Journal of the Iranian Mathematical Society ISSN (on-line): 2717-1612
J. Iran. Math. Soc. 4 (2023), no. 1, 45-54
© 2023 Iranian Mathematical Society

TWO CLASSES OF J-OPERATORS

T. ANDO

Dedicated to Professor A. T.-M. Lau

ABSTRACT. We define two classes \mathfrak{A} and \mathfrak{B} in the space $\mathcal{B}(\mathcal{H})$ of operators acting on a Hilbert space on the basis of *J*-order relation and spectra, and discuss various properties related to these classes.

1. Introduction

Let J be a non-trivial selfadjoint involution in $\mathcal{B}(\mathcal{H})$, the space of bounded linear operators on a Hibert space \mathcal{H} , that is,

 $J^* = J, J^2 = I \text{ and } J \neq I,$

where I denotes the identity operator. Such selfadjoint involutions are closely connected to the theory of indefinite inner product spaces; see [1,3,4]. When both A, B are *J*-selfadjoint, that is, JA and JBare selfadjoint,

$$JA = A^*J$$
 and $JB = B^*J$,

we will use the notation

$$A \geq^J B$$
 for $JA \geq JB$.

Here, for selfadjoint operators X and Y, the order relation $X \ge Y$ means, as usual, that X - Y is positive semi-definite.

In this connection, the following fact is used without explicit mention (see [2] and [6, Lemma 2.2]):

 $A \geq^J B \quad \Longrightarrow \quad CAC \ \geq^J \ CBC \qquad \text{for all} \ \ J-\text{selfadjoint} \ C.$

Communicated by Mohammad Sal Moslehian

MSC(2020): Primary: 46C05; Secondary: 47A64, 15A45.

 $[\]label{eq:Keywords: J-self-adjoint matrix; J-order; J-bicontraction.$

Received: 30 April 2023, Accepted: 1 June 2023.

DOI: https://dx.doi.org/10.30504/JIMS.2023.395366.1111

The *J*-adjoint A^{\sharp} of A is defined as

$$A^{\sharp} = JA^*J$$

Then clearly

$$\sigma(A^{\sharp}) = \sigma(A^{*}) = \overline{\sigma(A)}$$

where $\sigma(A)$ denotes the set of spectra of A and $\overline{\sigma(A)}$ does its complex conjugation.

With a J-control for a J-selfadjoint A, we understand something like

$$J \cdot I = J \ge JA$$
 or $JA \ge 0 = J \cdot 0$

Under such a J-control, it is immediate to see

$$\sigma(A) \subset (-\infty,\infty).$$

Our question is whether, with some additional J-control for A^2 , we can press $\sigma(A)$ into $[0, \infty)$.

In this paper, we introduce two sub-classes \mathfrak{A} and \mathfrak{B} in the space $\mathcal{B}(\mathcal{H})$ on the basis of *J*-order relation and spectra as

$$A \in \mathfrak{A} \quad \stackrel{\mathrm{Def}}{\Longleftrightarrow} \quad I \geq^J A \quad and \quad \sigma(A) \subset [0,\infty)$$

and

$$A \in \mathfrak{B} \quad \stackrel{\text{Def}}{\Longleftrightarrow} \quad A \geq^J 0 \quad and \quad \sigma(A) \subset [0,\infty).$$

and discuss various properties related to those classes.

For instance, it is remarkable to see that

$$A, B \in \mathfrak{A} \implies ABA \in \mathfrak{A},$$

and the corresponding result for \mathfrak{B} .

Throughout the paper, we use the following basic fact without any mention;

$$X,Y \in \mathcal{B}(\mathcal{H}) \implies \sigma(XY) \subset \sigma(YX) \cup \{0\}.$$

2. Basic facts

Our first result reads as follows.

Theorem 2.1.

$$I \geq^J A \implies \sigma(A) \subset (-\infty, \infty)$$

and

$$\min \, \sigma(A) \ \le \ 1 \ \le \ \max \, \sigma(A)$$

where, for instance,

$$\min \sigma(A) \stackrel{\text{Def}}{=} \min\{\lambda; \ \lambda \in \sigma(A)\}.$$

T.~Ando

Proof. Let $K := J - JA \ge 0$, so that

$$JK = I - A$$
 and $\sigma(JK) = 1 - \sigma(A)$.

Therefore, since $K^{1/2}JK^{1/2}$ is selfadjoint,

$$\sigma(A) = 1 - \sigma(JK)$$

= $1 - \sigma(K^{1/2}JK^{1/2}) \subset (-\infty, \infty).$

Suppose next, by contradition, that

$$\min \sigma(A) > 1.$$

Then

$$\max \sigma(JK) = 1 - \min \sigma(A) < 0.$$

This implies that $K \ge 0$ is invertible. Then

$$\max \sigma(JK) = \max \sigma(K^{1/2}JK^{1/2}) < 0,$$

hence

$$K^{1/2}JK^{1/2} \leq 0$$

which leads to a contradiction J < 0.

In a similar way, max $\sigma(A) < 1$ leads to a contradiction that J > 0.

3. CLASS \mathfrak{A}

Let us introduce a class \mathfrak{A} in $\mathcal{B}(\mathcal{H})$ as follows:

$$A \in \mathfrak{A} \quad \Longleftrightarrow \quad I \geq^J A \quad and \quad \sigma(A) \subset [0,\infty).$$

The spectral requirement $\sigma(A) \subset [0, \infty)$ in the definition of the class \mathfrak{A} can be replaced by an operator inequality.

Theorem 3.1.

$$A \in \mathfrak{A} \iff I \geq^J A \text{ and } A \geq^J A^2.$$

Proof. Let us write as usual:

$$K := J(I - A) \ge 0.$$

Since

$$A = I - JK$$

it is seen that

$$\sigma(A) \subset [0,\infty) \quad \Longleftrightarrow \quad \sigma(JK) \le 1$$

Since $K \ge 0$, this is further reduced to the requirement

$$\sigma(K^{1/2}JK^{1/2}) \leq 1 \text{ or } K^{1/2}JK^{1/2} \leq I$$

T. Ando 47

DOI: https://dx.doi.org/10.30504/JIMS.2023.395366.1111

which is equivalent, by $K \ge 0$, to

$$KJK \le K$$
 or $K(I - JK) \ge 0$.

Finally this last inequality means that

$$J(I-A)A \ge 0 \quad \text{or} \quad A \ge^J A^2.$$

Corollary 3.2.

$$A \in \mathfrak{A} \iff A^* \in \mathfrak{A} \iff A^{\sharp} \in \mathfrak{A}.$$

Proof. It follows from the facts:

$$I \geq^J A \quad \Longleftrightarrow \quad I \geq^J A^* \quad \Longleftrightarrow \quad I \geq^J A^{\sharp}$$

and

$$\sigma(A) \cap (-\infty, \infty) = \sigma(A^*) \cap (-\infty, \infty) = \sigma(A^{\sharp}) \cap (-\infty, \infty).$$

It follows from Theorem 3.1 also that

$$A \in \mathfrak{A} \implies A^n \in \mathfrak{A} \quad n = 2, 3, \dots$$

But this is a consequence of Theorem 3.5 below.

An element of \mathfrak{A} can be invertible, for instance, A = I.

Here is a special position for invertible $A \in \mathfrak{A}$. The essence of the following result was established by Hassi and Nordstroem [5] and stated in the present form by Sano [6].

Corollary 3.3.

$$I \geq^J A$$
 and $\sigma(A) \subset (0,\infty) \iff A$ invertible, $A^{-1} \geq^J I \geq^J A$

Proof. First suppose that

$$I \geq^J A$$
 and $\sigma(A) \subset (0, \infty)$.

Then by Theorem 3.1 $A \geq^J A^2$. Since A^{-1} is J-selfadjoint, this implies

$$A^{-1} = A^{-1}AA^{-1} \ge^{J} A^{-1}A^{2}A^{-1} = I.$$

Therefore $A^{-1} \geq^J I$.

Conversely

$$A^{-1} \ge^J I \implies A = A \cdot A^{-1} \cdot A \ge^J AIA = A^2,$$

so by Theorem 3.1 $\sigma(A) \subset [0, \infty)$. Finally since A is invertible, $\sigma(A) \subset (0, \infty)$.

An operator $A \in \mathcal{B}(\mathcal{H})$ is called a *J*-contraction if $I \geq^J A^{\sharp}A$ or equivalently $J \geq A^*JA$. It is called a *J*-bicontraction if both A and A^{\sharp} are *J*-contractions, that is,

$$I \geq^J A^{\sharp}A \quad and \quad I \geq^J AA^{\sharp},$$

or equivalently

$$J \ge A^*JA \quad and \quad J \ge AJA^*.$$

Corollary 3.4. For every J-bicontraction A, both $A^{\sharp}A$ and AA^{\sharp} belong to the class \mathfrak{A} , that is,

$$I \geq^J A^{\sharp}A, \quad I \geq^J AA^{\sharp} \quad \Longrightarrow \quad \sigma(A^{\sharp}A) \ \subset \ [0,\infty)$$

Proof. On the basis of Theorem 3.1, it should be shown, for instance, that

$$A^{\sharp}A \geq^{J} (A^{\sharp}A) \cdot (A^{\sharp}A),$$

or equivalently

$$A^*JA - A^*JAJA^*JA \ge 0.$$

But this is guaranteed as follows:

$$A^*\{J - JAJA^*J\}A = A^*\{J - JAA^\sharp\}A \ge 0$$

Corollary 2.1.4 Let A be invertible with $\sigma(A^{\sharp}A) \subset [0,\infty)$. Then

$$I \ge^J A^{\sharp}A \quad \Longleftrightarrow \quad I \ge^J A A^{\sharp}.$$

Proof. First observe that

$$\sigma(A^{\sharp}A) = \sigma(AA^{\sharp}).$$

Therefore it should be shown that

$$I \ge^J A^{\sharp}A$$
 and $\sigma(A^{\sharp}A) \subset [0,\infty) \implies I \ge^J AA^{\sharp}.$

In other words:

$$I \ge^J (A^{\sharp}A) \ge^J (A^{\sharp}A)^2 \implies I \ge^J AA^{\sharp}.$$

To see this, obverse the following

$$0 \leq J\{A^{\sharp}A - (A^{\sharp}A)^{2}\} = A^{*}JA - J \cdot JA^{*}JA \cdot JA^{*}JA$$

$$= A^*J\{J - AJA^*\}JA = A^*\{J - JAA^{\sharp}\}A.$$

Since A is invertible by assumption, this implies $I \geq^J A A^{\sharp}$.

T. Ando 49

-	-	-	
			н
			L
			н
-			

Theorem 3.5.

 $A, B \in \mathfrak{A} \implies ABA \in \mathfrak{A}.$

Proof. Since A is J-selfadjoint

$$I \ge^J B \implies A^2 \ge^J ABA$$

Since $I \geq^J A \geq^J A^2$ by Theorem 3.1, this implies $I \geq^J ABA$.

Further since $B \geq^J B^2$ by Theorem 3.1

$$ABA \geq^J AB^2A \geq^J ABA^2BA = (ABA)^2$$

hence $ABA \in \mathfrak{A}$ again by Theorem 3.1.

For a proof of the next theorem we need an analytic tool, the square root.

Lemma 3.6. Let C be a J-selfadjoint operator with $\sigma(C) \subset (0, \infty)$. Then its square root $C^{1/2}$ is defined according to the Riesz-Dunford functional calculus:

$$C^{1/2} := \frac{1}{2\pi i} \int_{\Gamma} \sqrt{\zeta} (\zeta I - C)^{-1} d\zeta$$

where Γ is a rectifiable contour in \mathbb{C}^+ (the open-right half-plane), surrounding $\sigma(C)$ in positive direction.

The square-root $C^{1/2}$ is J-selfadjoint, and commutes with all X which commutes with C, and

$$(C^{1/2})^2 = C$$

Theorem 3.7. $A, B \in \mathfrak{A}, AB = BA \implies AB \in \mathfrak{A}.$

Proof. Let, for each $\epsilon > 0$,

$$A_{\epsilon} := A + \epsilon I.$$

Since $\sigma(A_{\epsilon}) \subset (0, \infty)$, we can consider its square root $(A_{\epsilon})^{1/2}$.

Then since $A_{\epsilon}^{1/2}B = BA_{\epsilon}^{1/2}$ and $I \geq^{J} B$

$$JA_{\epsilon}B = JA_{\epsilon}^{1/2}BA_{\epsilon}^{1/2} = (A_{\epsilon}^{1/2})^* JBA_{\epsilon}^{1/2}$$

$$\leq (A_{\epsilon}^{1/2})^* J(A_{\epsilon})^{1/2} = JA_{\epsilon}.$$

Letting $\epsilon \to 0$, we can see

 $JAB \leq JA \leq J.$

Finally the commutativity AB = BA implies $\sigma(AB) \subset [0, \infty)$.

The class \mathfrak{A} is not bounded in norm. In fact,

$$A_{\lambda} := \lambda (I - J) \text{ for all } \lambda \geq 1$$

belongs to the class \mathfrak{A} .

Theorem 3.8. The class \mathfrak{A} is not convex.

Proof. Let us consider
$$\mathbb{M}_2$$
 with $J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
Let
 $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & \sqrt{2} \\ -\sqrt{2} & 2 \end{bmatrix}$ Then
 $J(I - A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \ge 0$

and

$$J(I-B) = \begin{bmatrix} 2 & -\sqrt{2} \\ -\sqrt{2} & 1 \end{bmatrix} \ge 0.$$

Clearly since

$$\sigma(A) = \sigma(B) = \{0,1\}$$

both A and B belong to the class \mathfrak{A} , and

$$\frac{A+B}{2} = \frac{1}{2} \begin{bmatrix} -1 & \sqrt{2} \\ -\sqrt{2} & 3 \end{bmatrix}$$

Since

$$\det\left(\frac{A+B}{2}\right) = \frac{1}{4}(-3+2) < 0$$

The matrix $\frac{A+B}{2}$ does not belong to the class \mathfrak{A} , so that \mathfrak{A} is not convex.

4. CLASS \mathfrak{B}

Let us introduce another class \mathfrak{B} in $\mathcal{B}(\mathcal{H})$ as follows:

$$A \in \mathfrak{B} \quad \stackrel{\text{Def}}{\Longleftrightarrow} \quad A \geq^J 0 \quad and \quad \sigma(A) \subset [0,\infty).$$

The spectral requirement, $\sigma(A) \subset [0, \infty)$ in the definition of the class \mathfrak{B} , can be replaced by an operator inequality.

Theorem 4.1.

$$A \in \mathfrak{B} \quad \Longleftrightarrow \quad A \ge^J 0 \quad and \quad A^2 \ge^J 0.$$

Proof. Let $K := JA \ge 0$. Then as usual

$$\sigma(A) \ \subset \ [0,\infty) \ \iff \ \sigma(JK) \ \subset \ [0,\infty)$$

$$\iff \sigma(K^{1/2}JK^{1/2}) \subset [0,\infty)$$

$$\iff K^{1/2}JK^{1/2} \ge 0$$

$$\iff KJK \ge 0 \quad \iff JA^2 \ge 0$$

DOI: https://dx.doi.org/10.30504/JIMS.2023.395366.1111

T. Ando 51

It follows from this theorem that

$$A \in \mathfrak{B} \implies A^n \in \mathfrak{B} \quad n = 2, 3, \dots$$

But this statement is also included in Theorem 4.3 and Theorem 4.4 below. Neither $A \in \mathfrak{B}$ is invertible. In fact, if $A \in \mathfrak{B}$ is invertible, then

$$JA^2 \ge 0 \implies J \ge 0,$$

which is a contradicion.

The following is a counter-part of Corollary 3.3.

Corollary 4.2.

$$A^{\sharp}A \geq^{J} 0, \quad AA^{\sharp} \geq^{J} 0 \implies \sigma(A^{\sharp}A), \ \sigma(AA^{\sharp}) \subset [0,\infty).$$

Proof. By Theorem 4.1 we have to show that

$$A^{\sharp}A \ge^J 0, \ AA^{\sharp} \ge^J 0 \quad \Longrightarrow \quad (A^{\sharp}A)^2 \ge^J 0.$$

First notice that

$$A^{\sharp}A \ge^J 0 \quad \Longleftrightarrow \quad A^*JA \ge 0$$

and

$$AA^{\sharp} \ge^J 0 \quad \Longleftrightarrow \quad AJA^* \ge 0.$$

Now

$$J(A^{\sharp}A)^2 = A^*JAJA^*JA \ge A^*J \cdot 0 \cdot JA = 0$$

so that $(A^{\sharp}A)^2 \ge^J 0.$

The following theorem is a counter part of Theorem 3.5.

Theorem 4.3.

$$A \in \mathfrak{B}, \ B \geq^J 0 \implies ABA \in \mathfrak{B}.$$

Proof. Since A is J-selfadjoint

$$B \ge^J 0 \quad \Longrightarrow \quad ABA \ \ge^J \ A \cdot 0 \cdot A = 0,$$

and

$$(ABA)^2 = ABA^2BA \ge^J AB \cdot 0 \cdot BA = 0.$$

Therefore by Theorem 4.1 $ABA \in \mathfrak{B}$.

The following theorem is a counter part of Thereom 3.7.

Theorem 4.4.

$$A \in \mathfrak{B}, \quad B \ge^J 0, \ AB = BA \implies AB \in \mathfrak{B}.$$

Proof. Let, for each $\epsilon > 0$,

$$A_{\epsilon} := A + \epsilon I.$$

Then A_{ϵ} is J-selfadjoint and $\sigma(A_{\epsilon}) \subset (0, \infty)$. Therefore we can consider its square root $(A_{\epsilon})^{1/2}$, which is J-selfadjoint and commutes with B. Now

$$JA_{\epsilon}B = J(A_{\epsilon})^{1/2}B(A_{\epsilon})^{1/2}$$

$$= ((A_{\epsilon})^{1/2})^* JB(A_{\epsilon})^{1/2} \ge ((A_{\epsilon})^{1/2})^* \cdot 0 \cdot (A_{\epsilon})^{1/2} = 0$$

Letting $\epsilon \to 0$ we can conclude

$$JAB \ge 0$$
, that is, $AB \ge^J 0$.

Finally by commutativity

$$J(AB)^2 = JBA^2B = B^*JA^2B \ge 0.$$

Therefore by Theorem 4.1 $AB \in \mathfrak{B}$.

The class \mathfrak{B} is not bound in norm. In fact,

$$\lambda(I+J) \in \mathfrak{B}$$
 for all $\lambda > 0$.

Theorem 4.5. The class \mathfrak{B} is not convex.

Proof. Let us consider \mathbb{M}_2 with

$$J := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Let

$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1, -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}.$$

Then

 $JA = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \ge 0, \quad \sigma(A) = \{0, 0\}.$

$$B = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1, 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}.$$

$$JB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \ge 0, \quad \sigma(B) = \{0, 0\}.$$

Therefore $A, B \in \mathfrak{B}$.

T. Ando 53

Then

Since

$$\frac{A+B}{2} = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}, \quad \sigma\left(\frac{A+B}{2}\right) = \{1, -1\},$$

 $\frac{A+B}{2}$ does not belong to \mathfrak{B} . Therefore the class \mathfrak{B} is not convex.

References

- T. Ando, Linear Operators on Krein Spaces, Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, 1979.
- [2] T. Ando, Löwner inequality of indefinite type, Linear Algebra Appl. 385 (2004) 73-80.
- [3] T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite Metric, Nauka, Moscow, 1986, English translation: Wiley, New York, 1989.
- [4] I. Gohberg, P. Lancaster and L. Rodman, Indefinite linear algebra and applications, Birkhäuser Verlag, Basel, 2005.
- [5] S. Hassi and K. Nordström, Antitonicity of the inverse and J-contractivity, Gheondea, A. (ed.) et al., Operator extensions, interpolation of functions and related topics. 14th international conference on operator theory, Timisoara (Romania), June 1-5, 1992. Basel, Birkhäuser Verlag. Oper. Theory, Adv. Appl. 61 (1993), 149–161.
- [6] T. Sano, Furuta inequality of indefinite type, Math. Inequal. Appl. 10 (2007), no. 2, 381–387.

Tsuyoshi Ando

Hokkaido University (Emeritus), Sapporo, Japan.

Email: ando@es.hokudai.ac.jp