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DICHOTOMY BETWEEN OPERATORS ACTING ON FINITE AND INFINITE

DIMENSIONAL HILBERT SPACES

L. BERNAL-GONZÁLEZ, M. S. MOSLEHIAN AND J. B. SEOANE-SEPÚLVEDA

Abstract. In this expository article, we give several examples showing how drastically different can

be the behavior of operators acting on finite versus infinite dimensional Hilbert spaces. This essay is

written as in such a friendly-reader to show that the situation in the infinite dimensional setting is

trickier than the finite one.

1. Introduction

The notion of Hilbert space is a generalization of that of the Euclidean space R2, that is a vector

space equipped with a scalar product ⟨·, ·⟩. The norm is defined by

∥x∥ = ⟨x, x⟩1/2.

This notion was first introduced by David Hilbert in the setting of integral equations and named by

others after him. A Hilbert space is a Banach space (i.e., a vector space equipped with a complete

norm ∥ · ∥), whose norm satisfies the parallelogram law ∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2. The

space C[0, 1] of continuous linear functions on the interval [0, 1] endowed with the sup-norm ∥f∥ =

sup{|f(t)| : t ∈ [0, 1]} is a Banach space whose norm cannot be deduced from an inner product space

since it does not satisfy the parallelogram law for f(t) = 1 and g(t) = t.

Finite dimensional Hilbert spaces are isomorphic to the space Cn endowed with the inner product

⟨(xi), (yi)⟩ =
∑n

i=1 xiyi.
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The infinite dimensional analogue of Cn is the (separable) Hilbert space ℓ2 = ℓ2(N) of all complex

sequences (xn) satisfying
∑∞

n=1 |xn|2 < ∞ under pointwise operations α(xn) + (yn) = (αxn + yn) and

the inner product

⟨(xn), (yn)⟩ =
∞∑
n=1

xnyn.

The standard orthonormal basis {ej : j = 1, 2, . . .} of ℓ2 is the direct analogue of the one of Cn.

Similarly, one can impose a Hilbert space structure on the linear space ℓ2(Z) consisting of all two-

sided sequences of the form (. . . , x−2, x−1, x0, x1, x2, . . .) such that
∑∞

n=−∞ |xn|2 < ∞.

Let (H , ⟨·, ·⟩) be a Hilbert space. By B(H ) we denote the algebra of all continuous linear operators

on H equipped with the pointwise-defined operations of addition and multiplication by scalars, while

the multiplication is defined as the composition of operators. A linear operator A : H → H is called

bounded if ∥Ax∥ ≤ M∥x∥ for some M ≥ 0 and all x ∈ H ; if this is the case, ∥A∥ := sup{∥Ax∥ :

∥x∥ = 1} < ∞ is called the operator norm. The continuity of a linear operator is equivalent to its

boundedness in virtue of ∥Ax − Ay∥ ≤ ∥A∥ ∥x − y∥. For every operator A ∈ B(H ), there exists a

unique operator A∗ ∈ B(H ), called the adjoint operator of A, such that ⟨Ax, y⟩ = ⟨x,A∗y⟩ for all

x, y ∈ H . Throughout the paper, a capital letter means a continuous linear operator in B(H ), in

particular, I denotes the identity operator. When a capital letter denotes a matrix, we explicitly state

it.

The set σ(A) := {λ ∈ C : A − λI is not invertible in B(H )} is called the spectrum of A, which is

both nonempty and compact. The numerical range of A is defined and denoted by W (A) = {⟨Ax, x⟩ :
∥x∥ = 1}.

An operator A is called normal if A∗A = AA∗. It is self-adjoint (or hermitian) if A∗ = A, or

equivalently W (A) ⊆ R. It is said to be positive (positive semidefinite) if W (A) ⊆ [0,∞); the set of

all positive semi-definite operators is denoted by B(H )+. An operator A is idempotent if A2 = A.

An orthogonal projection is a self-adjoint idempotent.

The Löwner order on the set B(H )h of self-adjoint operators is defined by A ≤ B ⇐⇒ B − A ∈
B(H )+.

There are many assertions in (finite dimensional) linear algebra that do not hold in an infinite

dimensional Hilbert space; even less is true for general Banach spaces than Hilbert spaces.

First of all, let us explain that by the dimension of a linear space (in the algebraic sense) we un-

derstand the cardinality of any of its linear (or Hamel) bases, i.e., maximal linearly independent sets.

In Banach spaces of finite dimension, such as Cn, the closed unit ball is compact, all subspaces are

(topologically) closed, and all norms on the space are equivalent. None of these statements is true

anymore in Banach spaces of infinite dimension, such as ℓ2.

If H is a vector space endowed with a scalar product and is finite dimensional, then H automa-

tically becomes a Hilbert space. But if H is infinite-dimensional, this is not always true. In fact, if
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dim(H ) = ℵ0 (the cardinality of N), then the Baire category theorem prevents H to be Hilbert.

A Hilbert space H , besides Hamel bases, also possesses the so-called Hilbert (or orthonormal)

bases, that is, maximal families of orthogonal norm-one vectors (two vectors are orthogonal if their

inner product is zero). If the dimension of H is finite, then the Gram–Schmidt process allows us to

produce a Hilbert basis from a linear basis, and the cardinalities of these bases are the same. If the

dimension of H is infinite, then the cardinality of a Hilbert basis for H is strictly smaller than the

cardinality of a linear basis for H ; see [11].

If A is a continuous linear operator on ℓ2 or Cn, then it admits a matrix representation, i.e. an

infinite (resp., finite) matrix whose (i, j)-entry is ⟨Aej , ei⟩ for all pairs i, j, and the action of A is

described by the usual matrix product (evidently, a change of orthonormal basis results in a different

matrix representation, and each can be endowed with some norm; see [5] for a study of variation

of matrix norms as the basis varies). The converse is true for Mn in the sense that an arbitrary

matrix A ∈ Mn corresponds to the linear mapping on Cn defined by [z1, . . . , zn]
t 7→ A[z1, . . . , zn]

t via

a matrix product. A similar assertion is not valid for for infinite matrices: not any matrix corresponds

to a continuous linear operator. In principle, all information about an operator acting on a finite

dimensional Hilbert space can be systematically obtained from its matrix representation; the latter in

the infinite dimensional case is not useful.

As Halmos indicated [11, Chapter 5], if
∑

i

∑
j |λij |2 < ∞, then there is an operator (matrix, resp.)

A ∈ B(ℓ2) such that λij = ⟨Aej , ei⟩. Of course, this condition is not necessary. For example, it is not

satisfied even in the simplest case of the identity operator.

Thus, we can identify B(Cn) with the space Mn of all n×n complex matrices in the canonical way.

In this case, if A = [aij ] ∈ Mn, then A∗ = [aji]. In addition, σ(A) is exactly the set of eigenvalues of

A, since A is invertible if and only if it is one-to-one.

Now we present several examples to demonstrate some differences between the properties of oper-

ators on finite dimensional Hilbert spaces and those on infinite dimensional ones. It is worthy to say

that there are several tricks with matrices, in particular 2×2 ones, which help researchers to establish

results concerning operators that could not be treated easily; see e.g. [2, 15].

• A linear operator A ∈ B(Cn) is injective (one-to-one) if and only if it is surjective. This is

not the case for linear operators on infinite dimensional Hilbert spaces. For example, the right

(unilateral) shift operator A : ℓ2 → ℓ2 defined by

A(x1, x2, . . .) = (0, x1, x2, . . .)

is injective but not surjective. In addition,

A∗(x1, x2, . . .) = (x2, x3, . . .),

which is called left (backward) shift operator, is surjective but not injective.

From another point of view, we can describe the situation above by stating that a matrix

A is an isometry (i.e. ∥Ax|| = ∥x∥ for all x) if and only if it is unitary. In the framework
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of infinite dimensional Hilbert spaces this is not valid, since the right shift operator A is an

isometry (A∗A = I) but not unitary (AA∗ ̸= I); see also [7].

Still, there is another direction to look at this from: We observe that the right shift operator

A has a left inverse but not a right inverse whilst a square matrix having a left inverse will

automatically have a right inverse.

• Every matrix has an eigenvalue while the right shift operator A has no eigenvalues since

Ax = λx implies that x = 0. This shows that the spectrum of an operator may have no eigen-

value but still is nonempty. It is worthy to mention that the lack of eigenvalues for normal

operators is replaced by the spectral theorem.

• By the rank-nullity theorem, dimker(A) = dimker(A∗) for any square matrix A. This is not

true in an infinite dimensional Hilbert space, in general. For example, if A is the right shift

operator on ℓ2, then dimker(A) = 0 ̸= 1 = dimker(A∗).

• Every matrix has a finite number of eigenvalues while an operator may have infinitely (even

uncountably) many eigenvalues. For example, every λ in the open unit disk of the complex

plane is an eigenvalue of the left shift operator [17, Example 2.3.2]. On the other hand, the

right shift operator has no eigenvalues.

• Unlike the finite dimensional case in which the trace of each matrix is a complex number, the

trace of an arbitrary operator A ∈ B(ℓ2) defined by tr(A) =
∑∞

j=1⟨Aej , ej⟩ may be infinite (or

even non-existing). For example, for the diagonal operator

A(x1, x2, x3, . . .) = (x1,
1

2
x2,

1

3
x3, . . .)

on ℓ2, we have tr(A) =
∑∞

j=1
1
j = ∞. By the way, Grothiendieck [9] has an example of an

operator on a Banach Space where the trace is not the sum of the eigenvalues.

• The spectrum of a matrix A is contained in its numerical range, and the latter set is closed.

Generally, neither statement is true for operators. For example, if A is the diagonal operator

diag(1, 1/2, 1/3, . . .) (see the item above), then σ(A) = {1/n : n ∈ N} ∪ {0} ⊈ (0, 1] = W (A)

and W (A) is not a closed subset of the complex plane; cf. [11, Problem 212]. However, σ(A)

is a subset of the closure of W (A) for every operator A.

• Two operators T and S are similar if T = W−1SW for some invertible operator W . They are

asymptotically similar if there exist sequences (Wn) and (Vn) of invertible operators such that

S = limnW
−1
n TWn and T = limn V

−1
n SVn. In the finite dimensional case, these two notions

coincide but that is not the case in the infinite dimensional realm; cf. [12, Theorem 2.1].
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• It is known that the numerical range of any operator A satisfying An = I cannot be a disk in

the finite dimensional setting; cf. [14]. However, the authors of [10] construct an operator A

acting on an infinite dimensional Hilbert space such that T 3 = I and W (A) is an open disk

centered at the origin.

• If an invertible matrix A is such that ||Ak∥, k = ±1,±2, . . . is constant, then A is unitary.

This is not so in the infinite-dimensional Hilbert spaces. Indeed, it is shown in [6] that for each

ε > 0, there exists a nonunitary invertible operator A on ℓ2(Z)⊕ ℓ2(Z) such that ∥Ak∥ = 1+ ε

for all k ≥ 1.

• The determinant of a matrix is equal to the product of its eigenvalues counted with their

multiplicities. Evidently, this definition does not carry over to ‘all’ operators acting on infinite

dimensional Hilbert spaces.

An extension of the notion of determinant is the Fredholm determinant, which is defined for

operators of the form I +A, as an extension of det(I +A) = exp(tr(log(I +A))), where A is a

trace class operator, that is, an operator on a Hilbert space H such that
∑

e∈E⟨|A|e, e⟩ < ∞,

where E is an arbitrary orthonormal basis and |A| stands for the positive square root of A∗A.

Indeed, for operators in I + trace class the determinant is the product of eigenvalues (this is

usually stated in terms of the trace being the sum of eigenvalues for trace class operators and

called Lidskii’s theorem); see [19].

• It is easily observed from

∥Ax∥ ≤ ∥A∥ ∥x∥ and ∥Ax∥ = ∥
n∑

j=1

⟨x, ej⟩Aej∥ ≤ n∥x∥ max
1≤j≤n

∥Aej∥

that a sequence {An} converges to A in the norm topology if and only if {Anx} converges to

Ax for all x ∈ Cn. In infinite dimensional Hilbert spaces, the pointwise convergence does not

imply the norm convergence, in general. For example, let An ∈ B(ℓ2) be defined by the infinite

diagonal matrix diag(1, 1, . . . , 1, 0, 0, . . .), whose first n diagonal entries are equal to 1, and all

other entries are 0. Then clearly Anx → Ix, for all x ∈ ℓ2, but the sequence (An) is not a

Cauchy sequence in B(ℓ2) since ∥An − Am∥ = 1, n ̸= m, and so cannot be convergent in the

norm topology.

• Every linear mapping A : Cn → Cn is automatically continuous while a linear mapping on an

infinite dimensional inner product space may be discontinuous (unbounded). Suppose that K

is the dense subspace of ℓ2 consisting of all sequences (xn) with xn = 0 for sufficiently large n.

Let A : K → K denote the linear mapping (xn) 7→ (nxn). Then A is unbounded since if (en)

is the orthonormal basis for ℓ2, then ∥en∥ = 1 and ∥Aen∥ = n for all n.
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In this example, A is defined on a dense subset of ℓ2 but not on the whole space. Discon-

tinuous linear operators defined on the whole space also exist and can be constructed with the

use of Hamel bases. For example, following Halmos [11]: Extend the standard orthonormal

basis (en) of ℓ2 to a Hamel (linear algebra) basis β for ℓ2. Choose f ∈ β different from all ens,

and define the linear operator A : ℓ2 → ℓ2 by

A(g) =

{
1 g = f

0 g ∈ β \ {f}

Then A(en) = 0 and A is unbounded (otherwise, 1 = A(f) =

∞∑
n=1

⟨f, en⟩Aen = 0).

• Given an operator A, the unique operator A† (if exists) satisfying (i) AA†A = A, (ii) A†AA† =

A†, (iii) A†A is self-adjoint, and (iv) AA† is self-adjoint, is called the Moore–Penrose inverse

of A. Every matrix has the Moore–Penrose inverse. However, there are operators having

no Moore-Penrose inverses (precisely, those operators with non-closed ranges; see [16]). For

example, the range of the operator A on ℓ2 defined by A(x1, x2, x3, . . .) = (x1,
1
2x2,

1
3x3, . . .)

contains all finitely nonzero sequences, and so is dense in ℓ2. Since this range does not contain

the sequence (1/n), it is not closed. This A has no Moore-Penrose inverse.

• It is known that every normal matrix can be written of the form A = UDU∗ with the unitary

matrix U and diagonal matrix D = diag(λ1, . . . , λn), where λ1, . . . , λn are the eigenvalues of

A; see [21, Theorem 9.1]. Such a result does not hold in the infinite dimensional case. In other

words, there exist normal operators A on an infinite dimensional Hilbert space H for which

there are no orthonormal bases of H consisting of the eigenvectors of A. As an extreme man-

ifestation of this phenomenon, the bilateral shift operator A(fn) = fn+1 (n = 0,±1,±2, . . .)

on ℓ2(Z) is normal but has no eigenvalues [17, p. 56].

• An operator A is called hypercyclic if there exists a vector x0 ∈ H such that the set

{Anx0 : n = 0, 1, 2, . . .} is dense in H . The space H must be separable in order to sup-

port a hypercyclic operator. By using the Jordan decomposition for a matrix, it is not difficult

to prove that if H is finite dimensional, then it has no hypercyclic operator (see [8, pp. 54–

55]). The situation for Hilbert spaces of infinite dimension is quite different. For example,

every scalar multiple αA (|α| > 1) of the left shift operator A on ℓ2 is a hypercyclic operator;

see [18]. A close, weaker notion is the one of supercyclicity. An operator A is called hypercyclic

if there exists a vector x0 ∈ H such that the projective orbit {λAnx0 : n = 0, 1, 2, . . . ;λ ∈ K}
(K = R or C) is dense in H . Since any hypercyclic operator is supercyclic, we have that

every infinite dimensional separable Hilbert space supports supercyclic operators (in fact, A

itself is supercyclic on ℓ2). In the finite dimensional case, Herzog [13] proved in 1992 that, if

K = R (K = C, resp.), then H supports a supercyclic operator if and only if dim(H ) ∈ {1, 2}
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(dim(H ) = 1, resp.). In fact, every rotation on R2 given by a matrix

(
cos(2πα) sin(2πα)

− sin(2πα) cos(2πα)

)
with α irrational is supercyclic.

• Factorization of matrices and operators acting on Hilbert spaces is a lively area of research in

matrix analysis and operator theory. Problems of factorization ask whether a given operator

in B(H ) can be factored into (real or complex) linear combination or product of finitely many

operators in a class of operators and seek for the minimal number of factors in a factorization.

Matrix versions of these problems have a long history and many of them have appropriate

analogues (probably under some additional conditions) for operators acting on Hilbert spaces

of arbitrary dimension. However, some of these problems having solutions for matrices cannot

have any solution for operators acting on infinite dimensional Hilbert space. A nice survey on

such problems is [20]. By the polar decomposition, every matrix A = U |A| is the product of

two normal matrices, say U and |A|, whilst the right shift operator cannot be factored as the

product of finitely many normal operators; cf. [11, Problem 144(a)].

• Bart et al. [1] showed that if P1, . . . , Pk are idempotent matrices such that P1 + . . .+ Pk = 0,

then Pj = 0 for all j = 1, . . . , k. The situation changes in the infinite dimensional setting. As

shown in [1], for k ≥ 5 there exist k different nonzero projections P1, . . . , Pk on H such that

P1 + . . .+ Pk = 0. By the way, the number 5 is sharp in the sense that there is no nontrivial

zero sum of four idempotents.

• For a long time, there has been considerable interest in the famous invariant subspace problem.

This problem asks whether every operator T on a Banach space X has a nontrivial (neither

{0} nor X ) invariant closed subspace. By an invariant subspace, we mean a subspace M

such that TM ⊆ M . Enflo [3] in 1975 proved that there exists a separable Banach space

X and a continuous linear operator on X with dense range having no nontrivial closed

invariant subspace. If H is a nonseparable Hilbert space, x0 ̸= 0, and A ∈ B(H ), then the

closed linear span {Anx0 : n = 0, 1, 2, . . .} is a nontrivial invariant subspace for A. By the

spectral theorem, all normal operators on an infinite dimensional Hilbert space admit nontrivial

invariant subspaces. The problem, in its generality, remains still open for (separable) Hilbert

spaces. However, if A ∈ Mn n ≥ 2 is a matrix and λ is an eigenvalue of A, then its eigenspace

{x ∈ Cn : Ax = λx} is a nontrivial invariant subspace for A. Just around the time when

this paper was accepted (namely on May, 25th, 2023), Per H. Enflo announced that he had

obtained a potential definitive answer to the invariant subspace problem in Hilbert spaces (see

https://www.ucm.es/imi/boletin00091#noticia and [4]), in which he claimed that that

every bounded linear operator on a Hilbert space has a closed non-trivial invariant subspace.

DOI: https://doi.org/10.30504/JIMS.2023.392498.1104

https://www.ucm.es/imi/boletin00091#noticia
https://doi.org/10.30504/JIMS.2023.392498.1104


40 J. Iran. Math. Soc. 3 (2022), no. 1, 33-41 L. Bernal-González, M. S. Moslehian and J. B. Seoane-Sepúlveda
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