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Abstract. For i = 1, 2, let Ci be a convex set in a locally convex Hausdorff topological vector space

Xi. Denote by conv(Ci) the space of all convex, proper, lower semicontinuous functions on Ci. A

representation is given of any bijection T : conv(C1) → conv(C2) that preserves the pointwise order.

For Xi = Rn, this recovers a result of Artstein-Avidan and Milman and its generalization by Cheng

and Luo. If X1 is a Banach space and X2 = X∗
1 with the weak∗-topology, it gives a result due

to Iusem, Reem and Svaiter. We also obtain representation of order reversing bijections and thus

a characterization of the Legendre transform, generalizing the same result by Artstein-Avidan and

Milman for the Rn case. The result on order isomorphisms actually holds for convex functions with

values in ordered topological vector spaces.

1. Introduction

Let X be a Hausdorff topological vector space and let conv(X) be the space of convex, proper,

lower semicontinuous extended real-valued functions on X. In [2, 3], Artstein-Avidan and Milman

characterized order preserving and order reversing maps acting on conv(Rn). As a result, they discov-

ered a fundamental characterization of the Legendre transform from convex analysis as the essentially

unique order reversing idempotent map on conv(Rn). Subsequently, for a convex subset C of Rn, a
characterization of order preserving maps on conv(C) in terms of epigraphs was obtained by Artstein-

Avidan, Florentin and Milman [1]. Recently, Cheng and Luo [4] obtained an explicit formula for such
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mappings. Moving to the infinite dimensional realm, Iusem, Reem and Svaiter [6] characterized order

preserving as well as order reversing maps from conv(X) to conv(X∗, w∗), where X is a Banach space

and w∗ signifies the weak∗-topology on X∗. Cheng and Luo [5] also showed that for a Banach space

X, there is an order preserving bijection from conv(X) onto conv(X∗) if and only if X is reflexive and

X and X∗ are isomorphic as Banach spaces.

In this paper, we unify and generalize the aforementioned results. First of all, Theorem 2.13

gives a representation of a general order isomorphism T : conv(C1, E1) → conv(C2, E2), where, for

i = 1, 2, Ci is a convex set in a Hausdorff topological vector space Xi and Ei is an ordered topological

vector space with a generating positive cone. A point worth noting is that the proof uses only

elementary calculations. Continuity of the constituents of the representation is shown under additional

assumptions (Corollary 3.4). In particular, if Ci has nonempty interior inXi, whereXi is locally convex

Hausdorff, then X1 and X2 must be linearly homeomorphic in their weak topologies. In addition to

Ei = R, Corollary 3.4 also applies if, e.g., Ei is the space of self-adjoint elements in a C∗-algebra, or

if Ei is the space of regular operators on an ordered Banach space. See the last remark in §2. In the

final section, we consider order reversing bijections from conv(X1, E1) onto conv(X2, E2). Theorem

4.1 shows that such a map must be essentially unique if it exists. As a result, if Xi is locally convex

Hausdorff and Ei = R, then an order reversing bijection T : conv(X1) → conv(X2) exists if and only

if (X∗
1 , w

∗) and (X2, w) are linearly homeomorphic. In this case, T must be essentially the Legendre

transform (Corollary 4.3). This allows us to obtain a characterization of the Legendre transform

generalizing [3, Theorem 1] (Corollary 4.4).

2. Characterization of order isomorphisms

An ordered topological vector space E is a topological vector space with a partial order ≤ so

that (a) x + z ≤ y + z and λx ≤ λy if x, y, z ∈ E, x ≤ y and 0 ≤ λ ∈ R, (b) the positive cone

E+ = {x ∈ E : x ≥ 0} is closed. The positive cone E+ is generating if E = E+ − E+. If E+ is

generating and u1, u2 ∈ E, let v1, v2 ∈ E+ be such that ui ≤ vi, i = 1, 2. Then ui ≤ vi ≤ v1 + v2. Let

C be a nonempty convex set in a Hausdorff topological vector space and let E be an ordered Hausdorff

topological vector space. A function f : A→ E defined on a convex subset A of C is

(1) convex if

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)

for any α ∈ [0, 1] and x1, x2 ∈ A.

(2) lower semicontinuous (lsc) if the set {x ∈ A : f(x) ≤ u} is closed in C for any u ∈ E.

The set A is called the domain of f and is denoted by dom f . Let conv(C,E) be the set of all convex

lsc functions f : dom f → E, where dom f is a nonempty convex subset of C. For f, g ∈ conv(C,E),

say that f ≤ g if dom g ⊆ dom f and f(x) ≤ g(x) for all x ∈ dom g. We begin by identifying some

functions in conv(C,E). The first lemma is immediate.
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Lemma 2.1. Let A be a nonempty closed convex subset of C and u0 ∈ E. Define the function

ξA,u0 : A→ E by ξA,u0(x) = u0 for all x ∈ A. Then ξA,u0 ∈ conv(C,E).

If A = {x0} for some x0 ∈ C, then ξA,u0 is also written as ξx0,u0 . If x1, x2 ∈ C, denote the line

segment joining x1, x2 by [x1, x2].

Lemma 2.2. Let x1, x2 be distinct points in C and let u1, u2 ∈ E. The function f : [x1, x2] → E

defined by

f((1− α)x1 + αx2) = (1− α)u1 + αu2

belongs to conv(C,E).

Proof. The convexity of f is clear. Define τ : [0, 1] → C by τ(α) = (1 − α)x1 + αx2. Clearly τ is a

continuous function. Let u ∈ E. Then

{x ∈ [x1, x2] : f(x) ≤ u} = τ{α ∈ [0, 1] : f(τ(α)) ≤ u}.

Since the positive cone E+ is closed and f ◦ τ is a continuous function, {α ∈ [0, 1] : f(τ(α)) ≤ u} is

closed in [0, 1]. Thus

{x ∈ [x1, x2] : f(x) ≤ u} = τ{α ∈ [0, 1] : f(τ(α)) ≤ u}

is compact and hence closed in C. This proves that f is lsc. □

From hereon, let C1, C2 be (nonempty) convex sets in Hausdorff topological vector spaces X1, X2

respectively and let E1, E2 be Hausdorff ordered topological vector spaces with generating positive

cones. A bijection T : conv(C1, E1) → conv(C2, E2) such that f1 ≤ f2 ⇐⇒ Tf1 ≤ Tf2 for any

f1, f2 ∈ conv(C1, E1) is called an order isomorphism. For the remainder of a section, fix an order

isomorphism T : conv(C1, E1) → conv(C2, E2).

Lemma 2.3. Let f1, f2 ∈ conv(X1, E1). Then dom f1∩dom f2 = ∅ if and only if domTf1∩domTf2 =

∅.

Proof. Suppose that x0 ∈ dom f1 ∩ dom f2. Since (E1)+ is generating, there exists u0 ∈ E1 such that

f1(x0), f2(x0) ≤ u0, By Lemma 2.1, ξx0,u0 ∈ conv(X1, E1). Obviously, fi ≤ ξx0,u0 . Thus Tfi ≤ Tξx0,u0 .

Hence ∅ ̸= domTξx0,u0 ⊆ domTf1 ∩ domTf2. The reverse direction follows by symmetry. □

Lemma 2.4. For any x ∈ C1 and u1, u2 ∈ E1, domTξx,u1 = domTξx,u2 has exactly one point. Define

φ : C1 → C2 by {φ(x)} = domTξx,u for any u ∈ E. Then φ is a bijection so that φ(dom f) = domTf

for any f ∈ conv(C1, E1). In particular, φ([x1, x2]) = [φ(x1), φ(x2)] for any x1, x2 ∈ C1; hence φ

maps convex subsets of C1 onto convex subsets of C2.

Proof. Suppose that yi ∈ domTξx,ui , i = 1, 2. Let v ∈ E2. Then dom ξyi,v ∩ domTξx,ui ̸= ∅. Hence

domT−1ξyi,v ∩ dom ξx,ui ̸= ∅ by Lemma 2.3. Thus x ∈ domT−1ξyi,v. Therefore, domT−1ξy1,v ∩
domT−1ξy2,v ̸= ∅. It follows from Lemma 2.3 again that dom ξy1,v ∩ dom ξy2,v ̸= ∅. So y1 = y2. This

proves that domTξx,u1 = domTξx,u2 has exactly one point.

DOI: https://dx.doi.org/10.30504/JIMS.2023.385243.1089

https://dx.doi.org/10.30504/JIMS.2023.385243.1089


30 J. Iran. Math. Soc. 4 (2023), no. 1, 27-44 D. H. Leung

Define φ as above. By symmetry, there exists ψ : C2 → C1 such that {ψ(y)} = domT−1ξy,v for any

(y, v) ∈ C2 ×E2. In this case, T−1ξy,v = ξψ(y),u for some u ∈ E1. Then

φ(ψ(y)) = domTξψ(y),u = dom ξy,v = y.

By symmetry, ψ(φ(x)) = x for any x ∈ C1. Hence φ is a bijection.

Let f ∈ conv(C1, E1). Then

x ∈ dom f ⇐⇒ dom ξx,u ∩ dom f ̸= ∅ for some u ∈ E1

⇐⇒ domTξx,u ∩ domTf ̸= ∅ for some u ∈ E1

⇐⇒ φ(x) ∈ domTf.

Suppose that x1, x2 ∈ C1. By Lemma 2.1, ξ[x1,x2],u ∈ conv(C1, E1) for any u ∈ E1. By the above,

φ([x1, x2]) = domTξ[x1,x2],u is a convex set in C2. Thus [φ(x1), φ(x2)] ⊆ φ([x1, x2]). Similarly,

[x1, x2] ⊆ φ−1([φ(x1), φ(x2)]). Therefore, φ([x1, x2]) = [φ(x1), φ(x2)]. The final statement of the

lemma follows readily. □

Lemma 2.5. If f ∈ conv(C1, E1) and x ∈ dom f , then Tf(φ(x)) = Tξx,f(x)(φ(x)).

Proof. By Lemma 2.4, domTξx,f(x) = φ(dom ξx,f(x)) = {φ(x)} ⊆ domTf . In particular, there exists

v ∈ E2 so that Tξx,f(x) = ξφ(x),v. Since f ≤ ξx,f(x), Tf ≤ ξφ(x),v and so Tf(φ(x)) ≤ v. Let

w = 1
2(Tf(φ(x)) + v). Then

Tf ≤ ξφ(x),w ≤ ξφ(x),v =⇒ f ≤ T−1ξφ(x),w ≤ ξx,f(x).

By Lemma 2.4, φ(domT−1ξφ(x),w) = dom ξφ(x),w = {φ(x)}. Thus there exists u′ ∈ E1 so that

T−1ξφ(x),w = ξx,u′ . But then f(x) ≤ u′ ≤ f(x) and so u′ = f(x). Hence, T−1ξφ(x),w = ξx,f(x).

Therefore, ξφ(x),v = Tξx,f(x) = ξφ(x),w, whence v = w. It follows that Tf(φ(x)) = v = Tξx,f(x)(φ(x)).

□

Lemma 2.6. There is a function Φ : C1 × E1 → E2 such that Φ(x, ·) : E1 → E2 is a bijection for all

x ∈ C1 and that

Tf(y) = Φ(φ−1(y), f ◦ φ−1(y)) for all f ∈ conv(C1, E1) and y ∈ domTf .

Proof. By Lemma 2.4, φ(x) ∈ domTξx,u for any (x, u) ∈ C1 × E1. Define Φ : C1 × E1 → E2 by

Φ(x, u) = Tξx,u(φ(x)). Let f ∈ conv(C1, E1) and let y ∈ domTf . Then x := φ−1(y) ∈ dom f by

Lemma 2.4. By Lemma 2.5,

Tf(y) = Tξx,f(x)(y) = Φ(x, f(x)) = Φ(φ−1(y), f ◦ φ−1(y)).

Note that from the proof of Lemma 2.4, the bijection ψ : C2 → C1 associated with T−1 is φ−1.

Therefore, applying the above to T−1, there exists Ψ : C2 × E2 → E1 so that

T−1g(x) = Ψ(φ(x), g ◦ φ(x)) for all g ∈ conv(C2, E2) and x ∈ domT−1g.
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Take any (x, u) ∈ C1 ×E1. Then Tξx,u(φ(x)) = Φ(x, u). Hence

u = (T−1Tξx,u)(x) = Ψ(φ(x), T ξφ(x),u ◦ φ(x)) = Ψ(φ(x),Φ(x, u)).

Similarly, for any v ∈ E2, v = Φ(x,Ψ(φ(x), v)). This proves that Ψ(φ(x), ·) is the inverse of Φ(x, ·).
Therefore, Φ(x, ·) : E1 → E2 is a bijection. □

Lemma 2.7. Let x1, x2 be distinct points in C1 and let u1, u2 ∈ E1. Define f : [x1, x2] → E1 by

f((1− α)x1 + αx2) = (1− α)u1 + αu2. Let g : [φ(x1), φ(x2)] → E2 be given by

g((1− α)φ(x1) + αφ(x2)) = (1− α)v1 + αv2, vi = Tf(φ(xi)), i = 1, 2.

Then g = Tf .

Proof. First of all, f ∈ conv(C1, E1) by Lemma 2.2. It follows from Lemma 2.4 that

domTf = φ(dom f) = φ([x1, x2]) = [φ(x1), φ(x2)] = dom g.

Similarly, domT−1g = [x1, x2]. Since Tf is convex, Tf ≤ g. Hence f ≤ T−1g. Label T−1g(xi) as u
′
i,

i = 1, 2. Then

Φ(xi, ui) = Tf(φ(xi)) = g(φ(xi)) = Φ(xi, u
′
i).

So u′i = ui. Therefore,

f((1− α)x1 + αx2) ≤ T−1g((1− α)x1 + αx2)

≤ (1− α)T−1g(x1) + αT−1g(x2) = f((1− α)x1 + αx2).

Thus T−1g = f and hence g = Tf . □

In what follows, we seek to discover formulas for the mappings φ and Φ. Denote the zero element

in the ambient space Xi of Ci, as well as the zero element in Ei, i = 1, 2, by the generic symbol 0. If

u is a vector in Ei, the constant function with domain Ci and value u is also denoted by u; so that

u ∈ conv(Ci, Ei). To simplify the notation, we make the following temporary assumption until further

notice.

(2.1) 0 ∈ Ci, i = 1, 2, and φ(0) = 0.

Also set g0 = T0 ∈ conv(C2, E2). By Lemmas 2.4 and 2.6, for any [x1, x2] ⊆ C1 and u ∈ E1,

Tu = T (u|[x1,x2]) on the set φ([x1, x2]) = [φ(x1), φ(x2)]. Thus it follows from Lemma 2.7 that Tu, in

particular g0, is an affine function with domain C2.

Lemma 2.8. Let x1, x2 be distinct points in C1. There exists a real number c > 0 (depending on

x1, x2) so that

(2.2) Tu(φ(x2))− g0(φ(x2)) = c[Tu(φ(x1))− g0(φ(x1))] for any u ∈ E1.

Furthermore,

φ(
x1 + x2

2
) =

1

1 + c
(cφ(x1) + φ(x2)).
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Proof. For simplicity, let τi : [0, 1] → Ei be given by

τ1(α) = (1− α)x1 + αx2 and τ2(α) = (1− α)φ(x1) + αφ(x2).

Let u ∈ E1. Define f1, f2 : [x1, x2] → E1 by

f1(τ1(α)) = αu and f2(τ1(α)) = (1− α)u.

By Lemma 2.2, fi ∈ conv(C1, E1). Since f1(x1) = 0, f1(x2) = u, f2(x1) = u and f2(x2) = 0, Lemma

2.6 gives

Tf1(φ(x1)) = T0(φ(x1)) = g0(φ(x1)), T f1(φ(x2)) = Tu(φ(x2)),

Tf2(φ(x1)) = Tu(φ(x1)), T f2(φ(x2)) = T0(φ(x2)) = g0(φ(x2)).

Similarly, let x3 = τ1(
1
2). Then f1(x3) = f2(x3) and thus Tf1(φ(x3)) = Tf2(φ(x3)) by Lemma 2.6. By

Lemma 2.4, φ(x3) ∈ [φ(x1), φ(x2)]. As φ is a bijection, there exists β ∈ (0, 1) such that φ(x3) = τ2(β).

By Lemma 2.7, Tfi(τ2(β)) = (1− β)Tfi(φ(x1)) + βTfi(φ(x2)). Hence

Tf1(φ(x3)) = Tf1(τ2(β)) = (1− β)g0(φ(x1)) + β Tu(φ(x2)),

T f2(φ(x3)) = Tf2(τ2(β)) = (1− β)Tu(φ(x1)) + βg0(φ(x2)).

Setting the two lines equal gives (2.2) with c := 1−β
β > 0. Furthermore, c is independent of u. Finally,

φ(
x1 + x2

2
) = φ(x3) = τ2(β) = τ2(

1

1 + c
) =

1

1 + c
(cφ(x1) + φ(x2)).

This completes the proof of the lemma. □

Taking x1 = 0 in Lemma 2.8 and recalling (2.1) gives a positive function c : C1 → R so that

(2.3) Tu(φ(x))− g0(φ(x)) = c(x)[Tu(0)− g0(0)] for any u ∈ E1.

Proposition 2.9. Let x1, x2 be distinct points in C1. For any α ∈ [0, 1],

(2.4) φ((1− α)x1 + αx2) =
(1− α)c(x2)φ(x1) + αc(x1)φ(x2)

(1− α)c(x2) + αc(x1)
.

Proof. Determine γ : [0, 1] → [0, 1] by τ2 ◦ γ = φ ◦ τ1. Let c = c(x2)
c(x1)

. An easy calculation shows that

(2.4) is equivalent to γ(t) = t
(1−t)c+t , t ∈ [0, 1]. Clearly, γ is a bijection so that γ(0) = 0 and γ(1) = 1.

We claim that γ is increasing. Assume that s, t ∈ [0, 1] with s ≤ t. Using Lemma 2.4 in the third step,

τ2(γ(s)) = φ(τ1(s)) ∈ φ([τ1(0), τ1(t)]) = [φ ◦ τ1(0), φ ◦ τ1(t)]

= [τ2(γ(0)), τ2(γ(t))] = τ2([γ(0), γ(t)]).

Thus γ(s) ∈ [0, γ(t)]. Hence γ(s) ≤ γ(t). This proves the claim.
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Fix a nonzero u in E1 and let v = Tu(φ(0))− g0(0) ̸= 0. Since both Tu and g0 are affine on C2, for

α ∈ [0, 1],

Tu(τ2(α))− g0(τ2(α)) = (1− α)[Tu(φ(x1))− g0(φ(x1))](2.5)

+ α[Tu(φ(x2))− g0(φ(x2))]

= (1− α)c(x1)v + αc(x2)v by (2.3)

= c(x1)(1− α(1− c))v.

Now we prove that γ(α) = α
(1−α)c+α when α = i

2n for some n ∈ N ∪ {0} and 0 ≤ i ≤ 2n. The proof is

by induction on n. The case n = 0 has already been observed. Assume that it holds for some n. In

particular, it holds for α = i
2n+1 if 0 ≤ i ≤ 2n+1 and i is even. Consider α = 2i−1

2n+1 , where 1 ≤ i ≤ 2n.

Let x′1 = τ1(
i−1
2n ) and x′2 = τ1(

i
2n ). By the inductive hypothesis,

φ(x′1) = φ(τ1(
i− 1

2n
)) = τ2(γ(

i− 1

2n
)) = τ2(

i− 1

(2n − i+ 1)c+ i− 1
) := τ2(β1),

φ(x′2) = τ2(γ(
i

2n
)) = τ2(

i

(2n − i)c+ i
) := τ2(β2).

Using (2.5), we see that

Tu(φ(x′i))− g0(φ(x
′
i)) = c(x1)[(1− βi(1− c)]v.

So Tu(φ(x′2))− g0(φ(x
′
2)) = c′[Tu(φ(x′1))− g0(φ(x

′
1))], where

c′ =
1− β2(1− c)

1− β1(1− c)
=

(2n − i+ 1)c+ i− 1

(2n − i)c+ i
=

i−1
β1
i
β2

.

Thus Lemma 2.8 holds for [x′1, x
′
2] with the constant c′ in place of c. Hence

φ(τ1(
2i− 1

2n+1
)) = φ(

x′1 + x′2
2

) =
1

1 + c′
(c′φ(x′1) + φ(x′2))

=
1

1 + c′
(c′τ2(β1) + τ2(β2))

=
1

1 + c′
[(1 + c′ − (c′β1 + β2))φ(x1) + (c′β1 + β2)φ(x2)]

= τ2(
c′β1 + β2
1 + c′

) = τ2(
2i− 1
i−1
β1

+ i
β2

)

= τ2(
2i−1
2n+1

(1− 2i−1
2n+1 )c+

2i−1
2n+1

).

Thus γ(α) = α
(1−α)c+α for α = 2i−1

2n+1 , completing the induction.

Since γ : [0, 1] → [0, 1] is an increasing bijection, it is continuous. Hence γ(α) = α
(1−α)c+α for all

α ∈ [0, 1]. □

Corollary 2.10. If x1, x2 ∈ C1 and α ∈ [0, 1], then

c((1− α)x1 + αx2) =
c(x1)c(x2)

(1− α)c(x2) + αc(x1)
.
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Thus 1
c is a positive affine function on C1.

Proof. The formula is trivial if x1 = x2. Assume that x1, x2 are distinct. As before, let τ1(α) =

(1−α)x1+αx2, α ∈ [0, 1]. Fix a nonzero u in E1. By Proposition 2.9, (2.3) and the fact that Tu and

g0 are affine,

c(τ1(α))[Tu(0)− g0(0)] = Tu(φ(τ1(α)))− g0(φ(τ1(α)))

= (Tu− g0)(
(1− α)c(x2)φ(x1) + αc(x1)φ(x2)

(1− α)c(x2) + αc(x1)
)

=
(1− α)c(x2)

(1− α)c(x2) + αc(x1)
(Tu− g0)(φ(x1))

+
αc(x1)

(1− α)c(x2) + αc(x1)
(Tu− g0)(φ(x2))

=
(1− α)c(x2)

(1− α)c(x2) + αc(x1)
c(x1)(Tu− g0)(0)

+
αc(x1)

(1− α)c(x2) + αc(x1)
c(x2)(Tu− g0)(0)

=
c(x1)c(x2)

(1− α)c(x2) + αc(x1)
[Tu(0)− g0(0)].

Since Tu(0) ̸= g0(0), the equation in the statement of the corollary is proved. The final assertion

follows immediately. □

Keeping assumptions (2.1), we find a Hamel basis (xi)i∈I ⊆ C1 of spanC1. To rule out trivialities,

suppose that C1 contains more than one point, so that spanC1 ̸= {0}. In this case, C2 also contains

more than one point, since φ : C1 → C2 is a bijection.

Proposition 2.11. Let ci = c(xi), i ∈ I. Define a linear transformation L : spanC1 → spanC2 and

a linear functional ℓ on spanC1 by

L(
∑

aixi) =
∑
i

ai
ci
φ(xi) and ℓ(

∑
aixi) =

∑
i

ai(
1

ci
− 1)

for any real family (ai)i∈I with finitely many nonzero terms. Then ℓ(x) ̸= −1 and φ(x) = Lx
1+ℓ(x) for

any x ∈ C1. Moreover, L is a vector space isomorphism from spanC1 onto spanC2.

Proof. First note that 1 + ℓ and 1
c are two affine functions on C1 satisfying (1 + ℓ)(xi) =

1
c(xi)

for all

i ∈ I and (1 + ℓ)(0) = c(0), since c(0) = 1 by (2.3). Hence 1 + ℓ = 1
c for all x ∈ C1. In particular,

1 + ℓ(x) ̸= 0 for x ∈ C1.
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Suppose that u, v, w ∈ C1 and w = (1 − α)u + αv for some α ∈ R. By Proposition 2.9 and the

affineness of 1
c ,

φ(w) =
(1− α)c(v)φ(u) + αc(u)φ(v)

(1− α)c(v) + αc(u)
(2.6)

=
(1− α)φ(u)c(u) + αφ(v)c(v)

1−α
c(u) +

α
c(v)

= c(w) · [(1− α)
φ(u)

c(u)
+ α

φ(v)

c(v)
].

Let C = {x ∈ C1 : φ(x) = c(x)L(x)}. By definition of L and (2.1), xi ∈ C for all i ∈ I and 0 ∈ C.

If u, v ∈ C and w = (1− α)u+ αv ∈ C1, where α ∈ R, then by (2.6),

φ(w) = c(w) · [(1− α)
φ(u)

c(u)
+ α

φ(v)

c(v)
]

= c(w) · [(1− α)L(u) + αL(v)] = c(w)L(w).

Thus w ∈ C. In particular, C is convex. If x ∈ C1 ⊆ span{xi : i ∈ I}, there are u, v ∈ co{xi : i ∈ I} ⊆
C and numbers a, b ≥ 0 so that x = au− bv. If a = 0, then w = −bv + (1 + b)0 ∈ C by the above. If

a > 0, choose k so that 0 < k < min{ a
1+b , 1}. Then ku ∈ [0, u] ⊆ C and bkv

a−k ∈ [0, v] ⊆ C. Let α = a
k .

We have

w = au− bv = (1− α)
bkv

a− k
+ α · ku ∈ C.

This proves that C = C1 and hence φ(x) = c(x)L(x) for all x ∈ C1. Since 1
c = 1 + ℓ, it follows that

φ(x) = Lx
1+ℓ(x) for any x ∈ C1.

By symmetry, there are a linear transformation M : spanC2 → spanC1 and a linear functional m

on spanC2 so that φ−1(y) = My
1+m(y) for any y ∈ C2. (Note from the proof of Lemma 2.4 that the map

ψ : C2 → C1 associated with T−1 is precisely φ−1.) If x ∈ C1, then

(2.7) x = φ−1(φ(x)) = φ−1(
Lx

1 + ℓ(x)
) =

MLx

1 + ℓ(x) +m(Lx)
.

Take any nonzero x ∈ C1 and apply (2.7) to x and x
2 . We find that

MLx

1 + ℓ(x) +m(Lx)
= x =

2MLx

2 + ℓ(x) +m(Lx)
.

In particular, MLx ̸= 0 and thus ℓ(x) +m(Lx) = 0. Hence MLx = x for any x ∈ C1 and so the same

holds for any x ∈ spanC1. By symmetry, LMy = y for any y ∈ spanC2. Therefore, L is a vector

space isomorphism from spanC1 onto spanC2. □

Recall the map Φ : C1 × E1 → E2 from Lemma 2.6.

Proposition 2.12. Let Φ0(u) = Φ(0, u) − Φ(0, 0) for all u ∈ E1. Then Φ0 : E1 → E2 is an order

preserving vector space isomorphism. For any (x, u) ∈ C1 × E1,

(2.8) Φ(x, u) = g0(φ(x)) +
Φ0(u)

1 + ℓ(x)
.
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Proof. First note that if f ∈ conv(C1, E1) and x ∈ dom f , then since φ(0) = 0 and g0 = T0,

Φ0(f(x)) = Φ(0, f(x))− Φ(0, 0) = Tw(0)− g0(0),

where w = f(x). By Lemma 2.6 and (2.3),

(2.9) (Tf − g0)(φ(x)) = Φ(x,w)− Φ(x, 0) = (Tw − g0)(φ(x)) = c(x)Φ0(f(x)).

From the proof of Proposition 2.11, c = 1
1+ℓ . Hence, for any (x, u) ∈ C1 × E1,

Φ(x, u) = Tu(φ(x)) = g0(φ(x)) + (Tu− g0)(φ(x)) = g0(φ(x)) +
Φ0(u)

1 + ℓ(x)
.

Thus (2.8) holds. Let u, v ∈ E1 be given. Choose a nonzero x ∈ C1. By (2.8),

(Tu− g0)(φ(x)) = Φ(x, u)− Φ(x, 0) =
Φ0(u)

1 + ℓ(x)
.

Similarly, (Tv−g0)(φ(x)) = Φ0(v)
1+ℓ(x) . Define f : [0, x] → E1 by f(αx) = (1−α)u+αv. Since f(x2 ) =

u+v
2 ,

by (2.9),

(Tf − g0)(φ(
x

2
)) = c(

x

2
)Φ0(

u+ v

2
) =

2Φ0(
u+v
2 )

2 + ℓ(x)
.

By Proposition 2.11, φ(x) = Lx
1+ℓ(x) and

φ(
x

2
) =

Lx

2 + ℓ(x)
=

φ(0)

2 + ℓ(x)
+

(1 + ℓ(x))φ(x)

2 + ℓ(x)
.

Thus by Lemma 2.7, the affineness of g0 and (2.9),

(Tf − g0)(φ(
x

2
)) =

(Tf − g0)(0) + (1 + ℓ(x))(Tf − g0)(φ(x))

2 + ℓ(x)
=

Φ0(u) + Φ0(v)

2 + ℓ(x)
.

This proves that

Φ0(u) + Φ0(v) = 2Φ0(
u+ v

2
).

Setting v = 0 and using Φ0(0) = 0, we find that Φ0(
u
2 ) =

1
2Φ0(u). Thus, for any u, v ∈ E1, Φ0(u+v) =

Φ0(u) + Φ0(v).

Since T is an order isomorphism, if u ≤ v in E1, then Tu ≤ Tv. In particular,

Φ0(u) = Tu(0)− Φ(0, 0) ≤ Tv(0)− Φ(0, 0) = Φ0(v).

In the proof of Lemma 2.6, we find that if Ψ : C2 × E2 → E1 is such that Ψ(φ(x), ·) is the inverse of

Φ(x, ·) for all x ∈ C1, then T
−1g(x) = Ψ(φ(x), g(φ(x))) for all g ∈ conv(C2, E2) and x ∈ C1. Assume

that u, v ∈ E1 and Φ0(u) ≤ Φ0(v). Then u
′ = Tu(0) ≤ Tv(0) = v′. Hence

u = Ψ(0,Φ(0, u)) = Ψ(0, Tu(0)) = T−1u′(0) ≤ T−1v′(0) = v.

This proves that Φ0 preserves order (in both directions). Next, we show that Φ0 is homogeneous.

Since E1 = (E1)+ − (E1)+ and Φ0 is additive, it suffices to show that Φ0(αu) = αΦ0(u) if u ∈ (E1)+

and α ≥ 0. From the additivity of Φ0, it is easy to see that Φ0(ru) = rΦ0(u) for any r ∈ Q. Let
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(rn), (sn) be nonnegative rational sequences that increase and decrease to α respectively. Since Φ0

preserves order and is Q-homogeneous,

rnΦ0(u) = Φ0(rnu) ≤ Φ0(αu) ≤ Φ0(snu) = snΦ0(u) for all n.

Thus αΦ0(u) ≤ Φ0(αu) ≤ αΦ0(u); hence Φ0(αu) = αΦ0(u). This proves that Φ0 is linear. As

Φ(0, ·) : E1 → E2 is a bijection, we see that Φ0 : E1 → E2 is a linear bijection and therefore a vector

space isomorphism. □

We have reached the main result of the section. The temporary assumption (2.1) is removed from

now on. Suppose that C is a convex set in a vector space X. For any x1, x2 ∈ C, span(C − x1) =

span(C − x2).

Theorem 2.13. For i = 1, 2, let Ci be a convex set with more than one point in a Hausdorff topological

vector space Xi and let Ei be a nonzero Hausdorff ordered topological vector space whose positive cone is

generating. Assume that T : conv(C1, E1) → conv(C2, E2) is an order isomorphism. Let φ : C1 → C2

be the bijection associated with T from Lemma 2.4. Take x0 ∈ C1 and set D1 = span(C1 − x0),

y0 = φ(x0) and D2 = span(C2 − y0). There are a linear functional ℓ : D1 → R and a vector space

isomorphism L : D1 → D2 so that

ℓ(x− x0) ̸= −1 and φ(x) = y0 +
L(x− x0)

1 + ℓ(x− x0)
for all x, x0 ∈ C1.

Futhermore, there are a lsc affine function g : C2 → E2 and an order preserving vector space isomor-

phism Φ0 : E1 → E2 so that

Tf(y) = g(y) +
Φ0(f ◦ φ−1(y))

1 + ℓ(φ−1(y)− x0)

for all f ∈ conv(C1, E1) and y ∈ domTf = φ(dom f).

Proof. Let x0 ∈ C1 and y0 = φ(x0). Obtain a function Φ : C1 × E1 → E2 from Lemma 2.6. Set

C ′
1 = C1−x0 and C ′

2 = C2−y0. For any f ∈ conv(C1, E1) and g ∈ conv(C2, E2), define j1f : C ′
1 → E1

and j2g : C ′
2 → E2 by

j1f(x− x0) = f(x) and j2g(y − y0) = g(y) for all x ∈ C1, y ∈ C2.

Clearly ji : conv(Ci, Ei) → conv(C ′
i, Ei) is an order isomorphism. Thus T ′ := j2Tj

−1
1 : conv(C ′

1, E1) →
conv(C ′

2, E2) is an order isomorphism. Using Lemmas 2.4 and 2.6, obtain φ′ and Φ′ with respect to

T ′. For any x ∈ C1 and f ∈ conv(C1, E1), let z = φ−1(φ′(x− x0) + y0). Then

Φ′(x− x0, f(x)) = Φ′(x− x0, (j1f)(x− x0))(2.10)

= (T ′j1f)(φ
′(x− x0))

= (j2Tf)(φ
′(x− x0))

= Tf(φ′(x− x0) + y0) = Φ(z, f(z)).

If z ̸= x, for any u, v ∈ E1, there exists f ∈ conv(C1, E1) so that f(x) = u and f(z) = v. Thus

Φ′(x − x0, u) = Φ(z, v) for all u, v ∈ E1. This is absurd since Φ′(x − x0, ·) and Φ(x0, ·) both map
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onto E2 ̸= {0}. Thus φ′(x − x0) = φ(x) − y0. In particular, φ′(0) = 0. So assumptions (2.1) hold

for φ′ : C ′
1 → C ′

2. Set g0 = T ′0 ∈ conv(C ′
2, E2). Note that dom g0 = C ′

2 and that Di = spanC ′
i. By

Propositions 2.11 and 2.12, there are a vector space isomorphism L : D1 → D2, a linear functional ℓ

on D1 and an order preserving vector space isomorphism Φ0 : E1 → E2 so that

φ′(x− x0) =
L(x− x0)

1 + ℓ(x− x0)
and Φ′(x− x0, ·) = g0(φ

′(x− x0)) +
Φ0(·)

1 + ℓ(x− x0)

for all x ∈ C1. Furthermore, ℓ(x−x0) ̸= −1 for all x ∈ C1. By (2.10) and since φ′(x−x0) = φ(x)−y0,
for any f ∈ conv(C1, E1) and y ∈ domTf ,

φ(x) = y0 +
L(x− x0)

1 + ℓ(x− x0)
and(2.11)

Tf(y) = Φ(φ−1(y), f ◦ φ−1(y)) = Φ′(φ−1(y)− x0, f ◦ φ−1(y))(2.12)

= g0(y − y0) +
Φ0(f ◦ φ−1(y))

1 + ℓ(φ−1(y)− x0)
.

Define g by g(y) = g0(y − y0). Then g is lsc, affine and dom g = C2. This completes the proof of the

theorem. □

The corollary below concerns the special case when Ci is the entire topological vector space Xi.

Corollary 2.14. For i = 1, 2, let Xi ̸= {0} be a Hausdorff topological vector space and let Ei ̸= {0}
be a Hausdorff ordered topological vector space whose positive cone is generating. Assume that T :

conv(X1, E1) → conv(X2, E2) is an order isomorphism. Let y0 = φ(0) ∈ C2. There are an lsc affine

function g0 : X2 → E2, a vector space isomorphism L : X1 → X2 and an order preserving vector space

isomorphism Φ0 : E1 → E2 such that for all f ∈ conv(X1, E1), domTf = y0 + L(dom f) and that

Tf(y) = g0(y) + Φ0(f(L
−1(y − y0))) for all f ∈ conv(X1, E1) and y ∈ domTf.

Proof. Take x0 = 0 in Theorem 2.13 to obtain maps ℓ, L, g and Φ0. Since ℓ(x) ̸= −1 for all x ∈ X1,

ℓ = 0. By Theorem 2.13, φ(x) = φ(0) + L(x− x0) = y0 + Lx. By Lemma 2.4, domTf = φ(dom f) =

y0 + L(dom f). Clearly, φ−1(y) = L−1(y − y0). Thus

Tf(y) = g(y) + Φ0(f ◦ φ−1(y)) = g(y) + Φ0(f(L
−1(y − y0))).

□

Remark. Assume that Ei = R for i = 1, 2. The order preserving linear isomorphism Φ0 : R → R
is given by multiplication by some a > 0. Thus Corollary 2.14 gives [3, Corollary 8]. When Ci is a

convex set in Rn and Ei = R, Theorem 2.13 is obtained by Cheng and Luo [4].

In Theorem 2.13, the maps ℓ, L, g and Φ0 may depend on the “base point” x0. To anticipate the

next section, we will work out the the form of the corresponding maps ℓ1, L1, g1 and Φ1 when the base

point changes to some x1 ∈ C1. For any u ∈ E1, take u to be the constant function on C1 with value

u. Using (2.12) at both base points and taking y1 = φ(x1),

g(y) +
Φ0(u)

1 + ℓ(φ−1(y)− x0)
= Tu(y) = g1(y) +

Φ1(u)

1 + ℓ1(φ−1(y)− x1)
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for all y ∈ C2. Since Φ0 and Φ1 are linear, taking u = 0 shows that g1 = g. Set a0 = ℓ(x1 − x0)

and a1 = ℓ1(x0 − x1), Taking y = y1 gives Φ1(u) =
Φ0(u)
1+a0

. Put this back into the equation above and

substitute z = φ−1(y)− x0. As Φ0 is not the zero map,

1 + ℓ(z) = (1 + a0) [1 + a1 + ℓ1(z)] for all z ∈ C1 − x0.

By the linearity of ℓ and ℓ1, the foregoing equation holds for all z ∈ D1. Thus

(1 + a0)(1 + a1) = 1 and ℓ1(z) =
ℓ(z)

1 + a0
= (1 + a1)ℓ(z).

Simiarly, for any x ∈ C1, let z = x− x0 ∈ C1 − x0. From (2.11),

y0 +
L(z)

1 + ℓ(z)
= φ(x) = y1 +

L1(z + x0 − x1)

1 + ℓ1(z) + ℓ1(x0 − x1)

= y1 +
L1(z + x0 − x1)

1 + (1 + a1)ℓ(z) + a1

= y1 +
L1(z + x0 − x1)

(1 + a1)(1 + ℓ(z))
.

In particular, at z = 0, we find that L1(x0 − x1) = (1 + a1)(y0 − y1). Hence

L1(z) = (1 + a1)[L(z)− (y1 − y0)ℓ(z)] =
L(z)− (y1 − y0)ℓ(z)

1 + a0
.

3. Continuity

In this section, we investigate the continuity of the the maps L, ℓ and Φ0 arising from Theorem

2.13, under appropriate settings.

Lemma 3.1. In the situation of Theorem 2.13, the map φ maps closed convex subsets of C1 onto

closed convex subsets of C2.

Proof. Let W be a closed convex set in C1. Let h = T−10 ∈ conv(C1, E1). Then domh = C1. Now

h0 = h|W :W → E1 is convex and lsc since

{x : h0(x) ≤ u} = {x : h(x) ≤ u} ∩W

is closed in C for any u ∈ E. Thus h0 ∈ conv(C1, E1). By Lemma 2.4, domTh0 = φ(domh0) = φ(W ).

By Theorem 2.13, for any y ∈ domTh0, Th0(y) = Th(y) = 0. Thus 0|φ(W ) = Th0 ∈ conv(C2, E2).

Therefore,

φ(W ) = {y ∈ domTh0 : Th0(y) ≤ 0}

is closed in C2. □

The next theorem is the main result on continuity. Denote the weak topology σ(Xi, X
∗
i ) by σi,

i = 1, 2.
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Theorem 3.2. In the notation of Theorem 2.13, assume that Xi is locally convex Hausdorff and that

Ci has nonempty interior in Xi. Then ℓ is a continuous linear functional on X1 and L : X1 → X2 is

an isomorphism of the topological vector space (X1, σ1) onto (X2, σ2). Thus φ : (C1, σ1) → (C2, σ2) is

a homeomorphism.

Proof. Since Ci has nonempty interior, Di = X1, i = 1, 2, in the notation of Theorem 2.13. Thus ℓ is

a linear functional on X1 and L : X1 → X2 is a vector space isomorphism. (These maps are obtained

at the base point x0.) Let x1 be an interior point of C1, with corresponding maps ℓ1 and L1. Let U

be a circled open neighborhood of 0 in X1 so that x1 + U ⊆ C1. By Theorem 2.13, ℓ1(x) ̸= −1 for all

x ∈ U . Thus |ℓ1(x)| < 1 for all x ∈ U . It follows easily that ℓ1 is continuous at 0 and hence continuous

on X1.

Next, we show that φ is σ1-to-σ2 continuous at x0. Otherwise, there are a net (xα) in C1 that

σ1-converges to x0, y
∗ ∈ X∗

2 and r > 0 so that y∗(φ(xα)) > y∗(φ(x0)) + r for all α. Let

W = {y ∈ C2 : y
∗(y) ≥ y∗(φ(x0)) + r}.

Then W is a closed convex set in C2. Apply Lemma 2.4 to φ−1 to see that φ−1(W ) is a closed convex

set in C1. By choice, xα ∈ φ−1(W ) for all α and hence x0 ∈ φ−1(W ), i.e., φ(x0) ∈ W , which is

obviously absurd. This completes the proof of the claim.

Since ℓ1 is continuous and x1 is an interior point of C1, it follows from the expression for φ in

Theorem 2.13 (at x1) that L1 is σ1-to-σ2 continuous at x1. Hence L1 is σ1-to-σ2 continuous on X1.

Let yi = φ(xi), i = 0, 1. By the final paragraph in §2, there is a real constant a0 so that for all z ∈ X1,

ℓ1(z) =
ℓ(z)

1 + a0
and L1(z) =

L(z)− (y1 − y0)ℓ(z)

1 + a0
.

Clearly the continuity of ℓ and the σ1-to-σ2 continuity of L follow from that of ℓ1 and L1.

Applying the above to T−1 at y0 gives a continuous linear functional m and a σ2-to-σ1 continuous

linear map M : X2 → X1 so that

φ−1(y) = x0 +
M(y − y0)

1 +m(y − y0)
, y ∈ C2.

Since y = φ(φ−1(y)) for all y ∈ C2, one easily deduces that M = L−1. This proves that L is a an

isomorphism of the topological vector space (X1, σ1) onto (X2, σ2). Therefore, φ : (C1, σ1) → (C2, σ2)

is a homeomorphism by the formula for φ in Theorem 2.13 and the formula for φ−1 above. □

Remark. It follows from the σ1-σ2 continuity of L that the graph of L is closed in X1 ×X2 (in their

original topologies). Therefore, if Xi’s are in addition completely metrizable, then it follows from the

Closed Graph Theorem that L : X1 → X2 is a topological vector space isomorphism with respect to

the original topologies on Xi, i = 1, 2.

Let E be an ordered vector space. A subset A of E is solid if x, y ∈ A and x ≤ z ≤ y imply that

z ∈ A. The topology on E is locally solid if there exists a local basis at 0 consisting of solid sets. If

E is locally solid and (an), (bn) are sequences in E so that 0 ≤ an ≤ bn and (bn) converges to 0, then

(an) converges to 0 as well.
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Theorem 3.3. Let the notation and assumptions be as in Theorems 2.13 and 3.2. Assume additionally

that for i = 1, 2, Ei is locally solid, completely metrizable and that for every null sequence (un) in Ei,

there is a positive null sequence (vn) so that un ≤ vn for all n. Then Φ0 : E1 → E2 is an isomorphism

of ordered topological vector spaces.

Proof. By Theorem 2.13, Φ0 is an order preserving vector space isomorphism. It suffices to show that

Φ0 is continuous (at 0); continuity of Φ−1
0 follows by symmetry. Let (un) be a null sequence in E1, we

show that there is a subsequence (unk
) so that (Φ0(unk

))k converges to 0 in E2. Let (vn) be as given

in the statement of the theorem and set wn = vn − un. Then (vn), (wn) are positive null sequences.

Since E1 is completely metrizable, by a result of Klee [7], we may assume that the metric d on E1 is

complete and translation invariant. Let n1 < n2 < · · · be chosen so that d(vnk
+ wnk

, 0) ≤ 1
k2k

for all

k. By translation invariance d(k(vnk
+ wnk

), 0) ≤ 1
2k

and hence
∑∞

k=1 k(vnk
+ wnk

) converges to an

element a in E1. Then 0 ≤ vnk
, wnk

≤ a
k for all k. Since Φ0 is order preserving and linear,

0 ≤ Φ0(vnk
),Φ0(wnk

) ≤ 1

k
Φ0(a) for all k.

Use the local solidity of E2 to conclude that (Φ0(vnk
)), (Φ0(wnk

)) both converge to 0. Thus (Φ0(unk
))

converges to 0, as claimed. □

We collect together the foregoing results in the following corollary.

Corollary 3.4. For i = 1, 2, let Ci be a convex set with nonempty interior in a locally convex Hausdorff

topological vector space Xi ̸= {0} and let Ei be a nonzero locally solid completely metrizable ordered

topological vector space whose positive cone is generating. Moreover, assume that if (un) is a null

sequence in Ei, then there is a positive null sequence (vn) in Ei so that un ≤ vn for all n. Suppose

that T : conv(C1, E1) → conv(C2, E2) is an order isomorphism. If x0 ∈ C1 and y0 = φ(x0) ∈ C2, then

there are

(1) a lsc affine function g0 : C2 → E2,

(2) an isomorphism of topological vector spaces L : (X1, σ1) → (X2, σ2),

(3) a continuous linear functional ℓ : X1 → R and

(4) an isomorphism of ordered topological vector spaces Φ0 : E1 → E2

so that ℓ(x− x0) ̸= −1, φ(x) = y0 +
L(x−x0)

1+ℓ(x−x0) for all x ∈ C1 and

Tf(y) = g0(y) +
Φ0(f ◦ φ−1(y))

1 + ℓ(φ−1(y)− x0)
, y ∈ domTf = φ(dom f), f ∈ conv(C1, E1).

Remark. Clearly, if Ei is a completely metrizable locally solid topological vector lattice, then it

satisfies the assumptions of Corollary 3.4. In particular, this occurs if Ei is a Banach lattice. We give

two other examples which are not necessarily lattices.

(1) Let Ei be the space of self-adjoint elements in a C∗-algebra A, equipped with the norm topology

and the usual order (0 ≤ a if and only if a = b∗b for some b ∈ A).
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(2) Let Ei be the space of regular operators on a Banach lattice F ; i..e., the space of operators

T : F → F that can be written as T = S − R, where S,R : F → F are positive (linear)

operators, with the order T1 ≤ T2 if T2 − T1 is positive, and the norm

|||T ||| = inf{∥S∥+ ∥R∥ : T = S −R,S,R positive}.

Here ∥ · ∥ is the operator norm.

4. Order anti-isomorphisms

As before, for i = 1, 2, let Ci be a convex set in a Hausdorff topological vector space Xi and let

Ei be an ordered vector space. A bijection T : conv(C1, E1) → conv(C2, E2) is an order anti-

isomorphism if f ≤ g if and only if Tg ≤ Tf for all f, g ∈ conv(C1, E1). If Ei = R, abbreviate
conv(Ci,R) to conv(Ci). Order anti-isomorphisms T : conv(Rn) → conv(Rn) are characterized in [3,

Theorem 7], which then leads to a characterization of the Legendre transform [3, Theorem 1]. A

generalization [6, Theorem 2] characterizes order anti-isomorphisms T : conv(X) → conv(X∗, σ∗),

where X is a Banach space and (X∗, σ∗) means X∗ with the weak∗-topology. It is shown in [4] that if

C is a nonempty convex set in Rn and there is an order anti-isomorphism from T : conv(C) → conv(C),

then C is either Rn or a singleton. Another result by the same authors [5] shows that for a Banach

space X, there is an order anti-isomorphism T : conv(X) → conv(X) if and only if X is reflexive and

X is isomorphic to X∗.

Corollary 2.14 allows us to prove the essential uniqueness of order anti-isomorphisms if such a

mapping exists. Let X3 be a Hausdorff topological vector space and let E3 be a Hausdorff ordered

topological vector space. Denote the weak topology σ(Xi, X
∗
i ) by σi, i = 1, 2, 3.

Theorem 4.1. Let T : conv(X1, E1) → conv(X2, E2) and S : conv(X1, E1) → conv(X3, E3) be order

anti-isomorphisms. Then there are y0 ∈ X2, an lsc affine function g0 : X2 → E2, a vector space

isomorphism L : X3 → X2 and an order preserving vector space isomorphism Φ0 : E3 → E2 such that

for all f ∈ conv(X1, E1), domTf = y0 + L(domSf) and

(4.1) Tf(y) = g0(y) + Φ0((Sf)(L
−1(y − y0))) for all y ∈ domTf.

Furthermore, if Xi, i = 1, 2, 3, are locally convex Hausdorff, then (X3, σ3) and (X2, σ2) are linearly

homeomorphic via L.

Proof. The map TS−1 : conv(X3, E3) → conv(X2, E2) is an order isomorphism. Obtain y0 ∈ X2, an lsc

affine function g0 : X2 → E2, a vector space isomorphism L : X3 → X2 and an order preserving vector

space isomorphism Φ0 : E3 → E2 by Corollary 2.14 with respect to TS−1. For all f ∈ conv(X1, E1),

domTf = domTS−1(Sf) = y0 + L(domSf) and

Tf(y) = (TS−1)(Sf)(y) = g0(y) + Φ0((Sf)(L
−1(y − y0)))

for all y ∈ dom(TS−1)(Sf) = domTf . The final asssertion follows from Theorem 3.2. □
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Lemma 4.2. If g : X2 → R is a lsc affine function, then there exist a continuous linear functional

y∗ ∈ X∗
2 and a ∈ R so that g(y) = a+ y∗(y) for all y ∈ X2.

Proof. The functional h : X2 → R defined by h(y) = g(y) − g(0) is linear since g is affine. By the

lower semicontinuity of g, there is a balanced open neighborhood V of 0 in X2 so that

V ⊆ {y : g(y + y0) > g(y0)− 1} = {y : h(y) > −1}.

Then |h(y)| < 1 for all y ∈ V . Thus y∗ := h ∈ X∗
2 . Finally, set a = g(0) to complete the proof of the

lemma. □

If X1 is locally convex Hausdorff and σ∗1 is the topology σ(X∗
1 , X1) on X∗

1 , then the Legendre

transform L : conv(X1) → conv(X∗
1 , σ

∗
1) is known to be an order anti-isomorphism, where

(Lf)(x∗) = sup{x∗(x)− f(x) : x ∈ dom f}

and domLf is the set where the sup is finite. Thus we have the following corollary of Theorem 4.1.

Corollary 4.3. Let X1, X2 be locally convex Hausdorff spaces and let L : conv(X1) → conv(X∗
1 , σ

∗
1)

be the Legendre transform. If T : conv(X1) → conv(X2) is an order anti-isomorphism, then there are

y0 ∈ X2, y
∗
0 ∈ X∗

2 , a, b ∈ R with b > 0, an isomorphism of topological vector spaces L : (X∗
1 , σ

∗
1) →

(X2, σ2) so that for all f ∈ conv(X1), domTf = y0 + L(domLf) and

Tf(y) = a+ y∗0(y) + b · (Lf)(L−1(y − y0)) for all y ∈ domTf.

Proof. Take X3 = (X∗
1 , σ

∗
1) and S = L in Theorem 4.1 to obtain y0, g0, L and Φ0. By Lemma 4.2,

there are a ∈ R and y∗0 ∈ X∗
2 so that g0(y) = a + y∗(y) for all y ∈ X2. Also, Φ0 : R → R is an order

preserving linear map and hence is given by multiplication by some b > 0. Note that X∗
3 = X1 and

thus σ(X3, X
∗
3 ) = σ∗1. So L is a topological vector space isomorphism from (X∗

1 , σ
∗
1) onto (X2, σ2).

The corollary now follows from (4.1). □

If X1 = X2 = Rn, then Corollary 4.3 yields [3, Theorem 7]. Suppose that X1 = X is a Banach

space and (X2, σ2) = (X∗, σ∗). Then L : (X∗, σ∗) → (X∗, σ∗) is a linear homeomorphism. Hence

L = M∗, where M : X → X is a Banach space isomorphism. So in this case we obtain [6, Theorem

2]. Finally, if X1 = X2 = X is a Banach space, then L is a linear homeomorphism from (X∗, σ∗) onto

(X,σ), where σ is the weak topology on X. Hence the ball of X is the image under L of a relatively

compact set in (X∗, σ∗). In particular, X is reflexive. Hence L : X∗ → X is weak-to-weak continuous

and thus it is a Banach space isomorphism. This gives the result in [5] mentioned above. It is also

possible to obtain a generalization of [3, Theorem 1].

Corollary 4.4. Let X be a locally convex Hausdorff space. Suppose that T : conv(X) → conv(X)

is an order anti-isomorphism such that T (Tf) = f for all f ∈ conv(X). Then there are x0 ∈ X,

x∗0 ∈ X∗, a, b ∈ R with b > 0 and a linear homeomorphism L : (X∗, σ∗) → (X,σ) such that

Tf(x) = a+ x∗0(x) + b · (Lf)(L−1(x− x0)) for all f ∈ conv(X) and x ∈ domTf .
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Proof. Use Corollary 4.3 with X1 = X2 = X to obtain x0, x
∗
0, a, b and L : (X∗, σ∗) → (X,σ) corre-

sponding to T−1. For any f ∈ conv(X) and x ∈ domTf ,

Tf(x) = T−1f(x) = a+ x∗0(x) + b · (Lf)(L−1(x− x0)).

□
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