = 0

Letting ϵ → 0 we can conclude

JAB ≥ 0, that is, AB ≥J 0.

Finally by commutativity

J(AB)2 = JBA2B = B∗JA2B ≥ 0.

Therefore by Theorem 4.1 AB ∈ B. □

The class B is not bouned in norm. In fact,

λ(I + J) ∈ B for all λ > 0.

Theorem 4.5. The class B is not convex.

Proof. Let us consider M2 with

J :=

[
1 0

0 −1

]
.

Let

A =

[
1

1

]
· [1,−1] =

[
1 −1

1 −1

]
.

Then

JA =

[
1 −1

−1 1

]
≥ 0, σ(A) = {0, 0}.

Let

B =

[
1

−1

]
[1, 1] =

[
1 1

−1 −1

]
.

Then

JB =

[
1 1

1 1

]
≥ 0, σ(B) = {0, 0}.

Therefore A,B ∈ B.
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Since
A+B

2
=

[
1 0

0 −1

]
, σ

(A+B

2

)
= {1,−1},

A+B
2 does not belong to B. Therefore the class B is not convex. □
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