Journal of the Iranian Mathematical Society ISSN (on-line): 2717-1612
J. Iran. Math. Soc. 4 (2023), no. 1, 27-44
© 2023 Iranian Mathematical Society

ORDER ISOMORPHISMS AND ORDER ANTI-ISOMORPHISMS ON SPACES OF CONVEX FUNCTIONS

D. H. LEUNG

Dedicated to Professor A. T.-M. Lau

ABSTRACT. For i = 1, 2, let C_i be a convex set in a locally convex Hausdorff topological vector space X_i . Denote by $\operatorname{conv}(C_i)$ the space of all convex, proper, lower semicontinuous functions on C_i . A representation is given of any bijection $T : \operatorname{conv}(C_1) \to \operatorname{conv}(C_2)$ that preserves the pointwise order. For $X_i = \mathbb{R}^n$, this recovers a result of Artstein-Avidan and Milman and its generalization by Cheng and Luo. If X_1 is a Banach space and $X_2 = X_1^*$ with the weak*-topology, it gives a result due to Iusem, Reem and Svaiter. We also obtain representation of order reversing bijections and thus a characterization of the Legendre transform, generalizing the same result by Artstein-Avidan and Milman for the \mathbb{R}^n case. The result on order isomorphisms actually holds for convex functions with values in ordered topological vector spaces.

1. Introduction

Let X be a Hausdorff topological vector space and let $\operatorname{conv}(X)$ be the space of convex, proper, lower semicontinuous extended real-valued functions on X. In [2, 3], Artstein-Avidan and Milman characterized order preserving and order reversing maps acting on $\operatorname{conv}(\mathbb{R}^n)$. As a result, they discovered a fundamental characterization of the Legendre transform from convex analysis as the essentially unique order reversing idempotent map on $\operatorname{conv}(\mathbb{R}^n)$. Subsequently, for a convex subset C of \mathbb{R}^n , a characterization of order preserving maps on $\operatorname{conv}(C)$ in terms of epigraphs was obtained by Artstein-Avidan, Florentin and Milman [1]. Recently, Cheng and Luo [4] obtained an explicit formula for such

Communicated by Mohammad Sal Moslehian

MSC(2020): Primary: 46N10. Secondary: 46B10, 46B20.

Keywords: Convex functions; lower semicontinuous; order isomorphism; order anti-isomorphism, Legendre transform. Received: 29 February 2023, Accepted: 27 May 2023.

DOI: https://dx.doi.org/10.30504/JIMS.2023.385243.1089

mappings. Moving to the infinite dimensional realm, Iusem, Reem and Svaiter [6] characterized order preserving as well as order reversing maps from conv(X) to $conv(X^*, w^*)$, where X is a Banach space and w^* signifies the weak*-topology on X*. Cheng and Luo [5] also showed that for a Banach space X, there is an order preserving bijection from conv(X) onto $conv(X^*)$ if and only if X is reflexive and X and X* are isomorphic as Banach spaces.

In this paper, we unify and generalize the aforementioned results. First of all, Theorem 2.13 gives a representation of a general order isomorphism $T : \operatorname{conv}(C_1, E_1) \to \operatorname{conv}(C_2, E_2)$, where, for $i = 1, 2, C_i$ is a convex set in a Hausdorff topological vector space X_i and E_i is an ordered topological vector space with a generating positive cone. A point worth noting is that the proof uses only elementary calculations. Continuity of the constituents of the representation is shown under additional assumptions (Corollary 3.4). In particular, if C_i has nonempty interior in X_i , where X_i is locally convex Hausdorff, then X_1 and X_2 must be linearly homeomorphic in their weak topologies. In addition to $E_i = \mathbb{R}$, Corollary 3.4 also applies if, e.g., E_i is the space of self-adjoint elements in a C^* -algebra, or if E_i is the space of regular operators on an ordered Banach space. See the last remark in §2. In the final section, we consider order reversing bijections from $\operatorname{conv}(X_1, E_1)$ onto $\operatorname{conv}(X_2, E_2)$. Theorem 4.1 shows that such a map must be essentially unique if it exists. As a result, if X_i is locally convex Hausdorff and $E_i = \mathbb{R}$, then an order reversing bijection $T : \operatorname{conv}(X_1) \to \operatorname{conv}(X_2)$ exists if and only if (X_1^*, w^*) and (X_2, w) are linearly homeomorphic. In this case, T must be essentially the Legendre transform (Corollary 4.3). This allows us to obtain a characterization of the Legendre transform generalizing [3, Theorem 1] (Corollary 4.4).

2. Characterization of order isomorphisms

An ordered topological vector space E is a topological vector space with a partial order \leq so that (a) $x + z \leq y + z$ and $\lambda x \leq \lambda y$ if $x, y, z \in E$, $x \leq y$ and $0 \leq \lambda \in \mathbb{R}$, (b) the positive cone $E_+ = \{x \in E : x \geq 0\}$ is closed. The positive cone E_+ is generating if $E = E_+ - E_+$. If E_+ is generating and $u_1, u_2 \in E$, let $v_1, v_2 \in E_+$ be such that $u_i \leq v_i$, i = 1, 2. Then $u_i \leq v_i \leq v_1 + v_2$. Let C be a nonempty convex set in a Hausdorff topological vector space and let E be an ordered Hausdorff topological vector space. A function $f : A \to E$ defined on a convex subset A of C is

(1) *convex* if

$$f((1 - \alpha)x_1 + \alpha x_2) \le (1 - \alpha)f(x_1) + \alpha f(x_2)$$

for any $\alpha \in [0, 1]$ and $x_1, x_2 \in A$.

(2) *lower semicontinuous (lsc)* if the set $\{x \in A : f(x) \le u\}$ is closed in C for any $u \in E$.

The set A is called the **domain** of f and is denoted by dom f. Let $\operatorname{conv}(C, E)$ be the set of all convex lsc functions $f : \operatorname{dom} f \to E$, where dom f is a nonempty convex subset of C. For $f, g \in \operatorname{conv}(C, E)$, say that $f \leq g$ if dom $g \subseteq \operatorname{dom} f$ and $f(x) \leq g(x)$ for all $x \in \operatorname{dom} g$. We begin by identifying some functions in $\operatorname{conv}(C, E)$. The first lemma is immediate. **Lemma 2.1.** Let A be a nonempty closed convex subset of C and $u_0 \in E$. Define the function $\xi_{A,u_0} : A \to E$ by $\xi_{A,u_0}(x) = u_0$ for all $x \in A$. Then $\xi_{A,u_0} \in \text{conv}(C, E)$.

If $A = \{x_0\}$ for some $x_0 \in C$, then ξ_{A,u_0} is also written as ξ_{x_0,u_0} . If $x_1, x_2 \in C$, denote the line segment joining x_1, x_2 by $[x_1, x_2]$.

Lemma 2.2. Let x_1, x_2 be distinct points in C and let $u_1, u_2 \in E$. The function $f : [x_1, x_2] \to E$ defined by

$$f((1 - \alpha)x_1 + \alpha x_2) = (1 - \alpha)u_1 + \alpha u_2$$

belongs to $\operatorname{conv}(C, E)$.

Proof. The convexity of f is clear. Define $\tau : [0,1] \to C$ by $\tau(\alpha) = (1-\alpha)x_1 + \alpha x_2$. Clearly τ is a continuous function. Let $u \in E$. Then

$$\{x \in [x_1, x_2] : f(x) \le u\} = \tau\{\alpha \in [0, 1] : f(\tau(\alpha)) \le u\}.$$

Since the positive cone E_+ is closed and $f \circ \tau$ is a continuous function, $\{\alpha \in [0,1] : f(\tau(\alpha)) \leq u\}$ is closed in [0,1]. Thus

$$\{x \in [x_1, x_2] : f(x) \le u\} = \tau\{\alpha \in [0, 1] : f(\tau(\alpha)) \le u\}$$

is compact and hence closed in C. This proves that f is lsc.

From hereon, let C_1, C_2 be (nonempty) convex sets in Hausdorff topological vector spaces X_1, X_2 respectively and let E_1, E_2 be Hausdorff ordered topological vector spaces with generating positive cones. A bijection $T : \operatorname{conv}(C_1, E_1) \to \operatorname{conv}(C_2, E_2)$ such that $f_1 \leq f_2 \iff Tf_1 \leq Tf_2$ for any $f_1, f_2 \in \operatorname{conv}(C_1, E_1)$ is called an **order isomorphism**. For the remainder of a section, fix an order isomorphism $T : \operatorname{conv}(C_1, E_1) \to \operatorname{conv}(C_2, E_2)$.

Lemma 2.3. Let $f_1, f_2 \in \operatorname{conv}(X_1, E_1)$. Then dom $f_1 \cap \operatorname{dom} f_2 = \emptyset$ if and only if dom $Tf_1 \cap \operatorname{dom} Tf_2 = \emptyset$.

Proof. Suppose that $x_0 \in \text{dom } f_1 \cap \text{dom } f_2$. Since $(E_1)_+$ is generating, there exists $u_0 \in E_1$ such that $f_1(x_0), f_2(x_0) \leq u_0$, By Lemma 2.1, $\xi_{x_0,u_0} \in \text{conv}(X_1, E_1)$. Obviously, $f_i \leq \xi_{x_0,u_0}$. Thus $Tf_i \leq T\xi_{x_0,u_0}$. Hence $\emptyset \neq \text{dom } T\xi_{x_0,u_0} \subseteq \text{dom } Tf_1 \cap \text{dom } Tf_2$. The reverse direction follows by symmetry. \Box

Lemma 2.4. For any $x \in C_1$ and $u_1, u_2 \in E_1$, dom $T\xi_{x,u_1} = \text{dom } T\xi_{x,u_2}$ has exactly one point. Define $\varphi : C_1 \to C_2$ by $\{\varphi(x)\} = \text{dom } T\xi_{x,u}$ for any $u \in E$. Then φ is a bijection so that $\varphi(\text{dom } f) = \text{dom } Tf$ for any $f \in \text{conv}(C_1, E_1)$. In particular, $\varphi([x_1, x_2]) = [\varphi(x_1), \varphi(x_2)]$ for any $x_1, x_2 \in C_1$; hence φ maps convex subsets of C_1 onto convex subsets of C_2 .

Proof. Suppose that $y_i \in \text{dom} T\xi_{x,u_i}$, i = 1, 2. Let $v \in E_2$. Then $\text{dom} \xi_{y_i,v} \cap \text{dom} T\xi_{x,u_i} \neq \emptyset$. Hence $\text{dom} T^{-1}\xi_{y_i,v} \cap \text{dom} \xi_{x,u_i} \neq \emptyset$ by Lemma 2.3. Thus $x \in \text{dom} T^{-1}\xi_{y_i,v}$. Therefore, $\text{dom} T^{-1}\xi_{y_1,v} \cap \text{dom} T^{-1}\xi_{y_2,v} \neq \emptyset$. It follows from Lemma 2.3 again that $\text{dom} \xi_{y_1,v} \cap \text{dom} \xi_{y_2,v} \neq \emptyset$. So $y_1 = y_2$. This proves that $\text{dom} T\xi_{x,u_1} = \text{dom} T\xi_{x,u_2}$ has exactly one point.

Define φ as above. By symmetry, there exists $\psi: C_2 \to C_1$ such that $\{\psi(y)\} = \text{dom } T^{-1}\xi_{y,v}$ for any $(y,v) \in C_2 \times E_2$. In this case, $T^{-1}\xi_{y,v} = \xi_{\psi(y),u}$ for some $u \in E_1$. Then

$$\varphi(\psi(y)) = \operatorname{dom} T\xi_{\psi(y),u} = \operatorname{dom} \xi_{y,v} = y.$$

By symmetry, $\psi(\varphi(x)) = x$ for any $x \in C_1$. Hence φ is a bijection.

Let $f \in \operatorname{conv}(C_1, E_1)$. Then

$$x \in \operatorname{dom} f \iff \operatorname{dom} \xi_{x,u} \cap \operatorname{dom} f \neq \emptyset \text{ for some } u \in E_1$$
$$\iff \operatorname{dom} T\xi_{x,u} \cap \operatorname{dom} Tf \neq \emptyset \text{ for some } u \in E_1$$
$$\iff \varphi(x) \in \operatorname{dom} Tf.$$

Suppose that $x_1, x_2 \in C_1$. By Lemma 2.1, $\xi_{[x_1, x_2], u} \in \operatorname{conv}(C_1, E_1)$ for any $u \in E_1$. By the above, $\varphi([x_1, x_2]) = \operatorname{dom} T\xi_{[x_1, x_2], u}$ is a convex set in C_2 . Thus $[\varphi(x_1), \varphi(x_2)] \subseteq \varphi([x_1, x_2])$. Similarly, $[x_1, x_2] \subseteq \varphi^{-1}([\varphi(x_1), \varphi(x_2)])$. Therefore, $\varphi([x_1, x_2]) = [\varphi(x_1), \varphi(x_2)]$. The final statement of the lemma follows readily.

Lemma 2.5. If $f \in \operatorname{conv}(C_1, E_1)$ and $x \in \operatorname{dom} f$, then $Tf(\varphi(x)) = T\xi_{x, f(x)}(\varphi(x))$.

Proof. By Lemma 2.4, dom $T\xi_{x,f(x)} = \varphi(\operatorname{dom} \xi_{x,f(x)}) = \{\varphi(x)\} \subseteq \operatorname{dom} Tf$. In particular, there exists $v \in E_2$ so that $T\xi_{x,f(x)} = \xi_{\varphi(x),v}$. Since $f \leq \xi_{x,f(x)}$, $Tf \leq \xi_{\varphi(x),v}$ and so $Tf(\varphi(x)) \leq v$. Let $w = \frac{1}{2}(Tf(\varphi(x)) + v)$. Then

$$Tf \leq \xi_{\varphi(x),w} \leq \xi_{\varphi(x),v} \implies f \leq T^{-1}\xi_{\varphi(x),w} \leq \xi_{x,f(x)}.$$

By Lemma 2.4, $\varphi(\operatorname{dom} T^{-1}\xi_{\varphi(x),w}) = \operatorname{dom} \xi_{\varphi(x),w} = \{\varphi(x)\}$. Thus there exists $u' \in E_1$ so that $T^{-1}\xi_{\varphi(x),w} = \xi_{x,u'}$. But then $f(x) \leq u' \leq f(x)$ and so u' = f(x). Hence, $T^{-1}\xi_{\varphi(x),w} = \xi_{x,f(x)}$. Therefore, $\xi_{\varphi(x),v} = T\xi_{x,f(x)} = \xi_{\varphi(x),w}$, whence v = w. It follows that $Tf(\varphi(x)) = v = T\xi_{x,f(x)}(\varphi(x))$.

Lemma 2.6. There is a function $\Phi: C_1 \times E_1 \to E_2$ such that $\Phi(x, \cdot): E_1 \to E_2$ is a bijection for all $x \in C_1$ and that

$$Tf(y) = \Phi(\varphi^{-1}(y), f \circ \varphi^{-1}(y))$$
 for all $f \in \operatorname{conv}(C_1, E_1)$ and $y \in \operatorname{dom} Tf$.

Proof. By Lemma 2.4, $\varphi(x) \in \text{dom} T\xi_{x,u}$ for any $(x, u) \in C_1 \times E_1$. Define $\Phi : C_1 \times E_1 \to E_2$ by $\Phi(x, u) = T\xi_{x,u}(\varphi(x))$. Let $f \in \text{conv}(C_1, E_1)$ and let $y \in \text{dom} Tf$. Then $x := \varphi^{-1}(y) \in \text{dom} f$ by Lemma 2.4. By Lemma 2.5,

$$Tf(y) = T\xi_{x,f(x)}(y) = \Phi(x, f(x)) = \Phi(\varphi^{-1}(y), f \circ \varphi^{-1}(y)).$$

Note that from the proof of Lemma 2.4, the bijection $\psi : C_2 \to C_1$ associated with T^{-1} is φ^{-1} . Therefore, applying the above to T^{-1} , there exists $\Psi : C_2 \times E_2 \to E_1$ so that

$$T^{-1}g(x) = \Psi(\varphi(x), g \circ \varphi(x))$$
 for all $g \in \operatorname{conv}(C_2, E_2)$ and $x \in \operatorname{dom} T^{-1}g$.

J. Iran. Math. Soc. 4 (2023), no. 1, 27-44

Take any $(x, u) \in C_1 \times E_1$. Then $T\xi_{x,u}(\varphi(x)) = \Phi(x, u)$. Hence

$$u = (T^{-1}T\xi_{x,u})(x) = \Psi(\varphi(x), T\xi_{\varphi(x),u} \circ \varphi(x)) = \Psi(\varphi(x), \Phi(x,u)).$$

Similarly, for any $v \in E_2$, $v = \Phi(x, \Psi(\varphi(x), v))$. This proves that $\Psi(\varphi(x), \cdot)$ is the inverse of $\Phi(x, \cdot)$. Therefore, $\Phi(x, \cdot) : E_1 \to E_2$ is a bijection.

Lemma 2.7. Let x_1, x_2 be distinct points in C_1 and let $u_1, u_2 \in E_1$. Define $f : [x_1, x_2] \to E_1$ by $f((1 - \alpha)x_1 + \alpha x_2) = (1 - \alpha)u_1 + \alpha u_2$. Let $g : [\varphi(x_1), \varphi(x_2)] \to E_2$ be given by

$$g((1-\alpha)\varphi(x_1) + \alpha\varphi(x_2)) = (1-\alpha)v_1 + \alpha v_2, \ v_i = Tf(\varphi(x_i)), \ i = 1, 2.$$

Then g = Tf.

Proof. First of all, $f \in \text{conv}(C_1, E_1)$ by Lemma 2.2. It follows from Lemma 2.4 that

$$\operatorname{dom} Tf = \varphi(\operatorname{dom} f) = \varphi([x_1, x_2]) = [\varphi(x_1), \varphi(x_2)] = \operatorname{dom} g.$$

Similarly, dom $T^{-1}g = [x_1, x_2]$. Since Tf is convex, $Tf \leq g$. Hence $f \leq T^{-1}g$. Label $T^{-1}g(x_i)$ as u'_i , i = 1, 2. Then

$$\Phi(x_i, u_i) = Tf(\varphi(x_i)) = g(\varphi(x_i)) = \Phi(x_i, u'_i).$$

So $u'_i = u_i$. Therefore,

$$f((1 - \alpha)x_1 + \alpha x_2) \le T^{-1}g((1 - \alpha)x_1 + \alpha x_2)$$

$$\le (1 - \alpha)T^{-1}g(x_1) + \alpha T^{-1}g(x_2) = f((1 - \alpha)x_1 + \alpha x_2).$$

Thus $T^{-1}g = f$ and hence g = Tf.

In what follows, we seek to discover formulas for the mappings φ and Φ . Denote the zero element in the ambient space X_i of C_i , as well as the zero element in E_i , i = 1, 2, by the generic symbol 0. If u is a vector in E_i , the constant function with domain C_i and value u is also denoted by u; so that $u \in \operatorname{conv}(C_i, E_i)$. To simplify the notation, we make the following temporary assumption until further notice.

(2.1)
$$0 \in C_i, i = 1, 2, \text{ and } \varphi(0) = 0.$$

Also set $g_0 = T0 \in \operatorname{conv}(C_2, E_2)$. By Lemmas 2.4 and 2.6, for any $[x_1, x_2] \subseteq C_1$ and $u \in E_1$, $Tu = T(u|_{[x_1, x_2]})$ on the set $\varphi([x_1, x_2]) = [\varphi(x_1), \varphi(x_2)]$. Thus it follows from Lemma 2.7 that Tu, in particular g_0 , is an affine function with domain C_2 .

Lemma 2.8. Let x_1, x_2 be distinct points in C_1 . There exists a real number c > 0 (depending on x_1, x_2) so that

(2.2)
$$Tu(\varphi(x_2)) - g_0(\varphi(x_2)) = c[Tu(\varphi(x_1)) - g_0(\varphi(x_1))] \text{ for any } u \in E_1.$$

Furthermore,

$$\varphi(\frac{x_1 + x_2}{2}) = \frac{1}{1 + c}(c\varphi(x_1) + \varphi(x_2)).$$

Proof. For simplicity, let $\tau_i : [0,1] \to E_i$ be given by

$$\tau_1(\alpha) = (1 - \alpha)x_1 + \alpha x_2$$
 and $\tau_2(\alpha) = (1 - \alpha)\varphi(x_1) + \alpha\varphi(x_2)$

Let $u \in E_1$. Define $f_1, f_2 : [x_1, x_2] \to E_1$ by

$$f_1(\tau_1(\alpha)) = \alpha u$$
 and $f_2(\tau_1(\alpha)) = (1 - \alpha)u$.

By Lemma 2.2, $f_i \in \text{conv}(C_1, E_1)$. Since $f_1(x_1) = 0$, $f_1(x_2) = u$, $f_2(x_1) = u$ and $f_2(x_2) = 0$, Lemma 2.6 gives

$$Tf_1(\varphi(x_1)) = T0(\varphi(x_1)) = g_0(\varphi(x_1)), \ Tf_1(\varphi(x_2)) = Tu(\varphi(x_2)),$$

$$Tf_2(\varphi(x_1)) = Tu(\varphi(x_1)), \ Tf_2(\varphi(x_2)) = T0(\varphi(x_2)) = g_0(\varphi(x_2)).$$

Similarly, let $x_3 = \tau_1(\frac{1}{2})$. Then $f_1(x_3) = f_2(x_3)$ and thus $Tf_1(\varphi(x_3)) = Tf_2(\varphi(x_3))$ by Lemma 2.6. By Lemma 2.4, $\varphi(x_3) \in [\varphi(x_1), \varphi(x_2)]$. As φ is a bijection, there exists $\beta \in (0, 1)$ such that $\varphi(x_3) = \tau_2(\beta)$. By Lemma 2.7, $Tf_i(\tau_2(\beta)) = (1 - \beta)Tf_i(\varphi(x_1)) + \beta Tf_i(\varphi(x_2))$. Hence

$$Tf_1(\varphi(x_3)) = Tf_1(\tau_2(\beta)) = (1 - \beta)g_0(\varphi(x_1)) + \beta Tu(\varphi(x_2)),$$

$$Tf_2(\varphi(x_3)) = Tf_2(\tau_2(\beta)) = (1 - \beta)Tu(\varphi(x_1)) + \beta g_0(\varphi(x_2)).$$

Setting the two lines equal gives (2.2) with $c := \frac{1-\beta}{\beta} > 0$. Furthermore, c is independent of u. Finally,

$$\varphi(\frac{x_1+x_2}{2}) = \varphi(x_3) = \tau_2(\beta) = \tau_2(\frac{1}{1+c}) = \frac{1}{1+c}(c\varphi(x_1) + \varphi(x_2)).$$

This completes the proof of the lemma.

Taking $x_1 = 0$ in Lemma 2.8 and recalling (2.1) gives a positive function $c: C_1 \to \mathbb{R}$ so that

(2.3)
$$Tu(\varphi(x)) - g_0(\varphi(x)) = c(x)[Tu(0) - g_0(0)] \text{ for any } u \in E_1.$$

Proposition 2.9. Let x_1, x_2 be distinct points in C_1 . For any $\alpha \in [0, 1]$,

(2.4)
$$\varphi((1-\alpha)x_1 + \alpha x_2) = \frac{(1-\alpha)c(x_2)\varphi(x_1) + \alpha c(x_1)\varphi(x_2)}{(1-\alpha)c(x_2) + \alpha c(x_1)}.$$

Proof. Determine $\gamma : [0,1] \to [0,1]$ by $\tau_2 \circ \gamma = \varphi \circ \tau_1$. Let $c = \frac{c(x_2)}{c(x_1)}$. An easy calculation shows that (2.4) is equivalent to $\gamma(t) = \frac{t}{(1-t)c+t}, t \in [0,1]$. Clearly, γ is a bijection so that $\gamma(0) = 0$ and $\gamma(1) = 1$. We claim that γ is increasing. Assume that $s, t \in [0,1]$ with $s \leq t$. Using Lemma 2.4 in the third step,

$$\tau_2(\gamma(s)) = \varphi(\tau_1(s)) \in \varphi([\tau_1(0), \tau_1(t)]) = [\varphi \circ \tau_1(0), \varphi \circ \tau_1(t)]$$

= $[\tau_2(\gamma(0)), \tau_2(\gamma(t))] = \tau_2([\gamma(0), \gamma(t)]).$

Thus $\gamma(s) \in [0, \gamma(t)]$. Hence $\gamma(s) \leq \gamma(t)$. This proves the claim.

J. Iran. Math. Soc. 4 (2023), no. 1, 27-44

Fix a nonzero u in E_1 and let $v = Tu(\varphi(0)) - g_0(0) \neq 0$. Since both Tu and g_0 are affine on C_2 , for $\alpha \in [0, 1]$,

(2.5)

$$Tu(\tau_{2}(\alpha)) - g_{0}(\tau_{2}(\alpha)) = (1 - \alpha)[Tu(\varphi(x_{1})) - g_{0}(\varphi(x_{1}))] + \alpha[Tu(\varphi(x_{2})) - g_{0}(\varphi(x_{2}))]$$

$$= (1 - \alpha)c(x_{1})v + \alpha c(x_{2})v \quad \text{by (2.3)}$$

$$= c(x_{1})(1 - \alpha(1 - c))v.$$

Now we prove that $\gamma(\alpha) = \frac{\alpha}{(1-\alpha)c+\alpha}$ when $\alpha = \frac{i}{2^n}$ for some $n \in \mathbb{N} \cup \{0\}$ and $0 \le i \le 2^n$. The proof is by induction on n. The case n = 0 has already been observed. Assume that it holds for some n. In particular, it holds for $\alpha = \frac{i}{2^{n+1}}$ if $0 \le i \le 2^{n+1}$ and i is even. Consider $\alpha = \frac{2i-1}{2^{n+1}}$, where $1 \le i \le 2^n$. Let $x'_1 = \tau_1(\frac{i-1}{2^n})$ and $x'_2 = \tau_1(\frac{i}{2^n})$. By the inductive hypothesis,

$$\varphi(x_1') = \varphi(\tau_1(\frac{i-1}{2^n})) = \tau_2(\gamma(\frac{i-1}{2^n})) = \tau_2(\frac{i-1}{(2^n-i+1)c+i-1}) := \tau_2(\beta_1),$$

$$\varphi(x_2') = \tau_2(\gamma(\frac{i}{2^n})) = \tau_2(\frac{i}{(2^n-i)c+i}) := \tau_2(\beta_2).$$

Using (2.5), we see that

$$Tu(\varphi(x'_i)) - g_0(\varphi(x'_i)) = c(x_1)[(1 - \beta_i(1 - c)]v]$$

So $Tu(\varphi(x_2')) - g_0(\varphi(x_2')) = c'[Tu(\varphi(x_1')) - g_0(\varphi(x_1'))]$, where

$$c' = \frac{1 - \beta_2(1 - c)}{1 - \beta_1(1 - c)} = \frac{(2^n - i + 1)c + i - 1}{(2^n - i)c + i} = \frac{\frac{i - 1}{\beta_1}}{\frac{i}{\beta_2}}.$$

Thus Lemma 2.8 holds for $[x'_1, x'_2]$ with the constant c' in place of c. Hence

$$\begin{split} \varphi(\tau_1(\frac{2i-1}{2^{n+1}})) &= \varphi(\frac{x_1'+x_2'}{2}) = \frac{1}{1+c'}(c'\varphi(x_1')+\varphi(x_2')) \\ &= \frac{1}{1+c'}(c'\tau_2(\beta_1)+\tau_2(\beta_2)) \\ &= \frac{1}{1+c'}[(1+c'-(c'\beta_1+\beta_2))\varphi(x_1)+(c'\beta_1+\beta_2)\varphi(x_2)] \\ &= \tau_2(\frac{c'\beta_1+\beta_2}{1+c'}) = \tau_2(\frac{2i-1}{\frac{i-1}{\beta_1}+\frac{i}{\beta_2}}) \\ &= \tau_2(\frac{\frac{2i-1}{2^{n+1}}}{(1-\frac{2i-1}{2^{n+1}})c+\frac{2i-1}{2^{n+1}}}). \end{split}$$

Thus $\gamma(\alpha) = \frac{\alpha}{(1-\alpha)c+\alpha}$ for $\alpha = \frac{2i-1}{2^{n+1}}$, completing the induction.

Since $\gamma : [0,1] \to [0,1]$ is an increasing bijection, it is continuous. Hence $\gamma(\alpha) = \frac{\alpha}{(1-\alpha)c+\alpha}$ for all $\alpha \in [0,1]$.

Corollary 2.10. If $x_1, x_2 \in C_1$ and $\alpha \in [0, 1]$, then

$$c((1-\alpha)x_1 + \alpha x_2) = \frac{c(x_1)c(x_2)}{(1-\alpha)c(x_2) + \alpha c(x_1)}$$

Thus $\frac{1}{c}$ is a positive affine function on C_1 .

Proof. The formula is trivial if $x_1 = x_2$. Assume that x_1, x_2 are distinct. As before, let $\tau_1(\alpha) = (1 - \alpha)x_1 + \alpha x_2, \alpha \in [0, 1]$. Fix a nonzero u in E_1 . By Proposition 2.9, (2.3) and the fact that Tu and g_0 are affine,

$$\begin{aligned} c(\tau_1(\alpha))[Tu(0) - g_0(0)] &= Tu(\varphi(\tau_1(\alpha))) - g_0(\varphi(\tau_1(\alpha))) \\ &= (Tu - g_0)(\frac{(1 - \alpha)c(x_2)\varphi(x_1) + \alpha c(x_1)\varphi(x_2)}{(1 - \alpha)c(x_2) + \alpha c(x_1)}) \\ &= \frac{(1 - \alpha)c(x_2)}{(1 - \alpha)c(x_2) + \alpha c(x_1)} (Tu - g_0)(\varphi(x_1)) \\ &+ \frac{\alpha c(x_1)}{(1 - \alpha)c(x_2) + \alpha c(x_1)} (Tu - g_0)(\varphi(x_2)) \\ &= \frac{(1 - \alpha)c(x_2)}{(1 - \alpha)c(x_2) + \alpha c(x_1)} c(x_1)(Tu - g_0)(0) \\ &+ \frac{\alpha c(x_1)}{(1 - \alpha)c(x_2) + \alpha c(x_1)} c(x_2)(Tu - g_0)(0) \\ &= \frac{c(x_1)c(x_2)}{(1 - \alpha)c(x_2) + \alpha c(x_1)} [Tu(0) - g_0(0)]. \end{aligned}$$

Since $Tu(0) \neq g_0(0)$, the equation in the statement of the corollary is proved. The final assertion follows immediately.

Keeping assumptions (2.1), we find a Hamel basis $(x_i)_{i \in I} \subseteq C_1$ of span C_1 . To rule out trivialities, suppose that C_1 contains more than one point, so that span $C_1 \neq \{0\}$. In this case, C_2 also contains more than one point, since $\varphi : C_1 \to C_2$ is a bijection.

Proposition 2.11. Let $c_i = c(x_i)$, $i \in I$. Define a linear transformation L: span $C_1 \rightarrow$ span C_2 and a linear functional ℓ on span C_1 by

$$L(\sum a_i x_i) = \sum_i \frac{a_i}{c_i} \varphi(x_i) \quad and \quad \ell(\sum a_i x_i) = \sum_i a_i (\frac{1}{c_i} - 1)$$

for any real family $(a_i)_{i \in I}$ with finitely many nonzero terms. Then $\ell(x) \neq -1$ and $\varphi(x) = \frac{Lx}{1+\ell(x)}$ for any $x \in C_1$. Moreover, L is a vector space isomorphism from span C_1 onto span C_2 .

Proof. First note that $1 + \ell$ and $\frac{1}{c}$ are two affine functions on C_1 satisfying $(1 + \ell)(x_i) = \frac{1}{c(x_i)}$ for all $i \in I$ and $(1 + \ell)(0) = c(0)$, since c(0) = 1 by (2.3). Hence $1 + \ell = \frac{1}{c}$ for all $x \in C_1$. In particular, $1 + \ell(x) \neq 0$ for $x \in C_1$.

J. Iran. Math. Soc. 4 (2023), no. 1, 27-44

Suppose that $u, v, w \in C_1$ and $w = (1 - \alpha)u + \alpha v$ for some $\alpha \in \mathbb{R}$. By Proposition 2.9 and the affineness of $\frac{1}{c}$,

(2.6)

$$\varphi(w) = \frac{(1-\alpha)c(v)\varphi(u) + \alpha c(u)\varphi(v)}{(1-\alpha)c(v) + \alpha c(u)}$$

$$= \frac{(1-\alpha)\frac{\varphi(u)}{c(u)} + \alpha\frac{\varphi(v)}{c(v)}}{\frac{1-\alpha}{c(u)} + \frac{\alpha}{c(v)}}$$

$$= c(w) \cdot [(1-\alpha)\frac{\varphi(u)}{c(u)} + \alpha\frac{\varphi(v)}{c(v)}].$$

Let $C = \{x \in C_1 : \varphi(x) = c(x)L(x)\}$. By definition of L and (2.1), $x_i \in C$ for all $i \in I$ and $0 \in C$. If $u, v \in C$ and $w = (1 - \alpha)u + \alpha v \in C_1$, where $\alpha \in \mathbb{R}$, then by (2.6),

$$\varphi(w) = c(w) \cdot \left[(1 - \alpha) \frac{\varphi(u)}{c(u)} + \alpha \frac{\varphi(v)}{c(v)} \right]$$
$$= c(w) \cdot \left[(1 - \alpha)L(u) + \alpha L(v) \right] = c(w)L(w).$$

Thus $w \in C$. In particular, C is convex. If $x \in C_1 \subseteq \operatorname{span}\{x_i : i \in I\}$, there are $u, v \in \operatorname{co}\{x_i : i \in I\} \subseteq C$ and numbers $a, b \ge 0$ so that x = au - bv. If a = 0, then $w = -bv + (1 + b)0 \in C$ by the above. If a > 0, choose k so that $0 < k < \min\{\frac{a}{1+b}, 1\}$. Then $ku \in [0, u] \subseteq C$ and $\frac{bkv}{a-k} \in [0, v] \subseteq C$. Let $\alpha = \frac{a}{k}$. We have

$$w = au - bv = (1 - \alpha)\frac{bkv}{a - k} + \alpha \cdot ku \in C.$$

This proves that $C = C_1$ and hence $\varphi(x) = c(x)L(x)$ for all $x \in C_1$. Since $\frac{1}{c} = 1 + \ell$, it follows that $\varphi(x) = \frac{Lx}{1+\ell(x)}$ for any $x \in C_1$.

By symmetry, there are a linear transformation M: span $C_2 \to \text{span} C_1$ and a linear functional m on span C_2 so that $\varphi^{-1}(y) = \frac{My}{1+m(y)}$ for any $y \in C_2$. (Note from the proof of Lemma 2.4 that the map $\psi: C_2 \to C_1$ associated with T^{-1} is precisely φ^{-1} .) If $x \in C_1$, then

(2.7)
$$x = \varphi^{-1}(\varphi(x)) = \varphi^{-1}(\frac{Lx}{1+\ell(x)}) = \frac{MLx}{1+\ell(x)+m(Lx)}.$$

Take any nonzero $x \in C_1$ and apply (2.7) to x and $\frac{x}{2}$. We find that

$$\frac{MLx}{1 + \ell(x) + m(Lx)} = x = \frac{2MLx}{2 + \ell(x) + m(Lx)}$$

In particular, $MLx \neq 0$ and thus $\ell(x) + m(Lx) = 0$. Hence MLx = x for any $x \in C_1$ and so the same holds for any $x \in \text{span } C_1$. By symmetry, LMy = y for any $y \in \text{span } C_2$. Therefore, L is a vector space isomorphism from span C_1 onto span C_2 .

Recall the map $\Phi: C_1 \times E_1 \to E_2$ from Lemma 2.6.

Proposition 2.12. Let $\Phi_0(u) = \Phi(0, u) - \Phi(0, 0)$ for all $u \in E_1$. Then $\Phi_0 : E_1 \to E_2$ is an order preserving vector space isomorphism. For any $(x, u) \in C_1 \times E_1$,

(2.8)
$$\Phi(x,u) = g_0(\varphi(x)) + \frac{\Phi_0(u)}{1 + \ell(x)}$$

Proof. First note that if $f \in \text{conv}(C_1, E_1)$ and $x \in \text{dom } f$, then since $\varphi(0) = 0$ and $g_0 = T0$,

$$\Phi_0(f(x)) = \Phi(0, f(x)) - \Phi(0, 0) = Tw(0) - g_0(0),$$

where w = f(x). By Lemma 2.6 and (2.3),

(2.9)
$$(Tf - g_0)(\varphi(x)) = \Phi(x, w) - \Phi(x, 0) = (Tw - g_0)(\varphi(x)) = c(x)\Phi_0(f(x)).$$

From the proof of Proposition 2.11, $c = \frac{1}{1+\ell}$. Hence, for any $(x, u) \in C_1 \times E_1$,

$$\Phi(x,u) = Tu(\varphi(x)) = g_0(\varphi(x)) + (Tu - g_0)(\varphi(x)) = g_0(\varphi(x)) + \frac{\Phi_0(u)}{1 + \ell(x)}$$

Thus (2.8) holds. Let $u, v \in E_1$ be given. Choose a nonzero $x \in C_1$. By (2.8),

$$(Tu - g_0)(\varphi(x)) = \Phi(x, u) - \Phi(x, 0) = \frac{\Phi_0(u)}{1 + \ell(x)}$$

Similarly, $(Tv-g_0)(\varphi(x)) = \frac{\Phi_0(v)}{1+\ell(x)}$. Define $f: [0,x] \to E_1$ by $f(\alpha x) = (1-\alpha)u + \alpha v$. Since $f(\frac{x}{2}) = \frac{u+v}{2}$, by (2.9),

$$(Tf - g_0)(\varphi(\frac{x}{2})) = c(\frac{x}{2})\Phi_0(\frac{u+v}{2}) = \frac{2\Phi_0(\frac{u+v}{2})}{2+\ell(x)}$$

By Proposition 2.11, $\varphi(x) = \frac{Lx}{1+\ell(x)}$ and

$$\varphi(\frac{x}{2}) = \frac{Lx}{2+\ell(x)} = \frac{\varphi(0)}{2+\ell(x)} + \frac{(1+\ell(x))\varphi(x)}{2+\ell(x)}$$

Thus by Lemma 2.7, the affineness of g_0 and (2.9),

$$(Tf - g_0)(\varphi(\frac{x}{2})) = \frac{(Tf - g_0)(0) + (1 + \ell(x))(Tf - g_0)(\varphi(x))}{2 + \ell(x)} = \frac{\Phi_0(u) + \Phi_0(v)}{2 + \ell(x)}$$

This proves that

$$\Phi_0(u) + \Phi_0(v) = 2\Phi_0(\frac{u+v}{2}).$$

Setting v = 0 and using $\Phi_0(0) = 0$, we find that $\Phi_0(\frac{u}{2}) = \frac{1}{2}\Phi_0(u)$. Thus, for any $u, v \in E_1$, $\Phi_0(u+v) = \Phi_0(u) + \Phi_0(v)$.

Since T is an order isomorphism, if $u \leq v$ in E_1 , then $Tu \leq Tv$. In particular,

$$\Phi_0(u) = Tu(0) - \Phi(0,0) \le Tv(0) - \Phi(0,0) = \Phi_0(v).$$

In the proof of Lemma 2.6, we find that if $\Psi: C_2 \times E_2 \to E_1$ is such that $\Psi(\varphi(x), \cdot)$ is the inverse of $\Phi(x, \cdot)$ for all $x \in C_1$, then $T^{-1}g(x) = \Psi(\varphi(x), g(\varphi(x)))$ for all $g \in \operatorname{conv}(C_2, E_2)$ and $x \in C_1$. Assume that $u, v \in E_1$ and $\Phi_0(u) \leq \Phi_0(v)$. Then $u' = Tu(0) \leq Tv(0) = v'$. Hence

$$u = \Psi(0, \Phi(0, u)) = \Psi(0, Tu(0)) = T^{-1}u'(0) \le T^{-1}v'(0) = v.$$

This proves that Φ_0 preserves order (in both directions). Next, we show that Φ_0 is homogeneous. Since $E_1 = (E_1)_+ - (E_1)_+$ and Φ_0 is additive, it suffices to show that $\Phi_0(\alpha u) = \alpha \Phi_0(u)$ if $u \in (E_1)_+$ and $\alpha \ge 0$. From the additivity of Φ_0 , it is easy to see that $\Phi_0(ru) = r\Phi_0(u)$ for any $r \in \mathbb{Q}$. Let $(r_n), (s_n)$ be nonnegative rational sequences that increase and decrease to α respectively. Since Φ_0 preserves order and is \mathbb{Q} -homogeneous,

$$r_n\Phi_0(u) = \Phi_0(r_n u) \le \Phi_0(\alpha u) \le \Phi_0(s_n u) = s_n\Phi_0(u) \text{ for all } n.$$

Thus $\alpha \Phi_0(u) \leq \Phi_0(\alpha u) \leq \alpha \Phi_0(u)$; hence $\Phi_0(\alpha u) = \alpha \Phi_0(u)$. This proves that Φ_0 is linear. As $\Phi(0, \cdot) : E_1 \to E_2$ is a bijection, we see that $\Phi_0 : E_1 \to E_2$ is a linear bijection and therefore a vector space isomorphism.

We have reached the main result of the section. The temporary assumption (2.1) is removed from now on. Suppose that C is a convex set in a vector space X. For any $x_1, x_2 \in C$, $\operatorname{span}(C - x_1) = \operatorname{span}(C - x_2)$.

Theorem 2.13. For i = 1, 2, let C_i be a convex set with more than one point in a Hausdorff topological vector space X_i and let E_i be a nonzero Hausdorff ordered topological vector space whose positive cone is generating. Assume that $T : \operatorname{conv}(C_1, E_1) \to \operatorname{conv}(C_2, E_2)$ is an order isomorphism. Let $\varphi : C_1 \to C_2$ be the bijection associated with T from Lemma 2.4. Take $x_0 \in C_1$ and set $D_1 = \operatorname{span}(C_1 - x_0)$, $y_0 = \varphi(x_0)$ and $D_2 = \operatorname{span}(C_2 - y_0)$. There are a linear functional $\ell : D_1 \to \mathbb{R}$ and a vector space isomorphism $L : D_1 \to D_2$ so that

$$\ell(x-x_0) \neq -1 \text{ and } \varphi(x) = y_0 + \frac{L(x-x_0)}{1+\ell(x-x_0)} \text{ for all } x, x_0 \in C_1.$$

Furthermore, there are a lsc affine function $g: C_2 \to E_2$ and an order preserving vector space isomorphism $\Phi_0: E_1 \to E_2$ so that

$$Tf(y) = g(y) + \frac{\Phi_0(f \circ \varphi^{-1}(y))}{1 + \ell(\varphi^{-1}(y) - x_0)}$$

for all $f \in \operatorname{conv}(C_1, E_1)$ and $y \in \operatorname{dom} Tf = \varphi(\operatorname{dom} f)$.

Proof. Let $x_0 \in C_1$ and $y_0 = \varphi(x_0)$. Obtain a function $\Phi : C_1 \times E_1 \to E_2$ from Lemma 2.6. Set $C'_1 = C_1 - x_0$ and $C'_2 = C_2 - y_0$. For any $f \in \operatorname{conv}(C_1, E_1)$ and $g \in \operatorname{conv}(C_2, E_2)$, define $j_1 f : C'_1 \to E_1$ and $j_2g : C'_2 \to E_2$ by

$$j_1 f(x - x_0) = f(x)$$
 and $j_2 g(y - y_0) = g(y)$ for all $x \in C_1, y \in C_2$.

Clearly $j_i : \operatorname{conv}(C_i, E_i) \to \operatorname{conv}(C'_i, E_i)$ is an order isomorphism. Thus $T' := j_2 T j_1^{-1} : \operatorname{conv}(C'_1, E_1) \to \operatorname{conv}(C'_2, E_2)$ is an order isomorphism. Using Lemmas 2.4 and 2.6, obtain φ' and Φ' with respect to T'. For any $x \in C_1$ and $f \in \operatorname{conv}(C_1, E_1)$, let $z = \varphi^{-1}(\varphi'(x - x_0) + y_0)$. Then

(2.10)

$$\Phi'(x - x_0, f(x)) = \Phi'(x - x_0, (j_1 f)(x - x_0))$$

$$= (T' j_1 f)(\varphi'(x - x_0))$$

$$= (j_2 T f)(\varphi'(x - x_0))$$

$$= T f(\varphi'(x - x_0) + y_0) = \Phi(z, f(z)).$$

If $z \neq x$, for any $u, v \in E_1$, there exists $f \in \operatorname{conv}(C_1, E_1)$ so that f(x) = u and f(z) = v. Thus $\Phi'(x - x_0, u) = \Phi(z, v)$ for all $u, v \in E_1$. This is absurd since $\Phi'(x - x_0, \cdot)$ and $\Phi(x_0, \cdot)$ both map

onto $E_2 \neq \{0\}$. Thus $\varphi'(x - x_0) = \varphi(x) - y_0$. In particular, $\varphi'(0) = 0$. So assumptions (2.1) hold for $\varphi': C'_1 \to C'_2$. Set $g_0 = T'_0 \in \operatorname{conv}(C'_2, E_2)$. Note that dom $g_0 = C'_2$ and that $D_i = \operatorname{span} C'_i$. By Propositions 2.11 and 2.12, there are a vector space isomorphism $L: D_1 \to D_2$, a linear functional ℓ on D_1 and an order preserving vector space isomorphism $\Phi_0: E_1 \to E_2$ so that

$$\varphi'(x-x_0) = \frac{L(x-x_0)}{1+\ell(x-x_0)} \text{ and } \Phi'(x-x_0,\cdot) = g_0(\varphi'(x-x_0)) + \frac{\Phi_0(\cdot)}{1+\ell(x-x_0)}$$

for all $x \in C_1$. Furthermore, $\ell(x-x_0) \neq -1$ for all $x \in C_1$. By (2.10) and since $\varphi'(x-x_0) = \varphi(x) - y_0$, for any $f \in \operatorname{conv}(C_1, E_1)$ and $y \in \operatorname{dom} Tf$,

(2.11)
$$\varphi(x) = y_0 + \frac{L(x - x_0)}{1 + \ell(x - x_0)} \text{ and}$$

(2.12)
$$Tf(y) = \Phi(\varphi^{-1}(y), f \circ \varphi^{-1}(y)) = \Phi'(\varphi^{-1}(y) - x_0, f \circ \varphi^{-1}(y))$$
$$\Phi_0(f \circ \varphi^{-1}(y))$$

$$= g_0(y - y_0) + \frac{\Phi_0(f \circ \varphi^{-1}(y))}{1 + \ell(\varphi^{-1}(y) - x_0)}.$$

Define g by $g(y) = g_0(y - y_0)$. Then g is lsc, affine and dom $g = C_2$. This completes the proof of the theorem.

The corollary below concerns the special case when C_i is the entire topological vector space X_i .

Corollary 2.14. For i = 1, 2, let $X_i \neq \{0\}$ be a Hausdorff topological vector space and let $E_i \neq \{0\}$ be a Hausdorff ordered topological vector space whose positive cone is generating. Assume that T: $\operatorname{conv}(X_1, E_1) \to \operatorname{conv}(X_2, E_2)$ is an order isomorphism. Let $y_0 = \varphi(0) \in C_2$. There are an lsc affine function $g_0 : X_2 \to E_2$, a vector space isomorphism $L : X_1 \to X_2$ and an order preserving vector space isomorphism $\Phi_0 : E_1 \to E_2$ such that for all $f \in \operatorname{conv}(X_1, E_1)$, dom $Tf = y_0 + L(\operatorname{dom} f)$ and that

$$Tf(y) = g_0(y) + \Phi_0(f(L^{-1}(y - y_0)))$$
 for all $f \in \text{conv}(X_1, E_1)$ and $y \in \text{dom } Tf$.

Proof. Take $x_0 = 0$ in Theorem 2.13 to obtain maps ℓ , L, g and Φ_0 . Since $\ell(x) \neq -1$ for all $x \in X_1$, $\ell = 0$. By Theorem 2.13, $\varphi(x) = \varphi(0) + L(x - x_0) = y_0 + Lx$. By Lemma 2.4, dom $Tf = \varphi(\text{dom } f) = y_0 + L(\text{dom } f)$. Clearly, $\varphi^{-1}(y) = L^{-1}(y - y_0)$. Thus

$$Tf(y) = g(y) + \Phi_0(f \circ \varphi^{-1}(y)) = g(y) + \Phi_0(f(L^{-1}(y - y_0))).$$

Remark. Assume that $E_i = \mathbb{R}$ for i = 1, 2. The order preserving linear isomorphism $\Phi_0 : \mathbb{R} \to \mathbb{R}$ is given by multiplication by some a > 0. Thus Corollary 2.14 gives [3, Corollary 8]. When C_i is a convex set in \mathbb{R}^n and $E_i = \mathbb{R}$, Theorem 2.13 is obtained by Cheng and Luo [4].

In Theorem 2.13, the maps ℓ, L, g and Φ_0 may depend on the "base point" x_0 . To anticipate the next section, we will work out the form of the corresponding maps ℓ_1, L_1, g_1 and Φ_1 when the base point changes to some $x_1 \in C_1$. For any $u \in E_1$, take u to be the constant function on C_1 with value u. Using (2.12) at both base points and taking $y_1 = \varphi(x_1)$,

$$g(y) + \frac{\Phi_0(u)}{1 + \ell(\varphi^{-1}(y) - x_0)} = Tu(y) = g_1(y) + \frac{\Phi_1(u)}{1 + \ell_1(\varphi^{-1}(y) - x_1)}$$

DOI: https://dx.doi.org/10.30504/JIMS.2023.385243.1089

39

for all $y \in C_2$. Since Φ_0 and Φ_1 are linear, taking u = 0 shows that $g_1 = g$. Set $a_0 = \ell(x_1 - x_0)$ and $a_1 = \ell_1(x_0 - x_1)$, Taking $y = y_1$ gives $\Phi_1(u) = \frac{\Phi_0(u)}{1+a_0}$. Put this back into the equation above and substitute $z = \varphi^{-1}(y) - x_0$. As Φ_0 is not the zero map,

$$1 + \ell(z) = (1 + a_0) \left[1 + a_1 + \ell_1(z) \right] \text{ for all } z \in C_1 - x_0.$$

By the linearity of ℓ and ℓ_1 , the foregoing equation holds for all $z \in D_1$. Thus

$$(1+a_0)(1+a_1) = 1$$
 and $\ell_1(z) = \frac{\ell(z)}{1+a_0} = (1+a_1)\ell(z).$

Similarly, for any $x \in C_1$, let $z = x - x_0 \in C_1 - x_0$. From (2.11),

$$y_0 + \frac{L(z)}{1 + \ell(z)} = \varphi(x) = y_1 + \frac{L_1(z + x_0 - x_1)}{1 + \ell_1(z) + \ell_1(x_0 - x_1)}$$
$$= y_1 + \frac{L_1(z + x_0 - x_1)}{1 + (1 + a_1)\ell(z) + a_1}$$
$$= y_1 + \frac{L_1(z + x_0 - x_1)}{(1 + a_1)(1 + \ell(z))}.$$

In particular, at z = 0, we find that $L_1(x_0 - x_1) = (1 + a_1)(y_0 - y_1)$. Hence

$$L_1(z) = (1+a_1)[L(z) - (y_1 - y_0)\ell(z)] = \frac{L(z) - (y_1 - y_0)\ell(z)}{1+a_0}.$$

3. Continuity

In this section, we investigate the continuity of the the maps L, ℓ and Φ_0 arising from Theorem 2.13, under appropriate settings.

Lemma 3.1. In the situation of Theorem 2.13, the map φ maps closed convex subsets of C_1 onto closed convex subsets of C_2 .

Proof. Let W be a closed convex set in C_1 . Let $h = T^{-1}0 \in \operatorname{conv}(C_1, E_1)$. Then dom $h = C_1$. Now $h_0 = h|_W : W \to E_1$ is convex and lsc since

$$\{x : h_0(x) \le u\} = \{x : h(x) \le u\} \cap W$$

is closed in C for any $u \in E$. Thus $h_0 \in \operatorname{conv}(C_1, E_1)$. By Lemma 2.4, dom $Th_0 = \varphi(\operatorname{dom} h_0) = \varphi(W)$. By Theorem 2.13, for any $y \in \operatorname{dom} Th_0$, $Th_0(y) = Th(y) = 0$. Thus $0|_{\varphi(W)} = Th_0 \in \operatorname{conv}(C_2, E_2)$. Therefore,

$$\varphi(W) = \{ y \in \operatorname{dom} Th_0 : Th_0(y) \le 0 \}$$

is closed in C_2 .

The next theorem is the main result on continuity. Denote the weak topology $\sigma(X_i, X_i^*)$ by σ_i , i = 1, 2.

Theorem 3.2. In the notation of Theorem 2.13, assume that X_i is locally convex Hausdorff and that C_i has nonempty interior in X_i . Then ℓ is a continuous linear functional on X_1 and $L: X_1 \to X_2$ is an isomorphism of the topological vector space (X_1, σ_1) onto (X_2, σ_2) . Thus $\varphi: (C_1, \sigma_1) \to (C_2, \sigma_2)$ is a homeomorphism.

Proof. Since C_i has nonempty interior, $D_i = X_1$, i = 1, 2, in the notation of Theorem 2.13. Thus ℓ is a linear functional on X_1 and $L: X_1 \to X_2$ is a vector space isomorphism. (These maps are obtained at the base point x_0 .) Let x_1 be an interior point of C_1 , with corresponding maps ℓ_1 and L_1 . Let Ube a circled open neighborhood of 0 in X_1 so that $x_1 + U \subseteq C_1$. By Theorem 2.13, $\ell_1(x) \neq -1$ for all $x \in U$. Thus $|\ell_1(x)| < 1$ for all $x \in U$. It follows easily that ℓ_1 is continuous at 0 and hence continuous on X_1 .

Next, we show that φ is σ_1 -to- σ_2 continuous at x_0 . Otherwise, there are a net (x_α) in C_1 that σ_1 -converges to $x_0, y^* \in X_2^*$ and r > 0 so that $y^*(\varphi(x_\alpha)) > y^*(\varphi(x_0)) + r$ for all α . Let

$$W = \{ y \in C_2 : y^*(y) \ge y^*(\varphi(x_0)) + r \}.$$

Then W is a closed convex set in C_2 . Apply Lemma 2.4 to φ^{-1} to see that $\varphi^{-1}(W)$ is a closed convex set in C_1 . By choice, $x_{\alpha} \in \varphi^{-1}(W)$ for all α and hence $x_0 \in \varphi^{-1}(W)$, i.e., $\varphi(x_0) \in W$, which is obviously absurd. This completes the proof of the claim.

Since ℓ_1 is continuous and x_1 is an interior point of C_1 , it follows from the expression for φ in Theorem 2.13 (at x_1) that L_1 is σ_1 -to- σ_2 continuous at x_1 . Hence L_1 is σ_1 -to- σ_2 continuous on X_1 . Let $y_i = \varphi(x_i), i = 0, 1$. By the final paragraph in §2, there is a real constant a_0 so that for all $z \in X_1$,

$$\ell_1(z) = \frac{\ell(z)}{1+a_0}$$
 and $L_1(z) = \frac{L(z) - (y_1 - y_0)\ell(z)}{1+a_0}$

Clearly the continuity of ℓ and the σ_1 -to- σ_2 continuity of L follow from that of ℓ_1 and L_1 .

Applying the above to T^{-1} at y_0 gives a continuous linear functional m and a σ_2 -to- σ_1 continuous linear map $M: X_2 \to X_1$ so that

$$\varphi^{-1}(y) = x_0 + \frac{M(y - y_0)}{1 + m(y - y_0)}, \ y \in C_2.$$

Since $y = \varphi(\varphi^{-1}(y))$ for all $y \in C_2$, one easily deduces that $M = L^{-1}$. This proves that L is a an isomorphism of the topological vector space (X_1, σ_1) onto (X_2, σ_2) . Therefore, $\varphi : (C_1, \sigma_1) \to (C_2, \sigma_2)$ is a homeomorphism by the formula for φ in Theorem 2.13 and the formula for φ^{-1} above.

Remark. It follows from the σ_1 - σ_2 continuity of L that the graph of L is closed in $X_1 \times X_2$ (in their original topologies). Therefore, if X_i 's are in addition completely metrizable, then it follows from the Closed Graph Theorem that $L: X_1 \to X_2$ is a topological vector space isomorphism with respect to the original topologies on X_i , i = 1, 2.

Let *E* be an ordered vector space. A subset *A* of *E* is **solid** if $x, y \in A$ and $x \leq z \leq y$ imply that $z \in A$. The topology on *E* is **locally solid** if there exists a local basis at 0 consisting of solid sets. If *E* is locally solid and $(a_n), (b_n)$ are sequences in *E* so that $0 \leq a_n \leq b_n$ and (b_n) converges to 0, then (a_n) converges to 0 as well.

Theorem 3.3. Let the notation and assumptions be as in Theorems 2.13 and 3.2. Assume additionally that for i = 1, 2, E_i is locally solid, completely metrizable and that for every null sequence (u_n) in E_i , there is a positive null sequence (v_n) so that $u_n \leq v_n$ for all n. Then $\Phi_0 : E_1 \to E_2$ is an isomorphism of ordered topological vector spaces.

Proof. By Theorem 2.13, Φ_0 is an order preserving vector space isomorphism. It suffices to show that Φ_0 is continuous (at 0); continuity of Φ_0^{-1} follows by symmetry. Let (u_n) be a null sequence in E_1 , we show that there is a subsequence (u_{n_k}) so that $(\Phi_0(u_{n_k}))_k$ converges to 0 in E_2 . Let (v_n) be as given in the statement of the theorem and set $w_n = v_n - u_n$. Then $(v_n), (w_n)$ are positive null sequences. Since E_1 is completely metrizable, by a result of Klee [7], we may assume that the metric d on E_1 is complete and translation invariant. Let $n_1 < n_2 < \cdots$ be chosen so that $d(v_{n_k} + w_{n_k}, 0) \leq \frac{1}{k2^k}$ for all k. By translation invariance $d(k(v_{n_k} + w_{n_k}), 0) \leq \frac{1}{2^k}$ and hence $\sum_{k=1}^{\infty} k(v_{n_k} + w_{n_k})$ converges to an element a in E_1 . Then $0 \leq v_{n_k}, w_{n_k} \leq \frac{a}{k}$ for all k. Since Φ_0 is order preserving and linear,

$$0 \le \Phi_0(v_{n_k}), \Phi_0(w_{n_k}) \le \frac{1}{k} \Phi_0(a)$$
 for all k .

Use the local solidity of E_2 to conclude that $(\Phi_0(v_{n_k})), (\Phi_0(w_{n_k}))$ both converge to 0. Thus $(\Phi_0(u_{n_k}))$ converges to 0, as claimed.

We collect together the foregoing results in the following corollary.

Corollary 3.4. For i = 1, 2, let C_i be a convex set with nonempty interior in a locally convex Hausdorff topological vector space $X_i \neq \{0\}$ and let E_i be a nonzero locally solid completely metrizable ordered topological vector space whose positive cone is generating. Moreover, assume that if (u_n) is a null sequence in E_i , then there is a positive null sequence (v_n) in E_i so that $u_n \leq v_n$ for all n. Suppose that $T : \operatorname{conv}(C_1, E_1) \to \operatorname{conv}(C_2, E_2)$ is an order isomorphism. If $x_0 \in C_1$ and $y_0 = \varphi(x_0) \in C_2$, then there are

- (1) a lsc affine function $g_0: C_2 \to E_2$,
- (2) an isomorphism of topological vector spaces $L: (X_1, \sigma_1) \to (X_2, \sigma_2)$,
- (3) a continuous linear functional $\ell: X_1 \to \mathbb{R}$ and
- (4) an isomorphism of ordered topological vector spaces $\Phi_0: E_1 \to E_2$

so that $\ell(x - x_0) \neq -1$, $\varphi(x) = y_0 + \frac{L(x - x_0)}{1 + \ell(x - x_0)}$ for all $x \in C_1$ and

$$Tf(y) = g_0(y) + \frac{\Phi_0(f \circ \varphi^{-1}(y))}{1 + \ell(\varphi^{-1}(y) - x_0)}, \ y \in \text{dom} \ Tf = \varphi(\text{dom} \ f), \ f \in \text{conv}(C_1, E_1).$$

Remark. Clearly, if E_i is a completely metrizable locally solid topological vector lattice, then it satisfies the assumptions of Corollary 3.4. In particular, this occurs if E_i is a Banach lattice. We give two other examples which are not necessarily lattices.

(1) Let E_i be the space of self-adjoint elements in a C^* -algebra A, equipped with the norm topology and the usual order ($0 \le a$ if and only if $a = b^*b$ for some $b \in A$). (2) Let E_i be the space of regular operators on a Banach lattice F; i.e., the space of operators $T: F \to F$ that can be written as T = S - R, where $S, R: F \to F$ are positive (linear) operators, with the order $T_1 \leq T_2$ if $T_2 - T_1$ is positive, and the norm

$$|||T||| = \inf\{||S|| + ||R|| : T = S - R, S, R \text{ positive}\}.$$

Here $\|\cdot\|$ is the operator norm.

4. Order anti-isomorphisms

As before, for i = 1, 2, let C_i be a convex set in a Hausdorff topological vector space X_i and let E_i be an ordered vector space. A bijection $T : \operatorname{conv}(C_1, E_1) \to \operatorname{conv}(C_2, E_2)$ is an **order anti**isomorphism if $f \leq g$ if and only if $Tg \leq Tf$ for all $f, g \in \operatorname{conv}(C_1, E_1)$. If $E_i = \mathbb{R}$, abbreviate $\operatorname{conv}(C_i, \mathbb{R})$ to $\operatorname{conv}(C_i)$. Order anti-isomorphisms $T : \operatorname{conv}(\mathbb{R}^n) \to \operatorname{conv}(\mathbb{R}^n)$ are characterized in [3, Theorem 7], which then leads to a characterization of the Legendre transform [3, Theorem 1]. A generalization [6, Theorem 2] characterizes order anti-isomorphisms $T : \operatorname{conv}(X) \to \operatorname{conv}(X^*, \sigma^*)$, where X is a Banach space and (X^*, σ^*) means X^* with the weak*-topology. It is shown in [4] that if C is a nonempty convex set in \mathbb{R}^n and there is an order anti-isomorphism from $T : \operatorname{conv}(C) \to \operatorname{conv}(C)$, then C is either \mathbb{R}^n or a singleton. Another result by the same authors [5] shows that for a Banach space X, there is an order anti-isomorphism $T : \operatorname{conv}(X)$ if and only if X is reflexive and X is isomorphic to X^* .

Corollary 2.14 allows us to prove the essential uniqueness of order anti-isomorphisms *if such a mapping exists.* Let X_3 be a Hausdorff topological vector space and let E_3 be a Hausdorff ordered topological vector space. Denote the weak topology $\sigma(X_i, X_i^*)$ by σ_i , i = 1, 2, 3.

Theorem 4.1. Let $T : \operatorname{conv}(X_1, E_1) \to \operatorname{conv}(X_2, E_2)$ and $S : \operatorname{conv}(X_1, E_1) \to \operatorname{conv}(X_3, E_3)$ be order anti-isomorphisms. Then there are $y_0 \in X_2$, an lsc affine function $g_0 : X_2 \to E_2$, a vector space isomorphism $L : X_3 \to X_2$ and an order preserving vector space isomorphism $\Phi_0 : E_3 \to E_2$ such that for all $f \in \operatorname{conv}(X_1, E_1)$, dom $Tf = y_0 + L(\operatorname{dom} Sf)$ and

(4.1)
$$Tf(y) = g_0(y) + \Phi_0((Sf)(L^{-1}(y - y_0))) \text{ for all } y \in \operatorname{dom} Tf.$$

Furthermore, if X_i , i = 1, 2, 3, are locally convex Hausdorff, then (X_3, σ_3) and (X_2, σ_2) are linearly homeomorphic via L.

Proof. The map TS^{-1} : conv $(X_3, E_3) \to \text{conv}(X_2, E_2)$ is an order isomorphism. Obtain $y_0 \in X_2$, an lsc affine function $g_0: X_2 \to E_2$, a vector space isomorphism $L: X_3 \to X_2$ and an order preserving vector space isomorphism $\Phi_0: E_3 \to E_2$ by Corollary 2.14 with respect to TS^{-1} . For all $f \in \text{conv}(X_1, E_1)$,

dom
$$Tf = \text{dom} TS^{-1}(Sf) = y_0 + L(\text{dom} Sf)$$
 and
 $Tf(y) = (TS^{-1})(Sf)(y) = g_0(y) + \Phi_0((Sf)(L^{-1}(y - y_0)))$

for all $y \in \text{dom}(TS^{-1})(Sf) = \text{dom}Tf$. The final assertion follows from Theorem 3.2.

Lemma 4.2. If $g : X_2 \to \mathbb{R}$ is a lsc affine function, then there exist a continuous linear functional $y^* \in X_2^*$ and $a \in \mathbb{R}$ so that $g(y) = a + y^*(y)$ for all $y \in X_2$.

Proof. The functional $h: X_2 \to \mathbb{R}$ defined by h(y) = g(y) - g(0) is linear since g is affine. By the lower semicontinuity of g, there is a balanced open neighborhood V of 0 in X_2 so that

$$V \subseteq \{y : g(y + y_0) > g(y_0) - 1\} = \{y : h(y) > -1\}.$$

Then |h(y)| < 1 for all $y \in V$. Thus $y^* := h \in X_2^*$. Finally, set a = g(0) to complete the proof of the lemma.

If X_1 is locally convex Hausdorff and σ_1^* is the topology $\sigma(X_1^*, X_1)$ on X_1^* , then the **Legendre** transform $\mathcal{L} : \operatorname{conv}(X_1) \to \operatorname{conv}(X_1^*, \sigma_1^*)$ is known to be an order anti-isomorphism, where

$$(\mathcal{L}f)(x^*) = \sup\{x^*(x) - f(x) : x \in \mathrm{dom}\, f\}$$

and dom $\mathcal{L}f$ is the set where the sup is finite. Thus we have the following corollary of Theorem 4.1.

Corollary 4.3. Let X_1, X_2 be locally convex Hausdorff spaces and let $\mathcal{L} : \operatorname{conv}(X_1) \to \operatorname{conv}(X_1^*, \sigma_1^*)$ be the Legendre transform. If $T : \operatorname{conv}(X_1) \to \operatorname{conv}(X_2)$ is an order anti-isomorphism, then there are $y_0 \in X_2, y_0^* \in X_2^*, a, b \in \mathbb{R}$ with b > 0, an isomorphism of topological vector spaces $L : (X_1^*, \sigma_1^*) \to (X_2, \sigma_2)$ so that for all $f \in \operatorname{conv}(X_1)$, dom $Tf = y_0 + L(\operatorname{dom} \mathcal{L}f)$ and

$$Tf(y) = a + y_0^*(y) + b \cdot (\mathcal{L}f)(L^{-1}(y - y_0))$$
 for all $y \in \text{dom} Tf$.

Proof. Take $X_3 = (X_1^*, \sigma_1^*)$ and $S = \mathcal{L}$ in Theorem 4.1 to obtain y_0, g_0, L and Φ_0 . By Lemma 4.2, there are $a \in \mathbb{R}$ and $y_0^* \in X_2^*$ so that $g_0(y) = a + y^*(y)$ for all $y \in X_2$. Also, $\Phi_0 : \mathbb{R} \to \mathbb{R}$ is an order preserving linear map and hence is given by multiplication by some b > 0. Note that $X_3^* = X_1$ and thus $\sigma(X_3, X_3^*) = \sigma_1^*$. So L is a topological vector space isomorphism from (X_1^*, σ_1^*) onto (X_2, σ_2) . The corollary now follows from (4.1).

If $X_1 = X_2 = \mathbb{R}^n$, then Corollary 4.3 yields [3, Theorem 7]. Suppose that $X_1 = X$ is a Banach space and $(X_2, \sigma_2) = (X^*, \sigma^*)$. Then $L : (X^*, \sigma^*) \to (X^*, \sigma^*)$ is a linear homeomorphism. Hence $L = M^*$, where $M : X \to X$ is a Banach space isomorphism. So in this case we obtain [6, Theorem 2]. Finally, if $X_1 = X_2 = X$ is a Banach space, then L is a linear homeomorphism from (X^*, σ^*) onto (X, σ) , where σ is the weak topology on X. Hence the ball of X is the image under L of a relatively compact set in (X^*, σ^*) . In particular, X is reflexive. Hence $L : X^* \to X$ is weak-to-weak continuous and thus it is a Banach space isomorphism. This gives the result in [5] mentioned above. It is also possible to obtain a generalization of [3, Theorem 1].

Corollary 4.4. Let X be a locally convex Hausdorff space. Suppose that $T : \operatorname{conv}(X) \to \operatorname{conv}(X)$ is an order anti-isomorphism such that T(Tf) = f for all $f \in \operatorname{conv}(X)$. Then there are $x_0 \in X$, $x_0^* \in X^*$, $a, b \in \mathbb{R}$ with b > 0 and a linear homeomorphism $L : (X^*, \sigma^*) \to (X, \sigma)$ such that

$$Tf(x) = a + x_0^*(x) + b \cdot (\mathcal{L}f)(L^{-1}(x - x_0)) \text{ for all } f \in \operatorname{conv}(X) \text{ and } x \in \operatorname{dom} Tf.$$

Proof. Use Corollary 4.3 with $X_1 = X_2 = X$ to obtain x_0, x_0^*, a, b and $L : (X^*, \sigma^*) \to (X, \sigma)$ corresponding to T^{-1} . For any $f \in \text{conv}(X)$ and $x \in \text{dom } Tf$,

$$Tf(x) = T^{-1}f(x) = a + x_0^*(x) + b \cdot (\mathcal{L}f)(L^{-1}(x - x_0)).$$

References

- S. Artstein-Avidan, D. Florentin and V. Milman Order isomorphisms on convex functions in windows, Geometric Aspects of Functional Analysis, 61–122, Springer, Berlin, Heidelberg, 2012.
- [2] S. Artstein-Avidan and V. Milman A characterization of the concept of duality, *Electron. Res. Announc. Math. Sci.* 14 (2007) 42–59.
- [3] S. Artstein-Avidan and V. Milman, The concept of duality in convex analysis, and the characterization of the Legendre transform, Ann. Math. (2) 169 (2009), no. 2, 661–674.
- [4] L. Cheng and S. Luo, A localization of the Artstein-Avidan-Milman Theorem, J. Math. Anal. Appl. 513, no. 2, Paper No. 126239, 12 pages. https://doi.org/10.1016/j.jmaa.2022.126239
- [5] L. Cheng and S. Luo, On order preserving and order reversing mappings Sci. China Math. 64 (2021), no. 8, 1817– 1842. arXiv:1708.06548, 2017.
- [6] A. Iusem, D. Reem and B. Svaiter, Order preserving and order reversing operators on the class of convex functions in Banach spaces, J. Funct. Anal. 268 (2015), no. 1, 73–92.
- [7] V.L. Klee, Invariant metrics in groups (solution of a problem of Banach), Proc. Amer. Math. Soc. (3) (1952) 484-487.

Denny H. Leung

Department of Mathematics, National University of Singapore Singapore, Republic of Singapore. Email: dennyhl@u.nus.edu