TWO CLASSES OF J-OPERATORS

T. ANDO
Dedicated to Professor A. T.-M. Lau

Abstract

We define two classes \mathfrak{A} and \mathfrak{B} in the space $\mathcal{B}(\mathcal{H})$ of operators acting on a Hilbert space on the basis of J-order relation and spectra, and discuss various properties related to these classes.

1. Introduction

Let J be a non-trivial selfadjoint involution in $\mathcal{B}(\mathcal{H})$, the space of bounded linear operators on a Hibert space \mathcal{H}, that is,

$$
J^{*}=J, J^{2}=I \text { and } J \neq I,
$$

where I denotes the identity operator. Such selfadjoint involutions are closely connected to the theory of indefinite inner product spaces; see $[1,3,4]$. When both A, B are J-selfadjoint, that is, $J A$ and $J B$ are selfadjoint,

$$
J A=A^{*} J \quad \text { and } \quad J B=B^{*} J,
$$

we will use the notation

$$
A \geq^{J} B \text { for } J A \geq J B
$$

Here, for selfadjoint operators X and Y, the order relation $X \geq Y$ means, as usual, that $X-Y$ is positive semi-definite.

In this connection, the following fact is used without explicit mention (see [2] and [6, Lemma 2.2]):

$$
A \geq^{J} B \quad \Longrightarrow \quad C A C \geq^{J} C B C \quad \text { for all } J-\text { selfadjoint } C .
$$

[^0]The J-adjoint A^{\sharp} of A is defined as

$$
A^{\sharp}=J A^{*} J .
$$

Then clearly

$$
\sigma\left(A^{\sharp}\right)=\sigma\left(A^{*}\right)=\overline{\sigma(A)}
$$

where $\sigma(A)$ denotes the set of spectra of A and $\overline{\sigma(A)}$ does its complex conjugation.
With a J-control for a J-selfadjoint A, we understand something like

$$
J \cdot I=J \geq J A \quad \text { or } \quad J A \geq 0=J \cdot 0
$$

Under such a J-control, it is immediate to see

$$
\sigma(A) \subset(-\infty, \infty)
$$

Our question is whether, with some additional J-control for A^{2}, we can press $\sigma(A)$ into $[0, \infty)$.
In this paper, we introduce two sub-classes \mathfrak{A} and \mathfrak{B} in the space $\mathcal{B}(\mathcal{H})$ on the basis of J-order relation and spectra as

$$
A \in \mathfrak{A} \quad \stackrel{\text { Def }}{\Longleftrightarrow} I \geq^{J} A \text { and } \sigma(A) \subset[0, \infty)
$$

and

$$
A \in \mathfrak{B} \quad \stackrel{\text { Def }}{\Longleftrightarrow} A \geq^{J} 0 \text { and } \sigma(A) \subset[0, \infty) \text {. }
$$

and discuss various properties related to those classes.
For instance, it is remarkable to see that

$$
A, B \in \mathfrak{A} \quad \Longrightarrow \quad A B A \in \mathfrak{A},
$$

and the corresponding result for \mathfrak{B}.
Throughout the paper, we use the following basic fact without any mention;

$$
X, Y \in \mathcal{B}(\mathcal{H}) \Longrightarrow \sigma(X Y) \subset \sigma(Y X) \cup\{0\}
$$

2. Basic facts

Our first result reads as follows.

Theorem 2.1.

$$
I \geq^{J} A \Longrightarrow \sigma(A) \subset(-\infty, \infty)
$$

and

$$
\min \sigma(A) \leq 1 \leq \max \sigma(A)
$$

where, for instance,

$$
\min \sigma(A) \stackrel{\text { Def }}{=} \min \{\lambda ; \lambda \in \sigma(A)\} .
$$

Proof. Let $K:=J-J A \geq 0$, so that

$$
J K=I-A \quad \text { and } \quad \sigma(J K)=1-\sigma(A) .
$$

Therefore, since $K^{1 / 2} J K^{1 / 2}$ is selfadjoint,

$$
\begin{aligned}
\sigma(A) & =1-\sigma(J K) \\
& =1-\sigma\left(K^{1 / 2} J K^{1 / 2}\right) \subset(-\infty, \infty)
\end{aligned}
$$

Suppose next, by contradition, that

$$
\min \sigma(A)>1
$$

Then

$$
\max \sigma(J K)=1-\min \sigma(A)<0
$$

This implies that $K \geq 0$ is invertible. Then

$$
\max \sigma(J K)=\max \sigma\left(K^{1 / 2} J K^{1 / 2}\right)<0
$$

hence

$$
K^{1 / 2} J K^{1 / 2} \leq 0
$$

which leads to a contradiction $J<0$.
In a similar way, $\max \sigma(A)<1$ leads to a contradiction that $J>0$.

3. Class \mathfrak{A}

Let us introduce a class \mathfrak{A} in $\mathcal{B}(\mathcal{H})$ as follows:

$$
A \in \mathfrak{A} \quad \Longleftrightarrow \quad I \geq^{J} A \text { and } \sigma(A) \subset[0, \infty)
$$

The spectral requirement $\sigma(A) \subset[0, \infty)$ in the definition of the class \mathfrak{A} can be replaced by an operator inequality.

Theorem 3.1.

$$
A \in \mathfrak{A} \quad \Longleftrightarrow \quad I \geq^{J} A \text { and } A \geq^{J} A^{2}
$$

Proof. Let us write as usual:

$$
K:=J(I-A) \geq 0 .
$$

Since

$$
A=I-J K
$$

it is seen that

$$
\sigma(A) \subset[0, \infty) \quad \Longleftrightarrow \quad \sigma(J K) \leq 1 .
$$

Since $K \geq 0$, this is further reduced to the requirement

$$
\sigma\left(K^{1 / 2} J K^{1 / 2}\right) \leq 1 \quad \text { or } \quad K^{1 / 2} J K^{1 / 2} \leq I
$$

which is equivalent, by $K \geq 0$, to

$$
K J K \leq K \quad \text { or } \quad K(I-J K) \geq 0 .
$$

Finally this last inequality means that

$$
J(I-A) A \geq 0 \quad \text { or } \quad A \geq^{J} A^{2} .
$$

Corollary 3.2.

$$
A \in \mathfrak{A} \quad \Longleftrightarrow A^{*} \in \mathfrak{A} \quad \Longleftrightarrow \quad A^{\sharp} \in \mathfrak{A} .
$$

Proof. It follows from the facts:

$$
I \geq^{J} A \Longleftrightarrow I \geq^{J} A^{*} \Longleftrightarrow I \geq^{J} \quad A^{\sharp}
$$

and

$$
\sigma(A) \cap(-\infty, \infty)=\sigma\left(A^{*}\right) \cap(-\infty, \infty)=\sigma\left(A^{\sharp}\right) \cap(-\infty, \infty) .
$$

It follows from Theorem 3.1 also that

$$
A \in \mathfrak{A} \quad \Longrightarrow \quad A^{n} \in \mathfrak{A} \quad n=2,3, \ldots .
$$

But this is a consequence of Theorem 3.5 below.
An element of \mathfrak{A} can be invertible, for instance, $A=I$.
Here is a special position for invertible $A \in \mathfrak{A}$. The essence of the following result was established by Hassi and Nordstroem [5] and stated in the present form by Sano [6].

Corollary 3.3.

$$
I \geq^{J} A \quad \text { and } \quad \sigma(A) \subset(0, \infty) \Longleftrightarrow A \text { invertible, } A^{-1} \geq^{J} I \geq^{J} A
$$

Proof. First suppose that

$$
I \geq^{J} A \quad \text { and } \quad \sigma(A) \subset(0, \infty) .
$$

Then by Theorem 3.1 $A \geq^{J} A^{2}$. Since A^{-1} is J-selfadjoint, this implies

$$
A^{-1}=A^{-1} A A^{-1} \geq^{J} A^{-1} A^{2} A^{-1}=I
$$

Therefore $A^{-1} \geq^{J} I$.
Conversely

$$
A^{-1} \geq^{J} I \quad \Longrightarrow \quad A=A \cdot A^{-1} \cdot A \geq^{J} A I A=A^{2}
$$

so by Theorem 3.1 $\sigma(A) \subset[0, \infty)$. Finally since A is invertible, $\sigma(A) \subset(0, \infty)$.

An operator $A \in \mathcal{B}(\mathcal{H})$ is called a J-contraction if $I \geq^{J} A^{\sharp} A$ or equivalently $J \geq A^{*} J A$. It is called a J-bicontraction if both A and A^{\sharp} are J-contractions, that is,

$$
I \geq^{J} A^{\sharp} A \quad \text { and } \quad I \geq^{J} A A^{\sharp},
$$

or equivalently

$$
J \geq A^{*} J A \quad \text { and } \quad J \geq A J A^{*} .
$$

Corollary 3.4. For every J-bicontraction A, both $A^{\sharp} A$ and $A A^{\sharp}$ belong to the class \mathfrak{A}, that is,

$$
I \geq^{J} A^{\sharp} A, \quad I \geq^{J} A A^{\sharp} \quad \Longrightarrow \quad \sigma\left(A^{\sharp} A\right) \subset[0, \infty) .
$$

Proof. On the basis of Theorem 3.1, it should be shown, for instance, that

$$
A^{\sharp} A \geq^{J}\left(A^{\sharp} A\right) \cdot\left(A^{\sharp} A\right),
$$

or equivalently

$$
A^{*} J A-A^{*} J A J A^{*} J A \geq 0
$$

But this is guaranteed as follows:

$$
A^{*}\left\{J-J A J A^{*} J\right\} A=A^{*}\left\{J-J A A^{\sharp}\right\} A \geq 0 .
$$

Corollary 2.1.4 Let A be invertible with $\sigma\left(A^{\sharp} A\right) \subset[0, \infty)$. Then

$$
I \geq^{J} A^{\sharp} A \quad \Longleftrightarrow \quad I \geq^{J} A A^{\sharp} .
$$

Proof. First observe that

$$
\sigma\left(A^{\sharp} A\right)=\sigma\left(A A^{\sharp}\right) .
$$

Therefore it should be shown that

$$
I \geq^{J} A^{\sharp} A \quad \text { and } \quad \sigma\left(A^{\sharp} A\right) \subset[0, \infty) \quad \Longrightarrow \quad I \geq^{J} A A^{\sharp} .
$$

In other words:

$$
I \geq^{J}\left(A^{\sharp} A\right) \geq^{J}\left(A^{\sharp} A\right)^{2} \quad \Longrightarrow \quad I \geq^{J} A A^{\sharp} .
$$

To see this, obverse the following

$$
\begin{aligned}
0 & \leq J\left\{A^{\sharp} A-\left(A^{\sharp} A\right)^{2}\right\}=A^{*} J A-J \cdot J A^{*} J A \cdot J A^{*} J A \\
& =A^{*} J\left\{J-A J A^{*}\right\} J A=A^{*}\left\{J-J A A^{\sharp}\right\} A .
\end{aligned}
$$

Since A is invertible by assumption, this implies $\quad I \geq^{J} A A^{\sharp}$.

Theorem 3.5.

$$
A, B \in \mathfrak{A} \quad \Longrightarrow \quad A B A \in \mathfrak{A} .
$$

Proof. Since A is J-selfadjoint

$$
I \geq^{J} B \quad \Longrightarrow \quad A^{2} \geq^{J} A B A
$$

Since $I \geq^{J} A \geq^{J} A^{2}$ by Theorem 3.1, this implies $I \geq^{J} A B A$.
Further since $B \geq^{J} B^{2}$ by Theorem 3.1

$$
A B A \geq^{J} A B^{2} A \geq^{J} A B A^{2} B A=(A B A)^{2}
$$

hence $A B A \in \mathfrak{A}$ again by Theorem 3.1.

For a proof of the next theorem we need an analytic tool, the square root.
Lemma 3.6. Let C be a J-selfadjoint operator with $\sigma(C) \subset(0, \infty)$. Then its square root $C^{1 / 2}$ is defined according to the Riesz-Dunford functional calculus:

$$
C^{1 / 2}:=\frac{1}{2 \pi i} \int_{\Gamma} \sqrt{\zeta}(\zeta I-C)^{-1} d \zeta
$$

where Γ is a rectifiable contour in \mathbb{C}^{+}(the open-right half-plane), surrounding $\sigma(C)$ in positiive direction.

The square-root $C^{1 / 2}$ is J-selfadjoint, and commutes with all X which commutes with C, and

$$
\left(C^{1 / 2}\right)^{2}=C
$$

Theorem 3.7. $A, B \in \mathfrak{A}, A B=B A \quad \Longrightarrow \quad A B \in \mathfrak{A}$.
Proof. Let, for each $\epsilon>0$,

$$
A_{\epsilon}:=A+\epsilon I .
$$

Since $\sigma\left(A_{\epsilon}\right) \subset(0, \infty)$, we can consider its square root $\left(A_{\epsilon}\right)^{1 / 2}$.
Then since $A_{\epsilon}^{1 / 2} B=B A_{\epsilon}^{1 / 2}$ and $I \geq^{J} B$

$$
\begin{aligned}
J A_{\epsilon} B & =J A_{\epsilon}^{1 / 2} B A_{\epsilon}^{1 / 2}=\left(A_{\epsilon}^{1 / 2}\right)^{*} J B A_{\epsilon}^{1 / 2} \\
& \leq\left(A_{\epsilon}^{1 / 2}\right)^{*} J\left(A_{\epsilon}\right)^{1 / 2}=J A_{\epsilon} .
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$, we can see

$$
J A B \leq J A \leq J
$$

Finally the commutativity $A B=B A$ implies $\sigma(A B) \subset[0, \infty)$.
The class \mathfrak{A} is not bounded in norm.
In fact,

$$
A_{\lambda}:=\lambda(I-J) \text { for all } \lambda \geq 1
$$

belongs to the class \mathfrak{A}.

Theorem 3.8. The class \mathfrak{A} is not convex.
Proof. Let us consider \mathbb{M}_{2} with $J=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
Let

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
-1 & \sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right] .
$$

Then

$$
J(I-A)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \geq 0
$$

and

$$
J(I-B)=\left[\begin{array}{cc}
2 & -\sqrt{2} \\
-\sqrt{2} & 1
\end{array}\right] \geq 0
$$

Clearly since

$$
\sigma(A)=\sigma(B)=\{0,1\}
$$

both A and B belong to the class \mathfrak{A}, and

$$
\frac{A+B}{2}=\frac{1}{2}\left[\begin{array}{cc}
-1 & \sqrt{2} \\
-\sqrt{2} & 3
\end{array}\right] .
$$

Since

$$
\operatorname{det}\left(\frac{A+B}{2}\right)=\frac{1}{4}(-3+2)<0
$$

The matrix $\frac{A+B}{2}$ does not belong to the class \mathfrak{A}, so that \mathfrak{A} is not convex.

4. Class \mathfrak{B}

Let us introduce another class \mathfrak{B} in $\mathcal{B}(\mathcal{H})$ as follows:

$$
A \in \mathfrak{B} \quad \stackrel{\text { Def }}{\Longrightarrow} A \geq^{J} 0 \text { and } \sigma(A) \subset[0, \infty) \text {. }
$$

The spectral requirement, $\sigma(A) \subset[0, \infty)$ in the definition of the class \mathfrak{B}, can be replaced by an operator inequality.

Theorem 4.1.

$$
A \in \mathfrak{B} \quad \Longleftrightarrow \quad A \geq^{J} 0 \text { and } A^{2} \geq^{J} 0
$$

Proof. Let $K:=J A \geq 0$. Then as usual

$$
\begin{aligned}
\sigma(A) \subset[0, \infty) & \Longleftrightarrow \sigma(J K) \subset[0, \infty) \\
& \Longleftrightarrow \sigma\left(K^{1 / 2} J K^{1 / 2}\right) \subset[0, \infty) \\
& \Longleftrightarrow K^{1 / 2} J K^{1 / 2} \geq 0 \\
& \Longleftrightarrow K J K \geq 0 \Longleftrightarrow J A^{2} \geq 0
\end{aligned}
$$

It follows from this theorem that

$$
A \in \mathfrak{B} \quad \Longrightarrow \quad A^{n} \in \mathfrak{B} \quad n=2,3, \ldots
$$

But this statement is also included in Theorem 4.3 and Theorem 4.4 below.
Neither $A \in \mathfrak{B}$ is invertible. In fact, if $A \in \mathfrak{B}$ is invertible, then

$$
J A^{2} \geq 0 \Longrightarrow J \geq 0,
$$

which is a contradicion.
The following is a counter-part of Corollary 3.3.

Corollary 4.2.

$$
A^{\sharp} A \geq^{J} 0, \quad A A^{\sharp} \geq^{J} 0 \quad \Longrightarrow \quad \sigma\left(A^{\sharp} A\right), \sigma\left(A A^{\sharp}\right) \subset[0, \infty) .
$$

Proof. By Theorem 4.1 we have to show that

$$
A^{\sharp} A \geq^{J} 0, A A^{\sharp} \geq^{J} 0 \quad \Longrightarrow \quad\left(A^{\sharp} A\right)^{2} \geq^{J} 0 .
$$

First notice that

$$
A^{\sharp} A \geq^{J} 0 \quad \Longleftrightarrow \quad A^{*} J A \geq 0
$$

and

$$
A A^{\sharp} \geq^{J} 0 \quad \Longleftrightarrow \quad A J A^{*} \geq 0
$$

Now

$$
J\left(A^{\sharp} A\right)^{2}=A^{*} J A J A^{*} J A \geq A^{*} J \cdot 0 \cdot J A=0
$$

so that $\quad\left(A^{\sharp} A\right)^{2} \geq^{J} 0$.
The following theorem is a counter part of Theorem 3.5.

Theorem 4.3.

$$
A \in \mathfrak{B}, B \geq^{J} 0 \Longrightarrow A B A \in \mathfrak{B}
$$

Proof. Since A is J-selfadjoint

$$
B \geq^{J} 0 \quad \Longrightarrow \quad A B A \geq^{J} A \cdot 0 \cdot A=0
$$

and

$$
(A B A)^{2}=A B A^{2} B A \geq^{J} A B \cdot 0 \cdot B A=0
$$

Therefore by Theorem 4.1 $A B A \in \mathfrak{B}$.
The following theorem is a counter part of Thereom 3.7.

Theorem 4.4.

$$
A \in \mathfrak{B}, \quad B \geq^{J} 0, A B=B A \quad \Longrightarrow \quad A B \in \mathfrak{B}
$$

Proof. Let, for each $\epsilon>0$,

$$
A_{\epsilon}:=A+\epsilon I .
$$

Then A_{ϵ} is J-selfadjoint and $\sigma\left(A_{\epsilon}\right) \subset(0, \infty)$. Therefore we can consider its square root $\left(A_{\epsilon}\right)^{1 / 2}$, which is J-selfadjoint and commutes with B. Now

$$
\begin{aligned}
J A_{\epsilon} B & =J\left(A_{\epsilon}\right)^{1 / 2} B\left(A_{\epsilon}\right)^{1 / 2} \\
& =\left(\left(A_{\epsilon}\right)^{1 / 2}\right)^{*} J B\left(A_{\epsilon}\right)^{1 / 2} \geq\left(\left(A_{\epsilon}\right)^{1 / 2}\right)^{*} \cdot 0 \cdot\left(A_{\epsilon}\right)^{1 / 2}=0
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$ we can conclude

$$
J A B \geq 0, \text { that is, } A B \geq^{J} 0 .
$$

Finally by commutativity

$$
J(A B)^{2}=J B A^{2} B=B^{*} J A^{2} B \geq 0
$$

Therefore by Theorem 4.1 $A B \in \mathfrak{B}$.

The class \mathfrak{B} is not bouned in norm. In fact,

$$
\lambda(I+J) \in \mathfrak{B} \quad \text { for all } \lambda>0
$$

Theorem 4.5. The class \mathfrak{B} is not convex.
Proof. Let us consider \mathbb{M}_{2} with

$$
J:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Let

$$
A=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdot[1,-1]=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Then

$$
J A=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \geq 0, \quad \sigma(A)=\{0,0\}
$$

Let

$$
B=\left[\begin{array}{c}
1 \\
-1
\end{array}\right][1,1]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right] .
$$

Then

$$
J B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \geq 0, \quad \sigma(B)=\{0,0\}
$$

Therefore $A, B \in \mathfrak{B}$.

Since

$$
\frac{A+B}{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \sigma\left(\frac{A+B}{2}\right)=\{1,-1\}
$$

$\frac{A+B}{2}$ does not belong to \mathfrak{B}. Therefore the class \mathfrak{B} is not convex.

References

[1] T. Ando, Linear Operators on Krein Spaces, Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, 1979.
[2] T. Ando, Löwner inequality of indefinite type, Linear Algebra Appl. 385 (2004) 73-80.
[3] T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow, 1986, English translation: Wiley, New York, 1989.
[4] I. Gohberg, P. Lancaster and L. Rodman, Indefinite linear algebra and applications, Birkhäuser Verlag, Basel, 2005.
[5] S. Hassi and K. Nordström, Antitonicity of the inverse and J-contractivity, Gheondea, A. (ed.) et al., Operator extensions, interpolation of functions and related topics. 14th international conference on operator theory, Timisoara (Romania), June 1-5, 1992. Basel, Birkhäuser Verlag. Oper. Theory, Adv. Appl. 61 (1993), 149-161.
[6] T. Sano, Furuta inequality of indefinite type, Math. Inequal. Appl. 10 (2007), no. 2, 381-387.

Tsuyoshi Ando

Hokkaido University (Emeritus), Sapporo, Japan.
Email: ando@es.hokudai.ac.jp

[^0]: Communicated by Mohammad Sal Moslehian
 MSC(2020): Primary: 46C05; Secondary: 47A64, 15A45.
 Keywords: J-self-adjoint matrix; J-order; J-bicontraction.
 Received: 30 April 2023, Accepted: 1 June 2023.
 DOI: https://dx.doi.org/10.30504/JIMS.2023.395366.1111

