ORDER ISOMORPHISMS AND ORDER ANTI-ISOMORPHISMS ON SPACES OF CONVEX FUNCTIONS

D. H. LEUNG
Dedicated to Professor A. T.-M. Lau

Abstract

For $i=1,2$, let C_{i} be a convex set in a locally convex Hausdorff topological vector space X_{i}. Denote by $\operatorname{conv}\left(C_{i}\right)$ the space of all convex, proper, lower semicontinuous functions on C_{i}. A representation is given of any bijection $T: \operatorname{conv}\left(C_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}\right)$ that preserves the pointwise order. For $X_{i}=\mathbb{R}^{n}$, this recovers a result of Artstein-Avidan and Milman and its generalization by Cheng and Luo. If X_{1} is a Banach space and $X_{2}=X_{1}^{*}$ with the weak*-topology, it gives a result due to Iusem, Reem and Svaiter. We also obtain representation of order reversing bijections and thus a characterization of the Legendre transform, generalizing the same result by Artstein-Avidan and Milman for the \mathbb{R}^{n} case. The result on order isomorphisms actually holds for convex functions with values in ordered topological vector spaces.

1. Introduction

Let X be a Hausdorff topological vector space and let $\operatorname{conv}(X)$ be the space of convex, proper, lower semicontinuous extended real-valued functions on X. In [2, 3], Artstein-Avidan and Milman characterized order preserving and order reversing maps acting on $\operatorname{conv}\left(\mathbb{R}^{n}\right)$. As a result, they discovered a fundamental characterization of the Legendre transform from convex analysis as the essentially unique order reversing idempotent map on $\operatorname{conv}\left(\mathbb{R}^{n}\right)$. Subsequently, for a convex subset C of \mathbb{R}^{n}, a characterization of order preserving maps on $\operatorname{conv}(C)$ in terms of epigraphs was obtained by ArtsteinAvidan, Florentin and Milman [1]. Recently, Cheng and Luo [4] obtained an explicit formula for such

[^0]DOI: https://dx.doi.org/10.30504/JIMS.2023.385243.1089
mappings. Moving to the infinite dimensional realm, Iusem, Reem and Svaiter [6] characterized order preserving as well as order reversing maps from $\operatorname{conv}(X)$ to $\operatorname{conv}\left(X^{*}, w^{*}\right)$, where X is a Banach space and w^{*} signifies the weak*-topology on X^{*}. Cheng and Luo [5] also showed that for a Banach space X, there is an order preserving bijection from $\operatorname{conv}(X)$ onto $\operatorname{conv}\left(X^{*}\right)$ if and only if X is reflexive and X and X^{*} are isomorphic as Banach spaces.

In this paper, we unify and generalize the aforementioned results. First of all, Theorem 2.13 gives a representation of a general order isomorphism $T: \operatorname{conv}\left(C_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}, E_{2}\right)$, where, for $i=1,2, C_{i}$ is a convex set in a Hausdorff topological vector space X_{i} and E_{i} is an ordered topological vector space with a generating positive cone. A point worth noting is that the proof uses only elementary calculations. Continuity of the constituents of the representation is shown under additional assumptions (Corollary 3.4). In particular, if C_{i} has nonempty interior in X_{i}, where X_{i} is locally convex Hausdorff, then X_{1} and X_{2} must be linearly homeomorphic in their weak topologies. In addition to $E_{i}=\mathbb{R}$, Corollary 3.4 also applies if, e.g., E_{i} is the space of self-adjoint elements in a C^{*}-algebra, or if E_{i} is the space of regular operators on an ordered Banach space. See the last remark in $\S 2$. In the final section, we consider order reversing bijections from $\operatorname{conv}\left(X_{1}, E_{1}\right)$ onto $\operatorname{conv}\left(X_{2}, E_{2}\right)$. Theorem 4.1 shows that such a map must be essentially unique if it exists. As a result, if X_{i} is locally convex Hausdorff and $E_{i}=\mathbb{R}$, then an order reversing bijection $T: \operatorname{conv}\left(X_{1}\right) \rightarrow \operatorname{conv}\left(X_{2}\right)$ exists if and only if $\left(X_{1}^{*}, w^{*}\right)$ and $\left(X_{2}, w\right)$ are linearly homeomorphic. In this case, T must be essentially the Legendre transform (Corollary 4.3). This allows us to obtain a characterization of the Legendre transform generalizing [3, Theorem 1] (Corollary 4.4).

2. Characterization of order isomorphisms

An ordered topological vector space E is a topological vector space with a partial order \leq so that (a) $x+z \leq y+z$ and $\lambda x \leq \lambda y$ if $x, y, z \in E, x \leq y$ and $0 \leq \lambda \in \mathbb{R}$, (b) the positive cone $E_{+}=\{x \in E: x \geq 0\}$ is closed. The positive cone E_{+}is generating if $E=E_{+}-E_{+}$. If E_{+}is generating and $u_{1}, u_{2} \in E$, let $v_{1}, v_{2} \in E_{+}$be such that $u_{i} \leq v_{i}, i=1,2$. Then $u_{i} \leq v_{i} \leq v_{1}+v_{2}$. Let C be a nonempty convex set in a Hausdorff topological vector space and let E be an ordered Hausdorff topological vector space. A function $f: A \rightarrow E$ defined on a convex subset A of C is
(1) convex if

$$
f\left((1-\alpha) x_{1}+\alpha x_{2}\right) \leq(1-\alpha) f\left(x_{1}\right)+\alpha f\left(x_{2}\right)
$$

for any $\alpha \in[0,1]$ and $x_{1}, x_{2} \in A$.
(2) lower semicontinuous (lsc) if the set $\{x \in A: f(x) \leq u\}$ is closed in C for any $u \in E$.

The set A is called the domain of f and is denoted by $\operatorname{dom} f$. Let $\operatorname{conv}(C, E)$ be the set of all convex lsc functions $f: \operatorname{dom} f \rightarrow E$, where $\operatorname{dom} f$ is a nonempty convex subset of C. For $f, g \in \operatorname{conv}(C, E)$, say that $f \leq g$ if $\operatorname{dom} g \subseteq \operatorname{dom} f$ and $f(x) \leq g(x)$ for all $x \in \operatorname{dom} g$. We begin by identifying some functions in $\operatorname{conv}(C, E)$. The first lemma is immediate.

Lemma 2.1. Let A be a nonempty closed convex subset of C and $u_{0} \in E$. Define the function $\xi_{A, u_{0}}: A \rightarrow E$ by $\xi_{A, u_{0}}(x)=u_{0}$ for all $x \in A$. Then $\xi_{A, u_{0}} \in \operatorname{conv}(C, E)$.

If $A=\left\{x_{0}\right\}$ for some $x_{0} \in C$, then $\xi_{A, u_{0}}$ is also written as $\xi_{x_{0}, u_{0}}$. If $x_{1}, x_{2} \in C$, denote the line segment joining x_{1}, x_{2} by $\left[x_{1}, x_{2}\right]$.

Lemma 2.2. Let x_{1}, x_{2} be distinct points in C and let $u_{1}, u_{2} \in E$. The function $f:\left[x_{1}, x_{2}\right] \rightarrow E$ defined by

$$
f\left((1-\alpha) x_{1}+\alpha x_{2}\right)=(1-\alpha) u_{1}+\alpha u_{2}
$$

belongs to $\operatorname{conv}(C, E)$.
Proof. The convexity of f is clear. Define $\tau:[0,1] \rightarrow C$ by $\tau(\alpha)=(1-\alpha) x_{1}+\alpha x_{2}$. Clearly τ is a continuous function. Let $u \in E$. Then

$$
\left\{x \in\left[x_{1}, x_{2}\right]: f(x) \leq u\right\}=\tau\{\alpha \in[0,1]: f(\tau(\alpha)) \leq u\} .
$$

Since the positive cone E_{+}is closed and $f \circ \tau$ is a continuous function, $\{\alpha \in[0,1]: f(\tau(\alpha)) \leq u\}$ is closed in $[0,1]$. Thus

$$
\left\{x \in\left[x_{1}, x_{2}\right]: f(x) \leq u\right\}=\tau\{\alpha \in[0,1]: f(\tau(\alpha)) \leq u\}
$$

is compact and hence closed in C. This proves that f is lsc.
From hereon, let C_{1}, C_{2} be (nonempty) convex sets in Hausdorff topological vector spaces X_{1}, X_{2} respectively and let E_{1}, E_{2} be Hausdorff ordered topological vector spaces with generating positive cones. A bijection $T: \operatorname{conv}\left(C_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}, E_{2}\right)$ such that $f_{1} \leq f_{2} \Longleftrightarrow T f_{1} \leq T f_{2}$ for any $f_{1}, f_{2} \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ is called an order isomorphism. For the remainder of a section, fix an order isomorphism $T: \operatorname{conv}\left(C_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}, E_{2}\right)$.

Lemma 2.3. Let $f_{1}, f_{2} \in \operatorname{conv}\left(X_{1}, E_{1}\right)$. Then $\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}=\emptyset$ if and only if $\operatorname{dom} T f_{1} \cap \operatorname{dom} T f_{2}=$ \emptyset.

Proof. Suppose that $x_{0} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$. Since $\left(E_{1}\right)_{+}$is generating, there exists $u_{0} \in E_{1}$ such that $f_{1}\left(x_{0}\right), f_{2}\left(x_{0}\right) \leq u_{0}$, By Lemma 2.1, $\xi_{x_{0}, u_{0}} \in \operatorname{conv}\left(X_{1}, E_{1}\right)$. Obviously, $f_{i} \leq \xi_{x_{0}, u_{0}}$. Thus $T f_{i} \leq T \xi_{x_{0}, u_{0}}$. Hence $\emptyset \neq \operatorname{dom} T \xi_{x_{0}, u_{0}} \subseteq \operatorname{dom} T f_{1} \cap \operatorname{dom} T f_{2}$. The reverse direction follows by symmetry.

Lemma 2.4. For any $x \in C_{1}$ and $u_{1}, u_{2} \in E_{1}$, $\operatorname{dom} T \xi_{x, u_{1}}=\operatorname{dom} T \xi_{x, u_{2}}$ has exactly one point. Define $\varphi: C_{1} \rightarrow C_{2}$ by $\{\varphi(x)\}=\operatorname{dom} T \xi_{x, u}$ for any $u \in E$. Then φ is a bijection so that $\varphi(\operatorname{dom} f)=\operatorname{dom} T f$ for any $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$. In particular, $\varphi\left(\left[x_{1}, x_{2}\right]\right)=\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]$ for any $x_{1}, x_{2} \in C_{1}$; hence φ maps convex subsets of C_{1} onto convex subsets of C_{2}.

Proof. Suppose that $y_{i} \in \operatorname{dom} T \xi_{x, u_{i}}, i=1,2$. Let $v \in E_{2}$. Then $\operatorname{dom} \xi_{y_{i}, v} \cap \operatorname{dom} T \xi_{x, u_{i}} \neq \emptyset$. Hence $\operatorname{dom} T^{-1} \xi_{y_{i}, v} \cap \operatorname{dom} \xi_{x, u_{i}} \neq \emptyset$ by Lemma 2.3. Thus $x \in \operatorname{dom} T^{-1} \xi_{y_{i}, v}$. Therefore, $\operatorname{dom} T^{-1} \xi_{y_{1}, v} \cap$ $\operatorname{dom} T^{-1} \xi_{y_{2}, v} \neq \emptyset$. It follows from Lemma 2.3 again that $\operatorname{dom} \xi_{y_{1}, v} \cap \operatorname{dom} \xi_{y_{2}, v} \neq \emptyset$. So $y_{1}=y_{2}$. This proves that $\operatorname{dom} T \xi_{x, u_{1}}=\operatorname{dom} T \xi_{x, u_{2}}$ has exactly one point.

Define φ as above. By symmetry, there exists $\psi: C_{2} \rightarrow C_{1}$ such that $\{\psi(y)\}=\operatorname{dom} T^{-1} \xi_{y, v}$ for any $(y, v) \in C_{2} \times E_{2}$. In this case, $T^{-1} \xi_{y, v}=\xi_{\psi(y), u}$ for some $u \in E_{1}$. Then

$$
\varphi(\psi(y))=\operatorname{dom} T \xi_{\psi(y), u}=\operatorname{dom} \xi_{y, v}=y
$$

By symmetry, $\psi(\varphi(x))=x$ for any $x \in C_{1}$. Hence φ is a bijection.
Let $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$. Then

$$
\begin{aligned}
x \in \operatorname{dom} f & \Longleftrightarrow \operatorname{dom} \xi_{x, u} \cap \operatorname{dom} f \neq \emptyset \text { for some } u \in E_{1} \\
& \Longleftrightarrow \operatorname{dom} T \xi_{x, u} \cap \operatorname{dom} T f \neq \emptyset \text { for some } u \in E_{1} \\
& \Longleftrightarrow \varphi(x) \in \operatorname{dom} T f .
\end{aligned}
$$

Suppose that $x_{1}, x_{2} \in C_{1}$. By Lemma 2.1, $\xi_{\left[x_{1}, x_{2}\right], u} \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ for any $u \in E_{1}$. By the above, $\varphi\left(\left[x_{1}, x_{2}\right]\right)=\operatorname{dom} T \xi_{\left[x_{1}, x_{2}\right], u}$ is a convex set in C_{2}. Thus $\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right] \subseteq \varphi\left(\left[x_{1}, x_{2}\right]\right)$. Similarly, $\left[x_{1}, x_{2}\right] \subseteq \varphi^{-1}\left(\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]\right)$. Therefore, $\varphi\left(\left[x_{1}, x_{2}\right]\right)=\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]$. The final statement of the lemma follows readily.

Lemma 2.5. If $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ and $x \in \operatorname{dom} f$, then $T f(\varphi(x))=T \xi_{x, f(x)}(\varphi(x))$.
Proof. By Lemma 2.4, $\operatorname{dom} T \xi_{x, f(x)}=\varphi\left(\operatorname{dom} \xi_{x, f(x)}\right)=\{\varphi(x)\} \subseteq \operatorname{dom} T f$. In particular, there exists $v \in E_{2}$ so that $T \xi_{x, f(x)}=\xi_{\varphi(x), v}$. Since $f \leq \xi_{x, f(x)}, T f \leq \xi_{\varphi(x), v}$ and so $T f(\varphi(x)) \leq v$. Let $w=\frac{1}{2}(T f(\varphi(x))+v)$. Then

$$
T f \leq \xi_{\varphi(x), w} \leq \xi_{\varphi(x), v} \Longrightarrow f \leq T^{-1} \xi_{\varphi(x), w} \leq \xi_{x, f(x)}
$$

By Lemma 2.4, $\varphi\left(\operatorname{dom} T^{-1} \xi_{\varphi(x), w}\right)=\operatorname{dom} \xi_{\varphi(x), w}=\{\varphi(x)\}$. Thus there exists $u^{\prime} \in E_{1}$ so that $T^{-1} \xi_{\varphi(x), w}=\xi_{x, u^{\prime}}$. But then $f(x) \leq u^{\prime} \leq f(x)$ and so $u^{\prime}=f(x)$. Hence, $T^{-1} \xi_{\varphi(x), w}=\xi_{x, f(x)}$. Therefore, $\xi_{\varphi(x), v}=T \xi_{x, f(x)}=\xi_{\varphi(x), w}$, whence $v=w$. It follows that $T f(\varphi(x))=v=T \xi_{x, f(x)}(\varphi(x))$.

Lemma 2.6. There is a function $\Phi: C_{1} \times E_{1} \rightarrow E_{2}$ such that $\Phi(x, \cdot): E_{1} \rightarrow E_{2}$ is a bijection for all $x \in C_{1}$ and that

$$
T f(y)=\Phi\left(\varphi^{-1}(y), f \circ \varphi^{-1}(y)\right) \text { for all } f \in \operatorname{conv}\left(C_{1}, E_{1}\right) \text { and } y \in \operatorname{dom} T f
$$

Proof. By Lemma 2.4, $\varphi(x) \in \operatorname{dom} T \xi_{x, u}$ for any $(x, u) \in C_{1} \times E_{1}$. Define $\Phi: C_{1} \times E_{1} \rightarrow E_{2}$ by $\Phi(x, u)=T \xi_{x, u}(\varphi(x))$. Let $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ and let $y \in \operatorname{dom} T f$. Then $x:=\varphi^{-1}(y) \in \operatorname{dom} f$ by Lemma 2.4. By Lemma 2.5,

$$
T f(y)=T \xi_{x, f(x)}(y)=\Phi(x, f(x))=\Phi\left(\varphi^{-1}(y), f \circ \varphi^{-1}(y)\right) .
$$

Note that from the proof of Lemma 2.4, the bijection $\psi: C_{2} \rightarrow C_{1}$ associated with T^{-1} is φ^{-1}. Therefore, applying the above to T^{-1}, there exists $\Psi: C_{2} \times E_{2} \rightarrow E_{1}$ so that

$$
T^{-1} g(x)=\Psi(\varphi(x), g \circ \varphi(x)) \text { for all } g \in \operatorname{conv}\left(C_{2}, E_{2}\right) \text { and } x \in \operatorname{dom} T^{-1} g
$$

Take any $(x, u) \in C_{1} \times E_{1}$. Then $T \xi_{x, u}(\varphi(x))=\Phi(x, u)$. Hence

$$
u=\left(T^{-1} T \xi_{x, u}\right)(x)=\Psi\left(\varphi(x), T \xi_{\varphi(x), u} \circ \varphi(x)\right)=\Psi(\varphi(x), \Phi(x, u)) .
$$

Similarly, for any $v \in E_{2}, v=\Phi(x, \Psi(\varphi(x), v))$. This proves that $\Psi(\varphi(x), \cdot)$ is the inverse of $\Phi(x, \cdot)$. Therefore, $\Phi(x, \cdot): E_{1} \rightarrow E_{2}$ is a bijection.

Lemma 2.7. Let x_{1}, x_{2} be distinct points in C_{1} and let $u_{1}, u_{2} \in E_{1}$. Define $f:\left[x_{1}, x_{2}\right] \rightarrow E_{1}$ by $f\left((1-\alpha) x_{1}+\alpha x_{2}\right)=(1-\alpha) u_{1}+\alpha u_{2}$. Let $g:\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right] \rightarrow E_{2}$ be given by

$$
g\left((1-\alpha) \varphi\left(x_{1}\right)+\alpha \varphi\left(x_{2}\right)\right)=(1-\alpha) v_{1}+\alpha v_{2}, \quad v_{i}=T f\left(\varphi\left(x_{i}\right)\right), \quad i=1,2
$$

Then $g=T f$.
Proof. First of all, $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ by Lemma 2.2. It follows from Lemma 2.4 that

$$
\operatorname{dom} T f=\varphi(\operatorname{dom} f)=\varphi\left(\left[x_{1}, x_{2}\right]\right)=\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]=\operatorname{dom} g
$$

Similarly, dom $T^{-1} g=\left[x_{1}, x_{2}\right]$. Since $T f$ is convex, $T f \leq g$. Hence $f \leq T^{-1} g$. Label $T^{-1} g\left(x_{i}\right)$ as u_{i}^{\prime}, $i=1,2$. Then

$$
\Phi\left(x_{i}, u_{i}\right)=T f\left(\varphi\left(x_{i}\right)\right)=g\left(\varphi\left(x_{i}\right)\right)=\Phi\left(x_{i}, u_{i}^{\prime}\right) .
$$

So $u_{i}^{\prime}=u_{i}$. Therefore,

$$
\begin{aligned}
f\left((1-\alpha) x_{1}\right. & \left.+\alpha x_{2}\right) \leq T^{-1} g\left((1-\alpha) x_{1}+\alpha x_{2}\right) \\
& \leq(1-\alpha) T^{-1} g\left(x_{1}\right)+\alpha T^{-1} g\left(x_{2}\right)=f\left((1-\alpha) x_{1}+\alpha x_{2}\right)
\end{aligned}
$$

Thus $T^{-1} g=f$ and hence $g=T f$.
In what follows, we seek to discover formulas for the mappings φ and Φ. Denote the zero element in the ambient space X_{i} of C_{i}, as well as the zero element in $E_{i}, i=1,2$, by the generic symbol 0 . If u is a vector in E_{i}, the constant function with domain C_{i} and value u is also denoted by u; so that $u \in \operatorname{conv}\left(C_{i}, E_{i}\right)$. To simplify the notation, we make the following temporary assumption until further notice.

$$
\begin{equation*}
0 \in C_{i}, i=1,2, \text { and } \varphi(0)=0 \tag{2.1}
\end{equation*}
$$

Also set $g_{0}=T 0 \in \operatorname{conv}\left(C_{2}, E_{2}\right)$. By Lemmas 2.4 and 2.6 , for any $\left[x_{1}, x_{2}\right] \subseteq C_{1}$ and $u \in E_{1}$, $T u=T\left(\left.u\right|_{\left[x_{1}, x_{2}\right]}\right)$ on the set $\varphi\left(\left[x_{1}, x_{2}\right]\right)=\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]$. Thus it follows from Lemma 2.7 that $T u$, in particular g_{0}, is an affine function with domain C_{2}.

Lemma 2.8. Let x_{1}, x_{2} be distinct points in C_{1}. There exists a real number $c>0$ (depending on x_{1}, x_{2}) so that

$$
\begin{equation*}
T u\left(\varphi\left(x_{2}\right)\right)-g_{0}\left(\varphi\left(x_{2}\right)\right)=c\left[T u\left(\varphi\left(x_{1}\right)\right)-g_{0}\left(\varphi\left(x_{1}\right)\right)\right] \text { for any } u \in E_{1} . \tag{2.2}
\end{equation*}
$$

Furthermore,

$$
\varphi\left(\frac{x_{1}+x_{2}}{2}\right)=\frac{1}{1+c}\left(c \varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right) .
$$

Proof. For simplicity, let $\tau_{i}:[0,1] \rightarrow E_{i}$ be given by

$$
\tau_{1}(\alpha)=(1-\alpha) x_{1}+\alpha x_{2} \text { and } \tau_{2}(\alpha)=(1-\alpha) \varphi\left(x_{1}\right)+\alpha \varphi\left(x_{2}\right) .
$$

Let $u \in E_{1}$. Define $f_{1}, f_{2}:\left[x_{1}, x_{2}\right] \rightarrow E_{1}$ by

$$
f_{1}\left(\tau_{1}(\alpha)\right)=\alpha u \text { and } f_{2}\left(\tau_{1}(\alpha)\right)=(1-\alpha) u
$$

By Lemma 2.2, $f_{i} \in \operatorname{conv}\left(C_{1}, E_{1}\right)$. Since $f_{1}\left(x_{1}\right)=0, f_{1}\left(x_{2}\right)=u, f_{2}\left(x_{1}\right)=u$ and $f_{2}\left(x_{2}\right)=0$, Lemma 2.6 gives

$$
\begin{aligned}
& T f_{1}\left(\varphi\left(x_{1}\right)\right)=T 0\left(\varphi\left(x_{1}\right)\right)=g_{0}\left(\varphi\left(x_{1}\right)\right), T f_{1}\left(\varphi\left(x_{2}\right)\right)=T u\left(\varphi\left(x_{2}\right)\right), \\
& T f_{2}\left(\varphi\left(x_{1}\right)\right)=T u\left(\varphi\left(x_{1}\right)\right), T f_{2}\left(\varphi\left(x_{2}\right)\right)=T 0\left(\varphi\left(x_{2}\right)\right)=g_{0}\left(\varphi\left(x_{2}\right)\right) .
\end{aligned}
$$

Similarly, let $x_{3}=\tau_{1}\left(\frac{1}{2}\right)$. Then $f_{1}\left(x_{3}\right)=f_{2}\left(x_{3}\right)$ and thus $T f_{1}\left(\varphi\left(x_{3}\right)\right)=T f_{2}\left(\varphi\left(x_{3}\right)\right)$ by Lemma 2.6. By Lemma 2.4, $\varphi\left(x_{3}\right) \in\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]$. As φ is a bijection, there exists $\beta \in(0,1)$ such that $\varphi\left(x_{3}\right)=\tau_{2}(\beta)$. By Lemma 2.7, $T f_{i}\left(\tau_{2}(\beta)\right)=(1-\beta) T f_{i}\left(\varphi\left(x_{1}\right)\right)+\beta T f_{i}\left(\varphi\left(x_{2}\right)\right)$. Hence

$$
\begin{aligned}
& T f_{1}\left(\varphi\left(x_{3}\right)\right)=T f_{1}\left(\tau_{2}(\beta)\right)=(1-\beta) g_{0}\left(\varphi\left(x_{1}\right)\right)+\beta T u\left(\varphi\left(x_{2}\right)\right), \\
& T f_{2}\left(\varphi\left(x_{3}\right)\right)=T f_{2}\left(\tau_{2}(\beta)\right)=(1-\beta) T u\left(\varphi\left(x_{1}\right)\right)+\beta g_{0}\left(\varphi\left(x_{2}\right)\right) .
\end{aligned}
$$

Setting the two lines equal gives (2.2) with $c:=\frac{1-\beta}{\beta}>0$. Furthermore, c is independent of u. Finally,

$$
\varphi\left(\frac{x_{1}+x_{2}}{2}\right)=\varphi\left(x_{3}\right)=\tau_{2}(\beta)=\tau_{2}\left(\frac{1}{1+c}\right)=\frac{1}{1+c}\left(c \varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right) .
$$

This completes the proof of the lemma.
Taking $x_{1}=0$ in Lemma 2.8 and recalling (2.1) gives a positive function $c: C_{1} \rightarrow \mathbb{R}$ so that

$$
\begin{equation*}
T u(\varphi(x))-g_{0}(\varphi(x))=c(x)\left[T u(0)-g_{0}(0)\right] \text { for any } u \in E_{1} . \tag{2.3}
\end{equation*}
$$

Proposition 2.9. Let x_{1}, x_{2} be distinct points in C_{1}. For any $\alpha \in[0,1]$,

$$
\begin{equation*}
\varphi\left((1-\alpha) x_{1}+\alpha x_{2}\right)=\frac{(1-\alpha) c\left(x_{2}\right) \varphi\left(x_{1}\right)+\alpha c\left(x_{1}\right) \varphi\left(x_{2}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)} . \tag{2.4}
\end{equation*}
$$

Proof. Determine $\gamma:[0,1] \rightarrow[0,1]$ by $\tau_{2} \circ \gamma=\varphi \circ \tau_{1}$. Let $c=\frac{c\left(x_{2}\right)}{c\left(x_{1}\right)}$. An easy calculation shows that (2.4) is equivalent to $\gamma(t)=\frac{t}{(1-t) c+t}, t \in[0,1]$. Clearly, γ is a bijection so that $\gamma(0)=0$ and $\gamma(1)=1$. We claim that γ is increasing. Assume that $s, t \in[0,1]$ with $s \leq t$. Using Lemma 2.4 in the third step,

$$
\begin{aligned}
\tau_{2}(\gamma(s)) & =\varphi\left(\tau_{1}(s)\right) \in \varphi\left(\left[\tau_{1}(0), \tau_{1}(t)\right]\right)=\left[\varphi \circ \tau_{1}(0), \varphi \circ \tau_{1}(t)\right] \\
& =\left[\tau_{2}(\gamma(0)), \tau_{2}(\gamma(t))\right]=\tau_{2}([\gamma(0), \gamma(t)]) .
\end{aligned}
$$

Thus $\gamma(s) \in[0, \gamma(t)]$. Hence $\gamma(s) \leq \gamma(t)$. This proves the claim.

Fix a nonzero u in E_{1} and let $v=T u(\varphi(0))-g_{0}(0) \neq 0$. Since both $T u$ and g_{0} are affine on C_{2}, for $\alpha \in[0,1]$,

$$
\begin{align*}
T u\left(\tau_{2}(\alpha)\right)-g_{0}\left(\tau_{2}(\alpha)\right)= & (1-\alpha)\left[T u\left(\varphi\left(x_{1}\right)\right)-g_{0}\left(\varphi\left(x_{1}\right)\right)\right] \tag{2.5}\\
& +\alpha\left[T u\left(\varphi\left(x_{2}\right)\right)-g_{0}\left(\varphi\left(x_{2}\right)\right)\right] \\
= & (1-\alpha) c\left(x_{1}\right) v+\alpha c\left(x_{2}\right) v \quad \text { by }(2.3) \\
= & c\left(x_{1}\right)(1-\alpha(1-c)) v .
\end{align*}
$$

Now we prove that $\gamma(\alpha)=\frac{\alpha}{(1-\alpha) c+\alpha}$ when $\alpha=\frac{i}{2^{n}}$ for some $n \in \mathbb{N} \cup\{0\}$ and $0 \leq i \leq 2^{n}$. The proof is by induction on n. The case $n=0$ has already been observed. Assume that it holds for some n. In particular, it holds for $\alpha=\frac{i}{2^{n+1}}$ if $0 \leq i \leq 2^{n+1}$ and i is even. Consider $\alpha=\frac{2 i-1}{2^{n+1}}$, where $1 \leq i \leq 2^{n}$.
Let $x_{1}^{\prime}=\tau_{1}\left(\frac{i-1}{2^{n}}\right)$ and $x_{2}^{\prime}=\tau_{1}\left(\frac{i}{2^{n}}\right)$. By the inductive hypothesis,

$$
\begin{aligned}
& \varphi\left(x_{1}^{\prime}\right)=\varphi\left(\tau_{1}\left(\frac{i-1}{2^{n}}\right)\right)=\tau_{2}\left(\gamma\left(\frac{i-1}{2^{n}}\right)\right)=\tau_{2}\left(\frac{i-1}{\left(2^{n}-i+1\right) c+i-1}\right):=\tau_{2}\left(\beta_{1}\right), \\
& \varphi\left(x_{2}^{\prime}\right)=\tau_{2}\left(\gamma\left(\frac{i}{2^{n}}\right)\right)=\tau_{2}\left(\frac{i}{\left(2^{n}-i\right) c+i}\right):=\tau_{2}\left(\beta_{2}\right) .
\end{aligned}
$$

Using (2.5), we see that

$$
T u\left(\varphi\left(x_{i}^{\prime}\right)\right)-g_{0}\left(\varphi\left(x_{i}^{\prime}\right)\right)=c\left(x_{1}\right)\left[\left(1-\beta_{i}(1-c)\right] v .\right.
$$

So $T u\left(\varphi\left(x_{2}^{\prime}\right)\right)-g_{0}\left(\varphi\left(x_{2}^{\prime}\right)\right)=c^{\prime}\left[T u\left(\varphi\left(x_{1}^{\prime}\right)\right)-g_{0}\left(\varphi\left(x_{1}^{\prime}\right)\right)\right]$, where

$$
c^{\prime}=\frac{1-\beta_{2}(1-c)}{1-\beta_{1}(1-c)}=\frac{\left(2^{n}-i+1\right) c+i-1}{\left(2^{n}-i\right) c+i}=\frac{\frac{i-1}{\beta_{1}}}{\frac{i}{\beta_{2}}} .
$$

Thus Lemma 2.8 holds for $\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ with the constant c^{\prime} in place of c. Hence

$$
\begin{aligned}
\varphi\left(\tau_{1}\left(\frac{2 i-1}{2^{n+1}}\right)\right) & =\varphi\left(\frac{x_{1}^{\prime}+x_{2}^{\prime}}{2}\right)=\frac{1}{1+c^{\prime}}\left(c^{\prime} \varphi\left(x_{1}^{\prime}\right)+\varphi\left(x_{2}^{\prime}\right)\right) \\
& =\frac{1}{1+c^{\prime}}\left(c^{\prime} \tau_{2}\left(\beta_{1}\right)+\tau_{2}\left(\beta_{2}\right)\right) \\
& =\frac{1}{1+c^{\prime}}\left[\left(1+c^{\prime}-\left(c^{\prime} \beta_{1}+\beta_{2}\right)\right) \varphi\left(x_{1}\right)+\left(c^{\prime} \beta_{1}+\beta_{2}\right) \varphi\left(x_{2}\right)\right] \\
& =\tau_{2}\left(\frac{c^{\prime} \beta_{1}+\beta_{2}}{1+c^{\prime}}\right)=\tau_{2}\left(\frac{2 i-1}{\frac{i-1}{\beta_{1}}+\frac{i}{\beta_{2}}}\right) \\
& =\tau_{2}\left(\frac{\frac{2 i-1}{2^{n+1}}}{\left(1-\frac{2 i-1}{2^{n+1}}\right) c+\frac{2 i-1}{2^{n+1}}}\right) .
\end{aligned}
$$

Thus $\gamma(\alpha)=\frac{\alpha}{(1-\alpha) c+\alpha}$ for $\alpha=\frac{2 i-1}{2^{n+1}}$, completing the induction.
Since $\gamma:[0,1] \rightarrow[0,1]$ is an increasing bijection, it is continuous. Hence $\gamma(\alpha)=\frac{\alpha}{(1-\alpha) c+\alpha}$ for all $\alpha \in[0,1]$.

Corollary 2.10. If $x_{1}, x_{2} \in C_{1}$ and $\alpha \in[0,1]$, then

$$
c\left((1-\alpha) x_{1}+\alpha x_{2}\right)=\frac{c\left(x_{1}\right) c\left(x_{2}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)} .
$$

Thus $\frac{1}{c}$ is a positive affine function on C_{1}.

Proof. The formula is trivial if $x_{1}=x_{2}$. Assume that x_{1}, x_{2} are distinct. As before, let $\tau_{1}(\alpha)=$ $(1-\alpha) x_{1}+\alpha x_{2}, \alpha \in[0,1]$. Fix a nonzero u in E_{1}. By Proposition 2.9, (2.3) and the fact that $T u$ and g_{0} are affine,

$$
\begin{aligned}
& c\left(\tau_{1}(\alpha)\right)\left[T u(0)-g_{0}(0)\right]=T u\left(\varphi\left(\tau_{1}(\alpha)\right)\right)-g_{0}\left(\varphi\left(\tau_{1}(\alpha)\right)\right) \\
&=\left(T u-g_{0}\right)\left(\frac{(1-\alpha) c\left(x_{2}\right) \varphi\left(x_{1}\right)+\alpha c\left(x_{1}\right) \varphi\left(x_{2}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)}\right) \\
&= \frac{(1-\alpha) c\left(x_{2}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)}\left(T u-g_{0}\right)\left(\varphi\left(x_{1}\right)\right) \\
&+\frac{\alpha c\left(x_{1}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)}\left(T u-g_{0}\right)\left(\varphi\left(x_{2}\right)\right) \\
&= \frac{(1-\alpha) c\left(x_{2}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)} c\left(x_{1}\right)\left(T u-g_{0}\right)(0) \\
&+\frac{\alpha c\left(x_{1}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)} c\left(x_{2}\right)\left(T u-g_{0}\right)(0) \\
&= \frac{c\left(x_{1}\right) c\left(x_{2}\right)}{(1-\alpha) c\left(x_{2}\right)+\alpha c\left(x_{1}\right)}\left[T u(0)-g_{0}(0)\right] .
\end{aligned}
$$

Since $T u(0) \neq g_{0}(0)$, the equation in the statement of the corollary is proved. The final assertion follows immediately.

Keeping assumptions (2.1), we find a Hamel basis $\left(x_{i}\right)_{i \in I} \subseteq C_{1}$ of span C_{1}. To rule out trivialities, suppose that C_{1} contains more than one point, so that span $C_{1} \neq\{0\}$. In this case, C_{2} also contains more than one point, since $\varphi: C_{1} \rightarrow C_{2}$ is a bijection.

Proposition 2.11. Let $c_{i}=c\left(x_{i}\right), i \in I$. Define a linear transformation $L: \operatorname{span} C_{1} \rightarrow \operatorname{span} C_{2}$ and a linear functional ℓ on $\operatorname{span} C_{1}$ by

$$
L\left(\sum a_{i} x_{i}\right)=\sum_{i} \frac{a_{i}}{c_{i}} \varphi\left(x_{i}\right) \quad \text { and } \quad \ell\left(\sum a_{i} x_{i}\right)=\sum_{i} a_{i}\left(\frac{1}{c_{i}}-1\right)
$$

for any real family $\left(a_{i}\right)_{i \in I}$ with finitely many nonzero terms. Then $\ell(x) \neq-1$ and $\varphi(x)=\frac{L x}{1+\ell(x)}$ for any $x \in C_{1}$. Moreover, L is a vector space isomorphism from $\operatorname{span} C_{1}$ onto $\operatorname{span} C_{2}$.

Proof. First note that $1+\ell$ and $\frac{1}{c}$ are two affine functions on C_{1} satisfying $(1+\ell)\left(x_{i}\right)=\frac{1}{c\left(x_{i}\right)}$ for all $i \in I$ and $(1+\ell)(0)=c(0)$, since $c(0)=1$ by (2.3). Hence $1+\ell=\frac{1}{c}$ for all $x \in C_{1}$. In particular, $1+\ell(x) \neq 0$ for $x \in C_{1}$.

Suppose that $u, v, w \in C_{1}$ and $w=(1-\alpha) u+\alpha v$ for some $\alpha \in \mathbb{R}$. By Proposition 2.9 and the affineness of $\frac{1}{c}$,

$$
\begin{align*}
\varphi(w) & =\frac{(1-\alpha) c(v) \varphi(u)+\alpha c(u) \varphi(v)}{(1-\alpha) c(v)+\alpha c(u)} \tag{2.6}\\
& =\frac{(1-\alpha) \frac{\varphi(u)}{c(u)}+\alpha \frac{\varphi(v)}{c(v)}}{\frac{1-\alpha}{c(u)}+\frac{\alpha}{c(v)}} \\
& =c(w) \cdot\left[(1-\alpha) \frac{\varphi(u)}{c(u)}+\alpha \frac{\varphi(v)}{c(v)}\right] .
\end{align*}
$$

Let $C=\left\{x \in C_{1}: \varphi(x)=c(x) L(x)\right\}$. By definition of L and (2.1), $x_{i} \in C$ for all $i \in I$ and $0 \in C$. If $u, v \in C$ and $w=(1-\alpha) u+\alpha v \in C_{1}$, where $\alpha \in \mathbb{R}$, then by (2.6),

$$
\begin{aligned}
\varphi(w) & =c(w) \cdot\left[(1-\alpha) \frac{\varphi(u)}{c(u)}+\alpha \frac{\varphi(v)}{c(v)}\right] \\
& =c(w) \cdot[(1-\alpha) L(u)+\alpha L(v)]=c(w) L(w)
\end{aligned}
$$

Thus $w \in C$. In particular, C is convex. If $x \in C_{1} \subseteq \operatorname{span}\left\{x_{i}: i \in I\right\}$, there are $u, v \in \operatorname{co}\left\{x_{i}: i \in I\right\} \subseteq$ C and numbers $a, b \geq 0$ so that $x=a u-b v$. If $a=0$, then $w=-b v+(1+b) 0 \in C$ by the above. If $a>0$, choose k so that $0<k<\min \left\{\frac{a}{1+b}, 1\right\}$. Then $k u \in[0, u] \subseteq C$ and $\frac{b k v}{a-k} \in[0, v] \subseteq C$. Let $\alpha=\frac{a}{k}$. We have

$$
w=a u-b v=(1-\alpha) \frac{b k v}{a-k}+\alpha \cdot k u \in C .
$$

This proves that $C=C_{1}$ and hence $\varphi(x)=c(x) L(x)$ for all $x \in C_{1}$. Since $\frac{1}{c}=1+\ell$, it follows that $\varphi(x)=\frac{L x}{1+\ell(x)}$ for any $x \in C_{1}$.

By symmetry, there are a linear transformation $M: \operatorname{span} C_{2} \rightarrow \operatorname{span} C_{1}$ and a linear functional m on span C_{2} so that $\varphi^{-1}(y)=\frac{M y}{1+m(y)}$ for any $y \in C_{2}$. (Note from the proof of Lemma 2.4 that the map $\psi: C_{2} \rightarrow C_{1}$ associated with T^{-1} is precisely φ^{-1}.) If $x \in C_{1}$, then

$$
\begin{equation*}
x=\varphi^{-1}(\varphi(x))=\varphi^{-1}\left(\frac{L x}{1+\ell(x)}\right)=\frac{M L x}{1+\ell(x)+m(L x)} . \tag{2.7}
\end{equation*}
$$

Take any nonzero $x \in C_{1}$ and apply (2.7) to x and $\frac{x}{2}$. We find that

$$
\frac{M L x}{1+\ell(x)+m(L x)}=x=\frac{2 M L x}{2+\ell(x)+m(L x)} .
$$

In particular, $M L x \neq 0$ and thus $\ell(x)+m(L x)=0$. Hence $M L x=x$ for any $x \in C_{1}$ and so the same holds for any $x \in \operatorname{span} C_{1}$. By symmetry, $L M y=y$ for any $y \in \operatorname{span} C_{2}$. Therefore, L is a vector space isomorphism from span C_{1} onto span C_{2}.

Recall the map $\Phi: C_{1} \times E_{1} \rightarrow E_{2}$ from Lemma 2.6.
Proposition 2.12. Let $\Phi_{0}(u)=\Phi(0, u)-\Phi(0,0)$ for all $u \in E_{1}$. Then $\Phi_{0}: E_{1} \rightarrow E_{2}$ is an order preserving vector space isomorphism. For any $(x, u) \in C_{1} \times E_{1}$,

$$
\begin{equation*}
\Phi(x, u)=g_{0}(\varphi(x))+\frac{\Phi_{0}(u)}{1+\ell(x)} . \tag{2.8}
\end{equation*}
$$

Proof. First note that if $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ and $x \in \operatorname{dom} f$, then since $\varphi(0)=0$ and $g_{0}=T 0$,

$$
\Phi_{0}(f(x))=\Phi(0, f(x))-\Phi(0,0)=T w(0)-g_{0}(0),
$$

where $w=f(x)$. By Lemma 2.6 and (2.3),

$$
\begin{equation*}
\left(T f-g_{0}\right)(\varphi(x))=\Phi(x, w)-\Phi(x, 0)=\left(T w-g_{0}\right)(\varphi(x))=c(x) \Phi_{0}(f(x)) . \tag{2.9}
\end{equation*}
$$

From the proof of Proposition 2.11, $c=\frac{1}{1+\ell}$. Hence, for any $(x, u) \in C_{1} \times E_{1}$,

$$
\Phi(x, u)=T u(\varphi(x))=g_{0}(\varphi(x))+\left(T u-g_{0}\right)(\varphi(x))=g_{0}(\varphi(x))+\frac{\Phi_{0}(u)}{1+\ell(x)} .
$$

Thus (2.8) holds. Let $u, v \in E_{1}$ be given. Choose a nonzero $x \in C_{1}$. By (2.8),

$$
\left(T u-g_{0}\right)(\varphi(x))=\Phi(x, u)-\Phi(x, 0)=\frac{\Phi_{0}(u)}{1+\ell(x)} .
$$

Similarly, $\left(T v-g_{0}\right)(\varphi(x))=\frac{\Phi_{0}(v)}{1+\ell(x)}$. Define $f:[0, x] \rightarrow E_{1}$ by $f(\alpha x)=(1-\alpha) u+\alpha v$. Since $f\left(\frac{x}{2}\right)=\frac{u+v}{2}$, by (2.9),

$$
\left(T f-g_{0}\right)\left(\varphi\left(\frac{x}{2}\right)\right)=c\left(\frac{x}{2}\right) \Phi_{0}\left(\frac{u+v}{2}\right)=\frac{2 \Phi_{0}\left(\frac{u+v}{2}\right)}{2+\ell(x)} .
$$

By Proposition 2.11, $\varphi(x)=\frac{L x}{1+\ell(x)}$ and

$$
\varphi\left(\frac{x}{2}\right)=\frac{L x}{2+\ell(x)}=\frac{\varphi(0)}{2+\ell(x)}+\frac{(1+\ell(x)) \varphi(x)}{2+\ell(x)} .
$$

Thus by Lemma 2.7, the affineness of g_{0} and (2.9),

$$
\left(T f-g_{0}\right)\left(\varphi\left(\frac{x}{2}\right)\right)=\frac{\left(T f-g_{0}\right)(0)+(1+\ell(x))\left(T f-g_{0}\right)(\varphi(x))}{2+\ell(x)}=\frac{\Phi_{0}(u)+\Phi_{0}(v)}{2+\ell(x)} .
$$

This proves that

$$
\Phi_{0}(u)+\Phi_{0}(v)=2 \Phi_{0}\left(\frac{u+v}{2}\right) .
$$

Setting $v=0$ and using $\Phi_{0}(0)=0$, we find that $\Phi_{0}\left(\frac{u}{2}\right)=\frac{1}{2} \Phi_{0}(u)$. Thus, for any $u, v \in E_{1}, \Phi_{0}(u+v)=$ $\Phi_{0}(u)+\Phi_{0}(v)$.

Since T is an order isomorphism, if $u \leq v$ in E_{1}, then $T u \leq T v$. In particular,

$$
\Phi_{0}(u)=T u(0)-\Phi(0,0) \leq T v(0)-\Phi(0,0)=\Phi_{0}(v)
$$

In the proof of Lemma 2.6, we find that if $\Psi: C_{2} \times E_{2} \rightarrow E_{1}$ is such that $\Psi(\varphi(x), \cdot)$ is the inverse of $\Phi(x, \cdot)$ for all $x \in C_{1}$, then $T^{-1} g(x)=\Psi(\varphi(x), g(\varphi(x)))$ for all $g \in \operatorname{conv}\left(C_{2}, E_{2}\right)$ and $x \in C_{1}$. Assume that $u, v \in E_{1}$ and $\Phi_{0}(u) \leq \Phi_{0}(v)$. Then $u^{\prime}=T u(0) \leq T v(0)=v^{\prime}$. Hence

$$
u=\Psi(0, \Phi(0, u))=\Psi(0, T u(0))=T^{-1} u^{\prime}(0) \leq T^{-1} v^{\prime}(0)=v .
$$

This proves that Φ_{0} preserves order (in both directions). Next, we show that Φ_{0} is homogeneous. Since $E_{1}=\left(E_{1}\right)_{+}-\left(E_{1}\right)_{+}$and Φ_{0} is additive, it suffices to show that $\Phi_{0}(\alpha u)=\alpha \Phi_{0}(u)$ if $u \in\left(E_{1}\right)_{+}$ and $\alpha \geq 0$. From the additivity of Φ_{0}, it is easy to see that $\Phi_{0}(r u)=r \Phi_{0}(u)$ for any $r \in \mathbb{Q}$. Let
$\left(r_{n}\right),\left(s_{n}\right)$ be nonnegative rational sequences that increase and decrease to α respectively. Since Φ_{0} preserves order and is \mathbb{Q}-homogeneous,

$$
r_{n} \Phi_{0}(u)=\Phi_{0}\left(r_{n} u\right) \leq \Phi_{0}(\alpha u) \leq \Phi_{0}\left(s_{n} u\right)=s_{n} \Phi_{0}(u) \text { for all } n .
$$

Thus $\alpha \Phi_{0}(u) \leq \Phi_{0}(\alpha u) \leq \alpha \Phi_{0}(u)$; hence $\Phi_{0}(\alpha u)=\alpha \Phi_{0}(u)$. This proves that Φ_{0} is linear. As $\Phi(0, \cdot): E_{1} \rightarrow E_{2}$ is a bijection, we see that $\Phi_{0}: E_{1} \rightarrow E_{2}$ is a linear bijection and therefore a vector space isomorphism.

We have reached the main result of the section. The temporary assumption (2.1) is removed from now on. Suppose that C is a convex set in a vector space X. For any $x_{1}, x_{2} \in C, \operatorname{span}\left(C-x_{1}\right)=$ $\operatorname{span}\left(C-x_{2}\right)$.

Theorem 2.13. For $i=1,2$, let C_{i} be a convex set with more than one point in a Hausdorff topological vector space X_{i} and let E_{i} be a nonzero Hausdorff ordered topological vector space whose positive cone is generating. Assume that $T: \operatorname{conv}\left(C_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}, E_{2}\right)$ is an order isomorphism. Let $\varphi: C_{1} \rightarrow C_{2}$ be the bijection associated with T from Lemma 2.4. Take $x_{0} \in C_{1}$ and set $D_{1}=\operatorname{span}\left(C_{1}-x_{0}\right)$, $y_{0}=\varphi\left(x_{0}\right)$ and $D_{2}=\operatorname{span}\left(C_{2}-y_{0}\right)$. There are a linear functional $\ell: D_{1} \rightarrow \mathbb{R}$ and a vector space isomorphism $L: D_{1} \rightarrow D_{2}$ so that

$$
\ell\left(x-x_{0}\right) \neq-1 \text { and } \varphi(x)=y_{0}+\frac{L\left(x-x_{0}\right)}{1+\ell\left(x-x_{0}\right)} \text { for all } x, x_{0} \in C_{1} .
$$

Futhermore, there are a lsc affine function $g: C_{2} \rightarrow E_{2}$ and an order preserving vector space isomorphism $\Phi_{0}: E_{1} \rightarrow E_{2}$ so that

$$
T f(y)=g(y)+\frac{\Phi_{0}\left(f \circ \varphi^{-1}(y)\right)}{1+\ell\left(\varphi^{-1}(y)-x_{0}\right)}
$$

for all $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ and $y \in \operatorname{dom} T f=\varphi(\operatorname{dom} f)$.
Proof. Let $x_{0} \in C_{1}$ and $y_{0}=\varphi\left(x_{0}\right)$. Obtain a function $\Phi: C_{1} \times E_{1} \rightarrow E_{2}$ from Lemma 2.6. Set $C_{1}^{\prime}=C_{1}-x_{0}$ and $C_{2}^{\prime}=C_{2}-y_{0}$. For any $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ and $g \in \operatorname{conv}\left(C_{2}, E_{2}\right)$, define $j_{1} f: C_{1}^{\prime} \rightarrow E_{1}$ and $j_{2} g: C_{2}^{\prime} \rightarrow E_{2}$ by

$$
j_{1} f\left(x-x_{0}\right)=f(x) \text { and } j_{2} g\left(y-y_{0}\right)=g(y) \text { for all } x \in C_{1}, y \in C_{2} .
$$

Clearly $j_{i}: \operatorname{conv}\left(C_{i}, E_{i}\right) \rightarrow \operatorname{conv}\left(C_{i}^{\prime}, E_{i}\right)$ is an order isomorphism. Thus $T^{\prime}:=j_{2} T j_{1}^{-1}: \operatorname{conv}\left(C_{1}^{\prime}, E_{1}\right) \rightarrow$ $\operatorname{conv}\left(C_{2}^{\prime}, E_{2}\right)$ is an order isomorphism. Using Lemmas 2.4 and 2.6 , obtain φ^{\prime} and Φ^{\prime} with respect to T^{\prime}. For any $x \in C_{1}$ and $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$, let $z=\varphi^{-1}\left(\varphi^{\prime}\left(x-x_{0}\right)+y_{0}\right)$. Then

$$
\begin{align*}
\Phi^{\prime}\left(x-x_{0}, f(x)\right) & =\Phi^{\prime}\left(x-x_{0},\left(j_{1} f\right)\left(x-x_{0}\right)\right) \tag{2.10}\\
& =\left(T^{\prime} j_{1} f\right)\left(\varphi^{\prime}\left(x-x_{0}\right)\right) \\
& =\left(j_{2} T f\right)\left(\varphi^{\prime}\left(x-x_{0}\right)\right) \\
& =T f\left(\varphi^{\prime}\left(x-x_{0}\right)+y_{0}\right)=\Phi(z, f(z)) .
\end{align*}
$$

If $z \neq x$, for any $u, v \in E_{1}$, there exists $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ so that $f(x)=u$ and $f(z)=v$. Thus $\Phi^{\prime}\left(x-x_{0}, u\right)=\Phi(z, v)$ for all $u, v \in E_{1}$. This is absurd since $\Phi^{\prime}\left(x-x_{0}, \cdot\right)$ and $\Phi\left(x_{0}, \cdot\right)$ both map
onto $E_{2} \neq\{0\}$. Thus $\varphi^{\prime}\left(x-x_{0}\right)=\varphi(x)-y_{0}$. In particular, $\varphi^{\prime}(0)=0$. So assumptions (2.1) hold for $\varphi^{\prime}: C_{1}^{\prime} \rightarrow C_{2}^{\prime}$. Set $g_{0}=T^{\prime} 0 \in \operatorname{conv}\left(C_{2}^{\prime}, E_{2}\right)$. Note that $\operatorname{dom} g_{0}=C_{2}^{\prime}$ and that $D_{i}=\operatorname{span} C_{i}^{\prime}$. By Propositions 2.11 and 2.12, there are a vector space isomorphism $L: D_{1} \rightarrow D_{2}$, a linear functional ℓ on D_{1} and an order preserving vector space isomorphism $\Phi_{0}: E_{1} \rightarrow E_{2}$ so that

$$
\varphi^{\prime}\left(x-x_{0}\right)=\frac{L\left(x-x_{0}\right)}{1+\ell\left(x-x_{0}\right)} \text { and } \Phi^{\prime}\left(x-x_{0}, \cdot\right)=g_{0}\left(\varphi^{\prime}\left(x-x_{0}\right)\right)+\frac{\Phi_{0}(\cdot)}{1+\ell\left(x-x_{0}\right)}
$$

for all $x \in C_{1}$. Furthermore, $\ell\left(x-x_{0}\right) \neq-1$ for all $x \in C_{1}$. By (2.10) and since $\varphi^{\prime}\left(x-x_{0}\right)=\varphi(x)-y_{0}$, for any $f \in \operatorname{conv}\left(C_{1}, E_{1}\right)$ and $y \in \operatorname{dom} T f$,

$$
\begin{align*}
\varphi(x) & =y_{0}+\frac{L\left(x-x_{0}\right)}{1+\ell\left(x-x_{0}\right)} \text { and } \tag{2.11}\\
T f(y) & =\Phi\left(\varphi^{-1}(y), f \circ \varphi^{-1}(y)\right)=\Phi^{\prime}\left(\varphi^{-1}(y)-x_{0}, f \circ \varphi^{-1}(y)\right) \tag{2.12}\\
& =g_{0}\left(y-y_{0}\right)+\frac{\Phi_{0}\left(f \circ \varphi^{-1}(y)\right)}{1+\ell\left(\varphi^{-1}(y)-x_{0}\right)} .
\end{align*}
$$

Define g by $g(y)=g_{0}\left(y-y_{0}\right)$. Then g is lsc, affine and $\operatorname{dom} g=C_{2}$. This completes the proof of the theorem.

The corollary below concerns the special case when C_{i} is the entire topological vector space X_{i}.
Corollary 2.14. For $i=1,2$, let $X_{i} \neq\{0\}$ be a Hausdorff topological vector space and let $E_{i} \neq\{0\}$ be a Hausdorff ordered topological vector space whose positive cone is generating. Assume that T : $\operatorname{conv}\left(X_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(X_{2}, E_{2}\right)$ is an order isomorphism. Let $y_{0}=\varphi(0) \in C_{2}$. There are an lsc affine function $g_{0}: X_{2} \rightarrow E_{2}$, a vector space isomorphism $L: X_{1} \rightarrow X_{2}$ and an order preserving vector space isomorphism $\Phi_{0}: E_{1} \rightarrow E_{2}$ such that for all $f \in \operatorname{conv}\left(X_{1}, E_{1}\right), \operatorname{dom} T f=y_{0}+L(\operatorname{dom} f)$ and that

$$
T f(y)=g_{0}(y)+\Phi_{0}\left(f\left(L^{-1}\left(y-y_{0}\right)\right)\right) \text { for all } f \in \operatorname{conv}\left(X_{1}, E_{1}\right) \text { and } y \in \operatorname{dom} T f
$$

Proof. Take $x_{0}=0$ in Theorem 2.13 to obtain maps ℓ, L, g and Φ_{0}. Since $\ell(x) \neq-1$ for all $x \in X_{1}$, $\ell=0$. By Theorem 2.13, $\varphi(x)=\varphi(0)+L\left(x-x_{0}\right)=y_{0}+L x$. By Lemma 2.4, $\operatorname{dom} T f=\varphi(\operatorname{dom} f)=$ $y_{0}+L(\operatorname{dom} f)$. Clearly, $\varphi^{-1}(y)=L^{-1}\left(y-y_{0}\right)$. Thus

$$
T f(y)=g(y)+\Phi_{0}\left(f \circ \varphi^{-1}(y)\right)=g(y)+\Phi_{0}\left(f\left(L^{-1}\left(y-y_{0}\right)\right)\right) .
$$

Remark. Assume that $E_{i}=\mathbb{R}$ for $i=1,2$. The order preserving linear isomorphism $\Phi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is given by multiplication by some $a>0$. Thus Corollary 2.14 gives [3, Corollary 8]. When C_{i} is a convex set in \mathbb{R}^{n} and $E_{i}=\mathbb{R}$, Theorem 2.13 is obtained by Cheng and Luo [4].

In Theorem 2.13, the maps ℓ, L, g and Φ_{0} may depend on the "base point" x_{0}. To anticipate the next section, we will work out the the form of the corresponding maps ℓ_{1}, L_{1}, g_{1} and Φ_{1} when the base point changes to some $x_{1} \in C_{1}$. For any $u \in E_{1}$, take u to be the constant function on C_{1} with value u. Using (2.12) at both base points and taking $y_{1}=\varphi\left(x_{1}\right)$,

$$
g(y)+\frac{\Phi_{0}(u)}{1+\ell\left(\varphi^{-1}(y)-x_{0}\right)}=T u(y)=g_{1}(y)+\frac{\Phi_{1}(u)}{1+\ell_{1}\left(\varphi^{-1}(y)-x_{1}\right)}
$$

DOI: https://dx.doi.org/10.30504/JIMS.2023.385243.1089
for all $y \in C_{2}$. Since Φ_{0} and Φ_{1} are linear, taking $u=0$ shows that $g_{1}=g$. Set $a_{0}=\ell\left(x_{1}-x_{0}\right)$ and $a_{1}=\ell_{1}\left(x_{0}-x_{1}\right)$, Taking $y=y_{1}$ gives $\Phi_{1}(u)=\frac{\Phi_{0}(u)}{1+a_{0}}$. Put this back into the equation above and substitute $z=\varphi^{-1}(y)-x_{0}$. As Φ_{0} is not the zero map,

$$
1+\ell(z)=\left(1+a_{0}\right)\left[1+a_{1}+\ell_{1}(z)\right] \text { for all } z \in C_{1}-x_{0} .
$$

By the linearity of ℓ and ℓ_{1}, the foregoing equation holds for all $z \in D_{1}$. Thus

$$
\left(1+a_{0}\right)\left(1+a_{1}\right)=1 \text { and } \ell_{1}(z)=\frac{\ell(z)}{1+a_{0}}=\left(1+a_{1}\right) \ell(z) .
$$

Simiarly, for any $x \in C_{1}$, let $z=x-x_{0} \in C_{1}-x_{0}$. From (2.11),

$$
\begin{aligned}
y_{0}+\frac{L(z)}{1+\ell(z)} & =\varphi(x)=y_{1}+\frac{L_{1}\left(z+x_{0}-x_{1}\right)}{1+\ell_{1}(z)+\ell_{1}\left(x_{0}-x_{1}\right)} \\
& =y_{1}+\frac{L_{1}\left(z+x_{0}-x_{1}\right)}{1+\left(1+a_{1}\right) \ell(z)+a_{1}} \\
& =y_{1}+\frac{L_{1}\left(z+x_{0}-x_{1}\right)}{\left(1+a_{1}\right)(1+\ell(z))} .
\end{aligned}
$$

In particular, at $z=0$, we find that $L_{1}\left(x_{0}-x_{1}\right)=\left(1+a_{1}\right)\left(y_{0}-y_{1}\right)$. Hence

$$
L_{1}(z)=\left(1+a_{1}\right)\left[L(z)-\left(y_{1}-y_{0}\right) \ell(z)\right]=\frac{L(z)-\left(y_{1}-y_{0}\right) \ell(z)}{1+a_{0}} .
$$

3. Continuity

In this section, we investigate the continuity of the the maps L, ℓ and Φ_{0} arising from Theorem 2.13, under appropriate settings.

Lemma 3.1. In the situation of Theorem 2.13, the map φ maps closed convex subsets of C_{1} onto closed convex subsets of C_{2}.

Proof. Let W be a closed convex set in C_{1}. Let $h=T^{-1} 0 \in \operatorname{conv}\left(C_{1}, E_{1}\right)$. Then dom $h=C_{1}$. Now $h_{0}=\left.h\right|_{W}: W \rightarrow E_{1}$ is convex and lsc since

$$
\left\{x: h_{0}(x) \leq u\right\}=\{x: h(x) \leq u\} \cap W
$$

is closed in C for any $u \in E$. Thus $h_{0} \in \operatorname{conv}\left(C_{1}, E_{1}\right)$. By Lemma 2.4, dom $T h_{0}=\varphi\left(\operatorname{dom} h_{0}\right)=\varphi(W)$. By Theorem 2.13, for any $y \in \operatorname{dom} T h_{0}, T h_{0}(y)=T h(y)=0$. Thus $\left.0\right|_{\varphi(W)}=T h_{0} \in \operatorname{conv}\left(C_{2}, E_{2}\right)$. Therefore,

$$
\varphi(W)=\left\{y \in \operatorname{dom} T h_{0}: T h_{0}(y) \leq 0\right\}
$$

is closed in C_{2}.
The next theorem is the main result on continuity. Denote the weak topology $\sigma\left(X_{i}, X_{i}^{*}\right)$ by σ_{i}, $i=1,2$.

Theorem 3.2. In the notation of Theorem 2.13, assume that X_{i} is locally convex Hausdorff and that C_{i} has nonempty interior in X_{i}. Then ℓ is a continuous linear functional on X_{1} and $L: X_{1} \rightarrow X_{2}$ is an isomorphism of the topological vector space $\left(X_{1}, \sigma_{1}\right)$ onto $\left(X_{2}, \sigma_{2}\right)$. Thus $\varphi:\left(C_{1}, \sigma_{1}\right) \rightarrow\left(C_{2}, \sigma_{2}\right)$ is a homeomorphism.

Proof. Since C_{i} has nonempty interior, $D_{i}=X_{1}, i=1,2$, in the notation of Theorem 2.13. Thus ℓ is a linear functional on X_{1} and $L: X_{1} \rightarrow X_{2}$ is a vector space isomorphism. (These maps are obtained at the base point x_{0}.) Let x_{1} be an interior point of C_{1}, with corresponding maps ℓ_{1} and L_{1}. Let U be a circled open neighborhood of 0 in X_{1} so that $x_{1}+U \subseteq C_{1}$. By Theorem 2.13, $\ell_{1}(x) \neq-1$ for all $x \in U$. Thus $\left|\ell_{1}(x)\right|<1$ for all $x \in U$. It follows easily that ℓ_{1} is continuous at 0 and hence continuous on X_{1}.

Next, we show that φ is σ_{1}-to- σ_{2} continuous at x_{0}. Otherwise, there are a net $\left(x_{\alpha}\right)$ in C_{1} that σ_{1}-converges to $x_{0}, y^{*} \in X_{2}^{*}$ and $r>0$ so that $y^{*}\left(\varphi\left(x_{\alpha}\right)\right)>y^{*}\left(\varphi\left(x_{0}\right)\right)+r$ for all α. Let

$$
W=\left\{y \in C_{2}: y^{*}(y) \geq y^{*}\left(\varphi\left(x_{0}\right)\right)+r\right\} .
$$

Then W is a closed convex set in C_{2}. Apply Lemma 2.4 to φ^{-1} to see that $\varphi^{-1}(W)$ is a closed convex set in C_{1}. By choice, $x_{\alpha} \in \varphi^{-1}(W)$ for all α and hence $x_{0} \in \varphi^{-1}(W)$, i.e., $\varphi\left(x_{0}\right) \in W$, which is obviously absurd. This completes the proof of the claim.

Since ℓ_{1} is continuous and x_{1} is an interior point of C_{1}, it follows from the expression for φ in Theorem 2.13 (at x_{1}) that L_{1} is σ_{1}-to- σ_{2} continuous at x_{1}. Hence L_{1} is σ_{1}-to- σ_{2} continuous on X_{1}. Let $y_{i}=\varphi\left(x_{i}\right), i=0,1$. By the final paragraph in $\S 2$, there is a real constant a_{0} so that for all $z \in X_{1}$,

$$
\ell_{1}(z)=\frac{\ell(z)}{1+a_{0}} \text { and } L_{1}(z)=\frac{L(z)-\left(y_{1}-y_{0}\right) \ell(z)}{1+a_{0}} .
$$

Clearly the continuity of ℓ and the σ_{1}-to- σ_{2} continuity of L follow from that of ℓ_{1} and L_{1}.
Applying the above to T^{-1} at y_{0} gives a continuous linear functional m and a σ_{2}-to- σ_{1} continuous linear map $M: X_{2} \rightarrow X_{1}$ so that

$$
\varphi^{-1}(y)=x_{0}+\frac{M\left(y-y_{0}\right)}{1+m\left(y-y_{0}\right)}, y \in C_{2} .
$$

Since $y=\varphi\left(\varphi^{-1}(y)\right)$ for all $y \in C_{2}$, one easily deduces that $M=L^{-1}$. This proves that L is a an isomorphism of the topological vector space $\left(X_{1}, \sigma_{1}\right)$ onto $\left(X_{2}, \sigma_{2}\right)$. Therefore, $\varphi:\left(C_{1}, \sigma_{1}\right) \rightarrow\left(C_{2}, \sigma_{2}\right)$ is a homeomorphism by the formula for φ in Theorem 2.13 and the formula for φ^{-1} above.

Remark. It follows from the $\sigma_{1}-\sigma_{2}$ continuity of L that the graph of L is closed in $X_{1} \times X_{2}$ (in their original topologies). Therefore, if X_{i} 's are in addition completely metrizable, then it follows from the Closed Graph Theorem that $L: X_{1} \rightarrow X_{2}$ is a topological vector space isomorphism with respect to the original topologies on $X_{i}, i=1,2$.

Let E be an ordered vector space. A subset A of E is solid if $x, y \in A$ and $x \leq z \leq y$ imply that $z \in A$. The topology on E is locally solid if there exists a local basis at 0 consisting of solid sets. If E is locally solid and $\left(a_{n}\right),\left(b_{n}\right)$ are sequences in E so that $0 \leq a_{n} \leq b_{n}$ and $\left(b_{n}\right)$ converges to 0 , then $\left(a_{n}\right)$ converges to 0 as well.

Theorem 3.3. Let the notation and assumptions be as in Theorems 2.13 and 3.2. Assume additionally that for $i=1,2, E_{i}$ is locally solid, completely metrizable and that for every null sequence (u_{n}) in E_{i}, there is a positive null sequence $\left(v_{n}\right)$ so that $u_{n} \leq v_{n}$ for all n. Then $\Phi_{0}: E_{1} \rightarrow E_{2}$ is an isomorphism of ordered topological vector spaces.

Proof. By Theorem 2.13, Φ_{0} is an order preserving vector space isomorphism. It suffices to show that Φ_{0} is continuous (at 0); continuity of Φ_{0}^{-1} follows by symmetry. Let (u_{n}) be a null sequence in E_{1}, we show that there is a subsequence $\left(u_{n_{k}}\right)$ so that $\left(\Phi_{0}\left(u_{n_{k}}\right)\right)_{k}$ converges to 0 in E_{2}. Let (v_{n}) be as given in the statement of the theorem and set $w_{n}=v_{n}-u_{n}$. Then $\left(v_{n}\right),\left(w_{n}\right)$ are positive null sequences. Since E_{1} is completely metrizable, by a result of Klee [7], we may assume that the metric d on E_{1} is complete and translation invariant. Let $n_{1}<n_{2}<\cdots$ be chosen so that $d\left(v_{n_{k}}+w_{n_{k}}, 0\right) \leq \frac{1}{k 2^{k}}$ for all k. By translation invariance $d\left(k\left(v_{n_{k}}+w_{n_{k}}\right), 0\right) \leq \frac{1}{2^{k}}$ and hence $\sum_{k=1}^{\infty} k\left(v_{n_{k}}+w_{n_{k}}\right)$ converges to an element a in E_{1}. Then $0 \leq v_{n_{k}}, w_{n_{k}} \leq \frac{a}{k}$ for all k. Since Φ_{0} is order preserving and linear,

$$
0 \leq \Phi_{0}\left(v_{n_{k}}\right), \Phi_{0}\left(w_{n_{k}}\right) \leq \frac{1}{k} \Phi_{0}(a) \text { for all } k .
$$

Use the local solidity of E_{2} to conclude that $\left(\Phi_{0}\left(v_{n_{k}}\right)\right),\left(\Phi_{0}\left(w_{n_{k}}\right)\right)$ both converge to 0 . Thus $\left(\Phi_{0}\left(u_{n_{k}}\right)\right)$ converges to 0 , as claimed.

We collect together the foregoing results in the following corollary.
Corollary 3.4. For $i=1,2$, let C_{i} be a convex set with nonempty interior in a locally convex Hausdorff topological vector space $X_{i} \neq\{0\}$ and let E_{i} be a nonzero locally solid completely metrizable ordered topological vector space whose positive cone is generating. Moreover, assume that if (u_{n}) is a null sequence in E_{i}, then there is a positive null sequence $\left(v_{n}\right)$ in E_{i} so that $u_{n} \leq v_{n}$ for all n. Suppose that $T: \operatorname{conv}\left(C_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}, E_{2}\right)$ is an order isomorphism. If $x_{0} \in C_{1}$ and $y_{0}=\varphi\left(x_{0}\right) \in C_{2}$, then there are
(1) a lsc affine function $g_{0}: C_{2} \rightarrow E_{2}$,
(2) an isomorphism of topological vector spaces $L:\left(X_{1}, \sigma_{1}\right) \rightarrow\left(X_{2}, \sigma_{2}\right)$,
(3) a continuous linear functional $\ell: X_{1} \rightarrow \mathbb{R}$ and
(4) an isomorphism of ordered topological vector spaces $\Phi_{0}: E_{1} \rightarrow E_{2}$
so that $\ell\left(x-x_{0}\right) \neq-1, \varphi(x)=y_{0}+\frac{L\left(x-x_{0}\right)}{1+\ell\left(x-x_{0}\right)}$ for all $x \in C_{1}$ and

$$
T f(y)=g_{0}(y)+\frac{\Phi_{0}\left(f \circ \varphi^{-1}(y)\right)}{1+\ell\left(\varphi^{-1}(y)-x_{0}\right)}, y \in \operatorname{dom} T f=\varphi(\operatorname{dom} f), f \in \operatorname{conv}\left(C_{1}, E_{1}\right) .
$$

Remark. Clearly, if E_{i} is a completely metrizable locally solid topological vector lattice, then it satisfies the assumptions of Corollary 3.4. In particular, this occurs if E_{i} is a Banach lattice. We give two other examples which are not necessarily lattices.
(1) Let E_{i} be the space of self-adjoint elements in a C^{*}-algebra A, equipped with the norm topology and the usual order ($0 \leq a$ if and only if $a=b^{*} b$ for some $b \in A$).
(2) Let E_{i} be the space of regular operators on a Banach lattice F; i..e., the space of operators $T: F \rightarrow F$ that can be written as $T=S-R$, where $S, R: F \rightarrow F$ are positive (linear) operators, with the order $T_{1} \leq T_{2}$ if $T_{2}-T_{1}$ is positive, and the norm

$$
|\|T \mid\|=\inf \{\|S\|+\|R\|: T=S-R, S, R \text { positive }\}
$$

Here $\|\cdot\|$ is the operator norm.

4. Order anti-isomorphisms

As before, for $i=1,2$, let C_{i} be a convex set in a Hausdorff topological vector space X_{i} and let E_{i} be an ordered vector space. A bijection $T: \operatorname{conv}\left(C_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(C_{2}, E_{2}\right)$ is an order antiisomorphism if $f \leq g$ if and only if $T g \leq T f$ for all $f, g \in \operatorname{conv}\left(C_{1}, E_{1}\right)$. If $E_{i}=\mathbb{R}$, abbreviate $\operatorname{conv}\left(C_{i}, \mathbb{R}\right)$ to $\operatorname{conv}\left(C_{i}\right)$. Order anti-isomorphisms $T: \operatorname{conv}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{conv}\left(\mathbb{R}^{n}\right)$ are characterized in [3, Theorem 7], which then leads to a characterization of the Legendre transform [3, Theorem 1]. A generalization [6, Theorem 2] characterizes order anti-isomorphisms $T: \operatorname{conv}(X) \rightarrow \operatorname{conv}\left(X^{*}, \sigma^{*}\right)$, where X is a Banach space and $\left(X^{*}, \sigma^{*}\right)$ means X^{*} with the weak*-topology. It is shown in [4] that if C is a nonempty convex set in \mathbb{R}^{n} and there is an order anti-isomorphism from $T: \operatorname{conv}(C) \rightarrow \operatorname{conv}(C)$, then C is either \mathbb{R}^{n} or a singleton. Another result by the same authors [5] shows that for a Banach space X, there is an order anti-isomorphism $T: \operatorname{conv}(X) \rightarrow \operatorname{conv}(X)$ if and only if X is reflexive and X is isomorphic to X^{*}.

Corollary 2.14 allows us to prove the essential uniqueness of order anti-isomorphisms if such a mapping exists. Let X_{3} be a Hausdorff topological vector space and let E_{3} be a Hausdorff ordered topological vector space. Denote the weak topology $\sigma\left(X_{i}, X_{i}^{*}\right)$ by $\sigma_{i}, i=1,2,3$.

Theorem 4.1. Let $T: \operatorname{conv}\left(X_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(X_{2}, E_{2}\right)$ and $S: \operatorname{conv}\left(X_{1}, E_{1}\right) \rightarrow \operatorname{conv}\left(X_{3}, E_{3}\right)$ be order anti-isomorphisms. Then there are $y_{0} \in X_{2}$, an lsc affine function $g_{0}: X_{2} \rightarrow E_{2}$, a vector space isomorphism $L: X_{3} \rightarrow X_{2}$ and an order preserving vector space isomorphism $\Phi_{0}: E_{3} \rightarrow E_{2}$ such that for all $f \in \operatorname{conv}\left(X_{1}, E_{1}\right), \operatorname{dom} T f=y_{0}+L(\operatorname{dom} S f)$ and

$$
\begin{equation*}
T f(y)=g_{0}(y)+\Phi_{0}\left((S f)\left(L^{-1}\left(y-y_{0}\right)\right)\right) \text { for all } y \in \operatorname{dom} T f \tag{4.1}
\end{equation*}
$$

Furthermore, if $X_{i}, i=1,2,3$, are locally convex Hausdorff, then $\left(X_{3}, \sigma_{3}\right)$ and $\left(X_{2}, \sigma_{2}\right)$ are linearly homeomorphic via L.

Proof. The map $T S^{-1}: \operatorname{conv}\left(X_{3}, E_{3}\right) \rightarrow \operatorname{conv}\left(X_{2}, E_{2}\right)$ is an order isomorphism. Obtain $y_{0} \in X_{2}$, an lsc affine function $g_{0}: X_{2} \rightarrow E_{2}$, a vector space isomorphism $L: X_{3} \rightarrow X_{2}$ and an order preserving vector space isomorphism $\Phi_{0}: E_{3} \rightarrow E_{2}$ by Corollary 2.14 with respect to $T S^{-1}$. For all $f \in \operatorname{conv}\left(X_{1}, E_{1}\right)$,

$$
\begin{aligned}
\operatorname{dom} T f & =\operatorname{dom} T S^{-1}(S f)=y_{0}+L(\operatorname{dom} S f) \text { and } \\
T f(y) & =\left(T S^{-1}\right)(S f)(y)=g_{0}(y)+\Phi_{0}\left((S f)\left(L^{-1}\left(y-y_{0}\right)\right)\right)
\end{aligned}
$$

for all $y \in \operatorname{dom}\left(T S^{-1}\right)(S f)=\operatorname{dom} T f$. The final asssertion follows from Theorem 3.2.

Lemma 4.2. If $g: X_{2} \rightarrow \mathbb{R}$ is a lsc affine function, then there exist a continuous linear functional $y^{*} \in X_{2}^{*}$ and $a \in \mathbb{R}$ so that $g(y)=a+y^{*}(y)$ for all $y \in X_{2}$.

Proof. The functional $h: X_{2} \rightarrow \mathbb{R}$ defined by $h(y)=g(y)-g(0)$ is linear since g is affine. By the lower semicontinuity of g, there is a balanced open neighborhood V of 0 in X_{2} so that

$$
V \subseteq\left\{y: g\left(y+y_{0}\right)>g\left(y_{0}\right)-1\right\}=\{y: h(y)>-1\} .
$$

Then $|h(y)|<1$ for all $y \in V$. Thus $y^{*}:=h \in X_{2}^{*}$. Finally, set $a=g(0)$ to complete the proof of the lemma.

If X_{1} is locally convex Hausdorff and σ_{1}^{*} is the topology $\sigma\left(X_{1}^{*}, X_{1}\right)$ on X_{1}^{*}, then the Legendre transform $\mathcal{L}: \operatorname{conv}\left(X_{1}\right) \rightarrow \operatorname{conv}\left(X_{1}^{*}, \sigma_{1}^{*}\right)$ is known to be an order anti-isomorphism, where

$$
(\mathcal{L} f)\left(x^{*}\right)=\sup \left\{x^{*}(x)-f(x): x \in \operatorname{dom} f\right\}
$$

and $\operatorname{dom} \mathcal{L} f$ is the set where the sup is finite. Thus we have the following corollary of Theorem 4.1.
Corollary 4.3. Let X_{1}, X_{2} be locally convex Hausdorff spaces and let $\mathcal{L}: \operatorname{conv}\left(X_{1}\right) \rightarrow \operatorname{conv}\left(X_{1}^{*}, \sigma_{1}^{*}\right)$ be the Legendre transform. If $T: \operatorname{conv}\left(X_{1}\right) \rightarrow \operatorname{conv}\left(X_{2}\right)$ is an order anti-isomorphism, then there are $y_{0} \in X_{2}, y_{0}^{*} \in X_{2}^{*}, a, b \in \mathbb{R}$ with $b>0$, an isomorphism of topological vector spaces $L:\left(X_{1}^{*}, \sigma_{1}^{*}\right) \rightarrow$ $\left(X_{2}, \sigma_{2}\right)$ so that for all $f \in \operatorname{conv}\left(X_{1}\right), \operatorname{dom} T f=y_{0}+L(\operatorname{dom} \mathcal{L} f)$ and

$$
T f(y)=a+y_{0}^{*}(y)+b \cdot(\mathcal{L} f)\left(L^{-1}\left(y-y_{0}\right)\right) \text { for all } y \in \operatorname{dom} T f .
$$

Proof. Take $X_{3}=\left(X_{1}^{*}, \sigma_{1}^{*}\right)$ and $S=\mathcal{L}$ in Theorem 4.1 to obtain y_{0}, g_{0}, L and Φ_{0}. By Lemma 4.2, there are $a \in \mathbb{R}$ and $y_{0}^{*} \in X_{2}^{*}$ so that $g_{0}(y)=a+y^{*}(y)$ for all $y \in X_{2}$. Also, $\Phi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is an order preserving linear map and hence is given by multiplication by some $b>0$. Note that $X_{3}^{*}=X_{1}$ and thus $\sigma\left(X_{3}, X_{3}^{*}\right)=\sigma_{1}^{*}$. So L is a topological vector space isomorphism from ($X_{1}^{*}, \sigma_{1}^{*}$) onto (X_{2}, σ_{2}). The corollary now follows from (4.1).

If $X_{1}=X_{2}=\mathbb{R}^{n}$, then Corollary 4.3 yields [3, Theorem 7]. Suppose that $X_{1}=X$ is a Banach space and $\left(X_{2}, \sigma_{2}\right)=\left(X^{*}, \sigma^{*}\right)$. Then $L:\left(X^{*}, \sigma^{*}\right) \rightarrow\left(X^{*}, \sigma^{*}\right)$ is a linear homeomorphism. Hence $L=M^{*}$, where $M: X \rightarrow X$ is a Banach space isomorphism. So in this case we obtain [6, Theorem 2]. Finally, if $X_{1}=X_{2}=X$ is a Banach space, then L is a linear homeomorphism from (X^{*}, σ^{*}) onto (X, σ), where σ is the weak topology on X. Hence the ball of X is the image under L of a relatively compact set in $\left(X^{*}, \sigma^{*}\right)$. In particular, X is reflexive. Hence $L: X^{*} \rightarrow X$ is weak-to-weak continuous and thus it is a Banach space isomorphism. This gives the result in [5] mentioned above. It is also possible to obtain a generalization of [3, Theorem 1].

Corollary 4.4. Let X be a locally convex Hausdorff space. Suppose that $T: \operatorname{conv}(X) \rightarrow \operatorname{conv}(X)$ is an order anti-isomorphism such that $T(T f)=f$ for all $f \in \operatorname{conv}(X)$. Then there are $x_{0} \in X$, $x_{0}^{*} \in X^{*}, a, b \in \mathbb{R}$ with $b>0$ and a linear homeomorphism $L:\left(X^{*}, \sigma^{*}\right) \rightarrow(X, \sigma)$ such that

$$
T f(x)=a+x_{0}^{*}(x)+b \cdot(\mathcal{L} f)\left(L^{-1}\left(x-x_{0}\right)\right) \text { for all } f \in \operatorname{conv}(X) \text { and } x \in \operatorname{dom} T f
$$

Proof. Use Corollary 4.3 with $X_{1}=X_{2}=X$ to obtain x_{0}, x_{0}^{*}, a, b and $L:\left(X^{*}, \sigma^{*}\right) \rightarrow(X, \sigma)$ corresponding to T^{-1}. For any $f \in \operatorname{conv}(X)$ and $x \in \operatorname{dom} T f$,

$$
T f(x)=T^{-1} f(x)=a+x_{0}^{*}(x)+b \cdot(\mathcal{L} f)\left(L^{-1}\left(x-x_{0}\right)\right) .
$$

References

[1] S. Artstein-Avidan, D. Florentin and V. Milman Order isomorphisms on convex functions in windows, Geometric Aspects of Functional Analysis, 61-122, Springer, Berlin, Heidelberg, 2012.
[2] S. Artstein-Avidan and V. Milman A characterization of the concept of duality, Electron. Res. Announc. Math. Sci. 14 (2007) 42-59.
[3] S. Artstein-Avidan and V. Milman, The concept of duality in convex analysis, and the characterization of the Legendre transform, Ann. Math. (2) 169 (2009), no. 2, 661-674.
[4] L. Cheng and S. Luo, A localization of the Artstein-Avidan-Milman Theorem, J. Math. Anal. Appl. 513, no. 2, Paper No. 126239, 12 pages. https://doi.org/10.1016/j.jmaa.2022.126239
[5] L. Cheng and S. Luo, On order preserving and order reversing mappings Sci. China Math. 64 (2021), no. 8, 18171842. arXiv:1708.06548, 2017.
[6] A. Iusem, D. Reem and B. Svaiter, Order preserving and order reversing operators on the class of convex functions in Banach spaces, J. Funct. Anal. 268 (2015), no. 1, 73-92.
[7] V.L. Klee, Invariant metrics in groups (solution of a problem of Banach), Proc. Amer. Math. Soc. (3) (1952) 484-487.

Denny H. Leung

Department of Mathematics, National University of Singapore Singapore, Republic of Singapore.
Email: dennyhl@u.nus.edu

[^0]: Communicated by Mohammad Sal Moslehian
 MSC(2020): Primary: 46N10. Secondary: 46B10, 46B20.
 Keywords: Convex functions; lower semicontinuous; order isomorphism; order anti-isomorphism, Legendre transform.
 Received: 29 February 2023, Accepted: 27 May 2023.

