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Abstract. The paper begins with a brief history of this topologist’s interactions with Derek J. S.

Robinson. It continues with a topological proof of Derek’s result showing that the Schur multiplier of a

generalized Baumslag-Solitar group G is free abelian of rank one less than the rank of the torsion free

first homology of G and that both of these ranks can be computed by inspecting a weighted directed

graph associate to G. In this paper the topology of a special subclass of Seifert fibred 2-dimensional

complexes is used to provide proofs of Derek’s results.

My original introduction to Derek J.S. Robinson and his mathematics was via his book A Course

in the Theory of Groups [10] while working on my Ph.D. in topology at the University of Iowa. It was

one of the texts I consulted regularly during graduate school (and ever since).

A few years after finishing my Ph.D., I was investigating connected topological spaces Y , like the

n-tori Tn = S1 × · · · × S1, which have the property that all their connected finite sheeted covering

spaces f : X → Y have total space X homeomorphic to Y . After a colloquium talk at my home

institution by Nigel Boston, one of Derek’s colleagues at the time at the University of Illinois, I asked

Nigel about the group theoretic version of these investigations. That is, I asked Nigel about groups

G, other than G = Z × · · · × Z, which have the property that all their finite index subgroups are

isomorphic to G. A few days later I received an email from Nigel in which he indicated that he hadn’t
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been able to make much progress on the particular question I had asked and he asked if he could

share the question with one of his group theorist colleagues. My answer in the affirmative led to an

informative, enjoyable, and productive 20+ year long mathematical collaboration with Derek.

Derek and I have co-authored five papers. In the first of these [13] Derek proves a structure theorem

for finitely generated groups all of whose finite index subgroups are isomorophic to the whole group.

The other four papers [2, 3, 4, 5], co-authored with Alberto Delagado, investigate various aspects of

the finitely presented generalized Baumslag-Solitar (GBS) groups – the connection with the question

originally posed to Nigel Boston is that all finitely presented GBS groups G have at least one proper

finite index subgroup isomorophic to the whole group G. The results in [2, 3], and [4] focus on the

group theory while those in [5] look at the interactions between the group theory of GBS groups and

the topology of 3-dimensional manifolds using an approach modeled after those in Heil [6] and Hempel

[7].

The paper [2] introduces a class of special group homomorphisms φ : G1 → G2 between GBS groups

G1 and G2, the so called geometric homomorphisms of the title, which are induced by the weighted

directed graphs, let’s call them GBS graphs, which can be used to define the groups. In [3], these

maps and the GBS graphs which induce them are used to classify the soluble GBS groups. In [4],

the combinatorial properties of the GBS graph which defines a GBS group G are further exploited to

arrive at an algorithm for determining the center and cyclic radical of G. It is also shown that the

unimodular GBS groups are in a sense “covered,” by a GBS group with particularly nice local structure

around each vertex in the associated GBS graph. This “covering” property is further exploited in [4]

where those GBS groups which can be fundamental groups of compact orientable 3-manifolds are

determined.

Derek’s approach to the GBS groups is via classical group theoretic techniques, Alberto’s approach

is from a geometric group theoretic perspective, mine is from the topological point of view. These

disparate points of view had multiple benefits. In particular, when we had a result, they provided three

frequently quite different validations of it. Also, and perhaps more importantly, they provided the

opportunity for a lively, intense, and enjoyable process of discovery and discussion of the mathematics.

Finally, the discussions generated by these different points of view began to suggest that the topology

of a class of 2-dimensional spaces originally investigated in [1], the group theory of the GBS groups,

and the combinatorics of the GBS graphs are three different manifestations of the same phenomena.

The mathematics below is another installment, see also [15], illustrating in more detail the con-

nections between the topology, group theory, and combinatorics begun in [1]. It develops topological

proofs of Derek’s group theoretic results on the Schur multiplier of the GBS groups [11]. The results

here and in [15] can also be thought of as a topological parallel to Derek’s summary of the state of

the GBS art, at the time, provided in [12].

The paper is organized as follows. Section 1 contains basic definitions and results on the combina-

torics, group theory, and topology needed in the sequel sections. It closes with statements of Derek’s

results on the Schur multiplier and first homology of a generalized Baumslag-Solitar group. Sections

2 and 3 continue with additional details on the topology and combinatorics, respectively, needed in
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the topological proofs of Derek’s results. Sections 4 and 5 contain the details of these proofs. Section

6 contains statements of some open problems resulting from my long association with Derek and his

mathematics.

1. Preliminaries

The space τn = {r exp(iθ) : 0 ≤ r ≤ 1; θ = 2πk
n , k = 0, . . . , n − 1} is an n-od. We can also write

τn as the union τn =
n

∪
i=1

[0, 1]i of n intervals [0, 1]i with the n copies of the origin identified. The

2-dimensional space S1 × τn is a disjoint union S1 × τn = ∪{S1 × t : t ∈ τn} of circles S1 × t called

Seifert fibres and there is a quotient map η : S1 × τn → τn given by S1 × t 7→ t. Consequently S1 × τn

is a Seifert fibred 2-complex with base space τn and projection η.

In general a Seifert fibred 2-dimensional complex is a 2-dimensional metric space K = ∪
j∈J

S1
j which

can be (1) written as a union of a pairwise disjoint collection of circles {S1
j : j ∈ J}, called fibres,

together with a quotient map η : K → B mapping each S1
j to a point in B and (2) for which for each

S1
j there is an nj ∈ N and a neighborhood N(S1

j ) which is a union of fibres and which is finitely-to-one

covered by a Seifert fibration preserving covering projection from the product S1×τnj , with the Seifert

fibration above, onto N(S1
j ). The quotient map η is called the projection of the Seifert fibration and

the space B is its base space.

A special class of Seifert fibred 2-complexes, those exhibiting a certain “rigidity,” call them general-

ized Baumslag-Solitar (GBS) complexes, are studied in [15]. This note continues the exploration of the

relationships between the various classes of GBS objects by providing proofs of the homological results

of Robinson [11] using the topology of these Seifert fibred spaces. Note that Levitt [8] also produces a

version of the result about the first homology of a GBS group. He does so by using geometric group

theoretic methods.

Formally, let Γ be a finite connected graph, loops and multiple edges between pairs of vertices

allowed, with vertex set V (Γ) and directed edge set E(Γ). For each edge e, assign an initial vertex

e− and terminal vertex e+ indicating the direction on e. See, for example, Figure 1. The directed

edge e with initial vertex e− = u and terminal vertex e+ = v is sometimes denoted e = [u, v] and

the weighted edge (e, ω) with weights ω(e) = (m,n) can be written (e, ω) = [um, vn]. Associate to

e, e− and e+ infinite cyclic groups ⟨ue⟩, ⟨ge−⟩, and ⟨ge+⟩. Monomorphisms from ⟨ue⟩, into ⟨ge−⟩, and
⟨ge+⟩ are determined by the assignments ue 7→ g

ω−(e)
e− and ue 7→ g

ω+(e)
e+

where ω±(e) ∈ Z∗ = Z \ 0.

These data constitute a graph of groups (Γ, ω) which is completely determined by the finite connected

graph together with the weight function ω : E(Γ) → Z∗ × Z∗ whose values will be written ω(e) =

(ω−(e), ω+(e)). The pair (Γ, ω) is a generalized Baumslag-Solitar (GBS) graph. Its fundamental group

is G = π1(Γ, ω). Note that G = π1(Γ, ω) is not the topological fundamental group of the graph Γ.

The topological fundamental group of Γ is π1(Γ, x0) with base point x0 ∈ Γ.

To obtain a presentation for G, choose a maximal (spanning) subtree T of Γ. The group G has

(1) a vertex generator gv for each vertex v of Γ; (2) an edge generator te for each edge e ∈ E(Γ \ T );

DOI: https://doi.org/10.30504/JIMS.2023.379086.1082

https://doi.org/10.30504/JIMS.2023.379086.1082


78 J. Iran. Math. Soc. 3 (2022), no. 2, 75-90 M. Timm

..u. v. w.

x

.
r

.

s

.

t

.
5
.
10
.

-1
.

8

.
14

.
25

.
7

.
5

. 6.

5

.

-10

.

10

Figure 1. An example of a GBS graph (Γ, ω).

(3) T -relations, g
ω−(e)
e− = g

ω+(e)
e+

for e ∈ E(T ); and (4) non-T relations, t−1
e g

ω−(e)
e− te = g

ω+(e)
e+

for

e ∈ E(Γ \ T ). A presentation for a GBS group which has generators and relations as indicated is

called a GBS presentation. For example, consider the GBS graph (Γ, ω) of Figure 1. Let T be the

spanning subtree of Γ formed by the red edges in the figure. The non-T edges of Γ are the black

edges. Their labels are r, s, and t. We use the vertex labels themselves to represent the generators

associated to each vertex and the non-T edge labels to represent the corresponding edge generators.

Then, π1(Γ, ω) has a presentation with four vertex generators x, u, v, w; three non-T edge generators

r, s, t; and six relations

u5 = x5, u10 = v14, v25 = w6, r−1u8r = u−1, s−1x−10s = v7, t−1x10t = v5.

While the presentation depends on T , it is well known, e.g., Serre [14], or for a topological approach

[1] or [15], that π1(Γ, ω) is independent of T . Note also that by collapsing T to a point, it is easy to see

that the topological fundamental group π1(Γ, x0) is the free group F3 on three generators. Thus, it is

clear that, in general, the GBS group associated to a GBS graph (Γ, ω) is different then the topological

fundamental group of the graph Γ.

The GBS graph (Γ, ω), recall Γ is connected, also defines a connected 2-dimensional complex, a

generalized Baumslag-Solitar (GBS) complex K(Γ, ω). Think of the 2-complex as being embedded in

some high dimensional Euclidean space. It is accordingly a metric space. It is constructed as follows.

See Figures 2, 3.

Let (Γ, ω) be a GBS graph. For each v ∈ V (Γ), let

S1
v = {exp(iθ) : 0 ≤ θ ≤ 2π}

be a copy of the oriented unit circle in the complex plane with the orientation induced by the

parametrization. The S1
v , v ∈ V (Γ) are called vertex circles. For each e ∈ E(Γ), there is an an-

nulus

Ae = S1
e × [0, 1]e

where S1
e is again a copy of the oriented unit circle with the orientation induced by the parametrization

above and [0, 1]e is a copy of the unit interval parametrized in the usual way. Both boundary circles of

Ae are oriented by the parametrizations they inherent from S1
e . For each e define the oriented degree

ω∓(e) attaching maps to be the ω∓(e)-cyclic covers
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Figure 2. A GBS graph (Γ, ω) and the associated GBS complex K(Γ, ω).

pe− : S1
e × 0 → S1

e−: given by (exp(iθ), 0) 7→ exp(i · ω−(e)θ), and

pe+ : S1
e × 1 → S1

e+: given by (exp(iθ), 1) 7→ exp(i · ω+(e)θ).

Let K(Γ, ω) be the resulting 2-complex. The collection of quintuples

A = A(Γ, ω) =
{(

Ae, S
1
e− , S

1
e+ , pe− , pe+

)
: e ∈ E(Γ)

}
forms the annular decomposition for K(Γ, ω) associated to (Γ, ω). The collection of parametrized circles

and annuli in the annular decomposition for a GBS complex together with the specified attaching maps

form the rigidity conditions mentioned above.

We will not normally distinguish between the annulus Ae as an element of A and its image, which

may be a mapping cylinder or mapping torus, in K(Γ, ω). Both will be called an annulus. Similarly,

the circles S1
e × 0 and S1

e × 1 and their images S1
e− and S1

e+ in K(Γ, ω) will all be called vertex circles.

The context should make our intentions clear. K(Γ, ω) inherits a Seifert fibration from the product

Seifert fibration on each of the annuli Ae ∈ A. The fibres of the Seifert fibration of K(Γ, ω) are

the vertex circles and the S1
e × t, where t ∈ (0, 1)e. The vertex circles are also called exceptional

circles because the locally topology around points on them is (usually) different then the points in

the interiors of the annuli Ae. The circles S1
e × t, t ∈ (0, 1)e, which fibre the interior of the annulus

Ae are ordinary circles.

Of fundamental importance in [1, 15], and below is that the rigidity conditions imply that the arc

1e×[0, 1]e ⊂ S1
e×[0, 1]e forms a loop inK(Γ, ω) if and only if e ∈ E(Γ) forms a loop in Γ. More generally

the rigidity conditions imply that the 1-dimensional subspace ∪{1e × [0, 1, ]e ⊂ K(Γ, ω) : e ∈ E(Γ)} is

homeomorphic to Γ and sits in K(Γ, ω) in a natural way. More is said about this below.
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Since the GBS group π1(Γ, ω) and the GBS complex K(Γ, ω) are determined by the same GBS

graph, it is natural to investigate and exploit connections between the group theory of π1(Γ, ω), the

topology of K(Γ, ω), and the combinatorics of (Γ, ω). This note does so by producing topological

proofs of Derek’s results on the homology of the GBS groups. These results determine the structure of

the Schur multiplier, i.e., the second homology, of a GBS group and the rank of the torsion free part

of the first homology of the group. Specifically, let βi(G) denote the ith-betti number of the group G,

that is, the rank of the free abelian summand of the i-th homology group of G. Derek’s theorems are

below. Gilbert Levitt’s version of Theorem 1.2 appears in [8], Proposition 1.1. Note, all homology

computations use Z coefficients.

Theorem 1.1. Let (Γ, ω) be a GBS graph with associated GBS group G = π1(Γ, ω). Then H2(G) is

free abelian of rank β1(G)− 1.

Theorem 1.2. Let (Γ, ω) be a GBS graph with associated GBS group G and ϵ = ϵ(Γ, ω) ∈ {0, 1}.
Then

β1(G) = |E(Γ)| − |V (Γ)|+ 1 + ϵ.

Consequently, β2(G) = |E(Γ)| − |V (Γ)|+ ϵ.

The value ϵ = ϵ(Γ, ω) is a function which encodes combinatorial relationships among the weights on

Γ. Thus, the above results show that the ranks of the Schur multiplier and the torsion free portion of

the first homology of a GBS group can be read off from the combinatorial structure of a GBS graph

associated to the group. In the many conversations Derek, Alberto, and I had about GBS groups,

I always thought of ϵ(Γ, ω) as “Robinson’s ϵ.” It’s precise meaning is given below. An immediate

interesting corollary to Theorem 1.2, pointed out by the referee, is

Corollary 1.3. If (Γ, ω) is a GBS graph with associated GBS group G, then the first betti number,

β1(G) is strictly positive.

To see this, note that for any connected graph Γ, E(Γ)− V (Γ) ≥ −1 with equality exactly when Γ

is a tree (start with a maximal subtree T of Γ which has E(T )− V (T ) = −1 and add the remaining

edges). When Γ is not a tree, E(Γ) − V (Γ) + 1 > 0. When Γ is a tree, ϵ(Γ) = 1, and it follows that

E(Γ)− V (Γ) + 1 + ϵ = 1.

2. GBS complexes

Given a finite connected GBS graph (Γ, ω) it is known [1] that the topological fundamental group

π1(K(Γ, ω), x0) of the GBS complex K(Γ, ω) is isomorphic to the group theoretic fundamental group

π1(Γ, ω). As mentioned above, the rigidity conditions on K(Γ, ω) allow one to show that there is a

copy of Γ which sits in K(Γ, ω) in a natural way. In fact, let η : K(Γ, ω) → Γ be the projection of

the of Seifert fibration to its base space Γ. Then, by [1, 15], the Seifert fibration of K(Γ, ω) has a

section. That is, there is an embedding ι : Γ → K(Γ, ω) such that η◦ι = idΓ. Immediate consequences

of the existence of this section are that the topological fundamental group π1(Γ, x0) embeds into the
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Figure 3. Three illustrations of K([u3, v1]). The drawings in (a) and (b) emphasize

that K([u3, v1]) has an annular decompostion. Because the degree of the attaching

map p[u,v]+ : S1 × 1 → S1
v is 1, S1

v is identified with S1 × 1 in (b). Part (c) emphasises

that it is a locally trivial 3-od bundle over S1.

group theoretic fundamental group π1(Γ, ω) ∼= π1(K(Γ, x0)) and that there is an epimorphism from

the group theoretic π1(Γ, ω) ∼= π1(K(Γ, x0)) onto the topological π1(Γ, x0).

The topological fundamental group π1(Γ, x0) of a finite connected graph Γ is a free group Fn on

some number n of generators. Consequently, when Γ contains two or more distinct simple circuits, the

topology gives that the group theoretic π1(Γ, ω) both contains a free group Fn, n ≥ 2 and has it as a

quotient. Thus, the topology implies that the GBS groups whose associated GBS graphs contain at

least two simple circuits have structures at least as complicated as the free group on 2 generators. At

the homological level, the existence of this section immediately provides a lower bound on the rank of

the first betti number of the GBS group π1(Γ, ω) [15].

In fact, by choosing a maximal subtree T ⊂ Γ, this embedded copy of Γ can then be used to define

a natural or standard system [15] of generators for π1(K(Γ, ω), x0). It consists of the homotopy classes

of the vertex circles together with the homotopy classes of the simple circuits determined by the non-T

edges of Γ: each non-T edge determines the simple circuit in Γ consisting of e and the unique simple

path in T from e− to e+. Repeated applications of Van Kampen’s Theorem to obtain a presentation

for π1(K(Γ, ω), x0) produces a GBS presentation which is the same presentation one obtains by using

the same maximal subtree T of Γ to produce the GBS presentation for the group theoretic π1(Γ, ω).

We also use the result in [1] that a GBS complex K(Γ, ω) is aspherical. Then, applying standard

results, e.g., Mac Lane [9, p.344], we have

Theorem 2.1. (The Homology Isomorphism Theorem) Let (Γ, ω) be a GBS-graph. Then for each

i ≥ 0 the integral homology groups Hi (π1(Γ, ω)) and Hi (K(Γ, ω)) are isomorphic.

Thus, topological methods can be used to compute all of the homology groups of a GBS group. For

example, because K(Γ, ω) is 2-dimensional, it immediately follows that

Corollary 2.2. The higher homology groups Hi(π1(Γ, ω)) ∼= Hi(K(Γ, ω)), i ≥ 3 are all trivial.

The fact that Γ sits in K(Γ, ω) in a natural way and that it has a natural CW structure allows

one to compute the Euler characteristic χ(K(Γ, ω)) = χ(π1(Γ, ω)) quite easily. K(Γ, ω) inherits a CW
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Figure 4. The base case of the induction for the proof of the Presentation Theorem.

structure via the following construction. Γ has a CW structure consisting of one 0-cell for each vertex

u ∈ V (Γ) and one 1-cell for each edge e ∈ E(Γ). Then attach to Γ an addition 1-cell c
(1)
u = [0, 1]u by

identifying 0 and 1 with u to form a vertex circle S1
u. Finally, for each e ∈ E(Γ), attach a 2-cell c

(2)
e to

the 1-skeleton Γ ∪
(
∪{S1

u : u ∈ V (Γ)}
)
via instructions provided by the weight function ω(e). Count

cells in each dimension and form their alternating sum. This produces

Corollary 2.3. χ(π1(Γ, ω)) = χ(K(Γ, ω)) = 0.

2.1. A simplicial structure on K(Γ, ω) and its immediate consequences. We henceforth denote

the standard copy of Γ in K by the same symbol. We assume that K = K(Γ, ω) is triangulated so

that for each edge e of Γ the annulus Ae in the annular decomposition is triangulated. Assume that

each vertex v in the standard copy of Γ in K is a 0-simplex in the triangulation. Also assume that

for each vertex v and each edge e, the associated vertex circle S1
v in K and the embedded copy of e in

K are unions of 1-simplices in the given triangulation. Assume that the triangulation is fine enough

that for each edge e there is a closed disk De ⊂ int(Ae) such that both De and its closed complement

Ae \ Int(Ae) are unions of 2-simplices of the triangulation. Finally, for each e choose some point

Pe ∈ int(De). We assume each Pe is a 0-simplex in the triangulation. We also require that when T is

a maximal subtree of Γ, v a vertex of Γ and e a non-T edge of Γ, the standard generators xv and te

are also unions of 0- and 1-simplices of the triangulation.

Let ∅ ̸= S ⊂ E(Γ). Let DS = ∪{De : e ∈ S} and let CS be the closed complement of DS . That is,

CS ≡def K \ (∪{int(De) : e ∈ S}). Let ΓS be the graph with vertex set V (ΓS) = V (Γ) and edge set

E(ΓS) = E(Γ) \E(S). We also write Γ \ S for ΓS . Note that V (ΓS) = V (Γ). Let KS = K(ΓS , ω). In

particular, KE(Γ) = ∪{S1
v : v ∈ V (Γ)} is the disjoint union of the vertex circles.

We use integral simplicial homology. The notation [∗] denotes the homology class of ∗ of the

appropriate dimension. We use the notation Z⟨α⟩ when we need to specify a particular generator α

for the infinite cyclic group Z.
Now consider the upper end of the Mayer-Vietoris sequence for the simplicial triple (K,DS , CS).

Observe that for each e ∈ S, the disk De strong deformation retracts to the point Pe. Therefore,

DS strong deformation retracts to the finite point-set {Pe : e ∈ S}. Also, for each e ∈ S, there is

a strong deformation retract of Ae \ int(De) onto the 1-complex S1
e− ∪ e ∪ S1

e+ . This collection of
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strong deformation retracts induces a strong deformation retract of CS onto the (connected) complex

KS ∪
(
∪{S1

e− ∪ e ∪ S1
e+ : e ∈ S}

)
⊂ K.

Since all of K, DS , and CS are 2-dimensional, all of the higher homology groups for all three are

trivial for every ∅ ̸= S ⊂ E(Γ). This produces the Mayer-Vietoris sequence

(2.1)
0 → H2(CS ∩ DS) → H2(CS)⊕H2(DS)

→ H2(K)
∂→ H1(CS ∩ DS)

φ→ H1(CS)⊕H1(DS) → · · ·

But, DS ∩ CS = ∂DS is a collection of |S| circles and DS has the homotopy type of a collection of

|S| points. Thus, all of H2(CS ∩ DS), H2(DS), and H1(DS) are trivial for dimensional reasons and

H1(DS ∩ CS) =
|S|
⊕
i=1

Z. Therefore, equation (2.1) simplifies to

(2.2) 0 → H2(CS)⊕ 0 → H2(K)
∂→

|S|
⊕
i=1

Z φ→ H1(CS)⊕ 0 → · · ·

Now set S = E(Γ). In this case KS = KE(Γ) is just the union of the vertex circles of K and

CS = CE(Γ) strong deformation retracts to the 1-complex

∪{S1
e− ∪ e ∪ S1

e+ : e ∈ E(Γ)} = Γ ∪
(
∪{S1

v : v ∈ V (Γ)}
)
.

Therefore, again for dimensional reasons, equation (2.2), simplifies to

(2.3) 0 → H2(K)
∂→

|E(Γ)|
⊕
i=1

Z φ→ H1(CE(Γ))⊕ 0 → · · ·

From the exactness of equation (2.3), we easily obtain part of Theorem 1.1, also noted in [15] that

H2(K) is free abelian. We have, in fact, the following:

Proposition 2.4. If K = K(Γ, ω), then H2(K) ∼= H2(π1(Γ, ω)) is free abelian of rank β2(K) ≤ |E(Γ)|.
Consequently, since χ(K) = 0, it follows that |E(Γ\T )|−1 ≤ β2(K) ≤ |E(Γ)| and |E(Γ\T )| ≤ β1(K) ≤
|E(Γ)|+ 1.

Given a maximal subtree T of Γ, each non-T edge e determines two important equations in π1(K).

For u, v ∈ V (Γ) we have γ(u, v), the unique simple directed path in T from u to v. If u = v, then γ(u, v)

is a point and let (p−(u, v), p+(u, v)) = (1, 1). Otherwise, let p−(u, v) be the product of all the initial

weights of the edges in γ(u, v) between u and v and p+(u, v) be the product of all the terminal weights

of the edges of γ(u, v) between u and v. For the maximal subtree T of Γ and e ∈ E(Γ \ T ), define the

weight product function p(e) = pT (e) = (M,N) where M = p−(e−, e+) and N = p+(e−, e+). Then

γ(e−, e+) determines the relation xMe− = xNe+ in the GBS group π1(Γ, ω). Because e is a non-tree edge,

setting ω(e) = (m,n) produces the relation tex
m
e−t

−1
e = xne+ in π1(K(Γ, ω), x0). Since [xe± ] = [S1

e± ]

these equations produce the important homological equations in the next proposition.

Proposition 2.5. Let K = K(Γ, ω). In H1(K) there are the equations M [S1
e− ] = N [S1

e+ ] and

m[S1
e− ] = n[S1

e+ ].
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3. Tree and non-tree dependent GBS graphs

We say the non-T edge e is T dependent if the weight product pair p(e) = (M,N) from above is a

rational multiple of ω(e) = (ω−(e), ω+(e)) = (m,n). Note that if e is loop, then e is T dependent if

and only if ω−(e) = ω+(e). A GBS graph (Γ, ω) is tree dependent, if it is itself a tree or there is some

maximal subtree T of Γ such that every edge e of E(Γ \ T ) is T dependent. A group theoretic version

of tree dependence is that of unimodularity developed in [8]. Define Robinson’s ϵ by

ϵ = ϵ(Γ, ω) =

{
1, if Γ is tree dependent;

0, otherwise.

Observe that while the weight-product function p above is dependent upon the particular maximal

sub-tree T , results in [11] show that tree dependence of a GBS graph is not. Thus, tree dependence

is a combinatorial invariant of the GBS graph (Γ, ω).

Also, note the following:

(M,N) = P
Q(m,n) ⇔ M

m = P
Q = N

n

⇔ M
m = N

n

⇔ Mn = Nm

Consequently, when m, n, M , and N are the values defined above for cycles in a GBS graph, it follows

that p−(e)ω+(e) = p+(e)ω−(e). Denote e with the reverse orientation by e. Then, by changing the

orientation of e (in the case e is not itself a loop) so that γ(e−, e+)∪e becomes a directed simple cycle,

we see that

Proposition 3.1. Given a maximal subtree T of Γ and a non-T edge e, e is tree dependent if and

only if the product of the initial weights on the simple directed cycle γ(e−, e+) ∪ e equals the product

of the terminal weights on its edges.

4. The proof for (Γ, ω) tree dependent.

It is interesting to note the degree to which the results in this and the next section depend upon

the fact that K(Γ, ω) contains a copy of Γ which sits in it in a natural way.

We begin with the case where Γ is itself a tree.

Lemma 4.1. Assume Γ = T is a tree. If K = K(Γ, ω), then H2(K) is trivial. Therefore, β2(K) = 0

and β1(K) = 1. Furthermore, for some, and hence every, vertex v ∈ V (Γ), |[S1
v ]| is infinite in H1(K).

Proof. We induct on |E(Γ)|. When |E(Γ)| = 0, Γ is a single vertex and consequently K is a circle. It

is clear that the result holds in this case.

Next, suppose the result holds when Γ is a tree and |E(Γ)| = n ≥ 0. Let Γ be a tree with n + 1

edges.

Choose leaf e ∈ E(Γ). Set S = {e}. In this case ΓS = Γ \ e ≡def Γe is a tree with n edges.

Futhermore, CS = Ce strong deformation retracts onto Ke ∪ S1
e− ∪ e ∪ S1

e+ where Ke = K(Γe, ω) and
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exactly one of S1
e− or S1

e+ , say S1
e− , is contained in Ke. The induction hypothesis applies to Ke.

Consequently, H2(Ke) = 0. Furthermore, by contracting the edge e, we see that Ke ∪ S1
e− ∪ e ∪ S1

e+

has the homotopy type of Ke ∪
e−=e+

S1
e+ , the one point join of the GBS complex Ke and vertex

circle S1
e+ . Consequently, H2(Ce) = H2(Ke) ⊕ H2(S

1
e+) = 0 ⊕ 0, H1(CS ∩ DS) = Z⟨[∂De]⟩, and

H1(Ce) ∼= H1(Ke)⊕ Z⟨[S1
e+ ]⟩. Therefore, equation (2.2) becomes

(4.1)
0 → 0⊕ 0 → H2(K)

∂→ Z⟨[∂De]⟩
φ→ H1(Ke)⊕ Z⟨[S1

e+ ]⟩ ⊕ 0 → · · ·

But in (4.1), with the appropriate orientations on ∂De, S
1
e− , and S1

e+ ,

φ ([∂De]) = (ω−(e)[S1
e− ],−ω+(e)[S1

e+ ], 0).

Since the direct summand Z⟨[S1
e+ ]⟩ is free ablian with generator [S1

e+ ] and ω+(e) ̸= 0, it follows

that ω+(e)[S1
e+ ] is non-trivial. Therefore, φ is a monomorphism. By exactness of equation (4.1),

ker(φ) = im(∂) = 0. Again, by exactness of (4.1), it follows that H2(K) = 0. Consequently,

β2(K) = 0 and β1(K) = 1.

Next, suppose that for each vertex we have that [S1
v ] has finite order in H1(K). Since Γ is a tree,

[1] gives that the homotopy classes of the standard generators xv, for v ∈ V (Γ), generate π1(K).

Therefore, their homology classes generate H1(K). But [S1
v ] = [xv] for v ∈ V (Γ) and therefore

{[S1
v ] : v ∈ V (Γ)} generate H1(K). But, with the order of each generator finite (and H1(K) abelian),

it follows that β1(K) = 0 which contradicts the preceding paragraph. Therefore, there is some vertex

u ∈ V (Γ) such that [S1
u] has infinite order in H1(K).

Finally, suppose that v ̸= u is another vertex of Γ. Since Γ is a tree there is a (unique) simple

directed path γ(u, v) from u to v. This path determines the relation x
p−(u,v)
u = x

p+(u,v)
v in π1(K) and,

consequently, the equation p−(u, v)[S1
u] = p+(u, v)[S1

v ] in H1(K), for the non-zero integer products

p−(u, v), p+(u, v). Therefore, [S1
v ] has infinite order for every vertex v ∈ V (Γ). □

Theorem 4.2. Suppose that (Γ, ω) is a tree dependent GBS graph and K = K(Γ, ω). Then β2(K) =

|E(Γ)| − |V (Γ)|+ ϵ(Γ, ω) and β1(K) = |E(Γ)| − |V (Γ)|+ 1 + ϵ(Γ, ω)

Proof. Since (Γ, ω) is tree dependent, ϵ(Γ, ω) = 1. We induct on the number n = n(E(Γ) \ E(T ))

of non-tree edges in Γ where T is a maximal subtree of Γ. Note that this number, like ϵ(Γ, ω) is

independent of the particular maximal subtree T chosen.

When n = 0, Γ is a tree. By Lemma (4.1), β2(K) = 0. Since Γ is a tree, |E(Γ)| − |V (Γ)| = −1.

Since ϵ(Γ, ω) = 1, the result follows.

Now assume that the result holds when there are n non-tree edges. Suppose (Γ, ω) is a GBS graph

with n+ 1 non-tree edges.

Let T be a maximal subtree of Γ. Choose a non-T edge e of Γ. Then (Γe, ω) is still T dependent

but with only n non-T edges. We have Ke the GBS complex associated to (Γe, ω). Observe that the

induction hypothesis applies to (Γe, ω) and Ke.
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In this case D{e} ∩ C{e} = ∂De is a single circle and C{e} = Ce strong deformation retracts to to the

connected complex Ke ∪ (S1
e− ∪ e ∪ S1

e+) where both vertex circles S1
e− and S1

e+ are contained in Ke.

Therefore, Ke ∪ (S1
e− ∪ e ∪ S1

e+) = Ke ∪ e. Observe also that e− can be homotoped along γ(e−, e+)

until e− and e+ coincide. Therefore Ke ∪ e has the homotopy type of Ke ∪ [v, v] where [v, v] is a loop

attached to Ke based at the vertex v = e+. Consequently, Hi(Ce) ∼= Hi(Ke)⊕Hi(S
1). In particular,

H2(Ce) ∼= H2(Ke)⊕ 0.

Since the induction hypothesis applies to Ke, β2(Ke) = |E(Γe)| − |V (Γe)| + ϵ(Γe). But |E(Γe)| =
|E(Γ)|−1, |V (Γe)| = |V (Γ)| and ϵ(Γe) = 1 since Γe is T dependent. Therefore, equation (2.2) becomes

(4.2)
0 →

(
|E(Γ)|−|V (Γ)|

⊕
i=1

Z
)
⊕ 0 → H2(K)

∂→ Z⟨[∂De]⟩
φ→ H1(Ce)⊕ 0 → · · ·

We want to show that ker(φ) ̸= 0. Set

p(e) = (p−(e), p+(e)) = (M,N) and (ω−(e), ω+(e)) = (m,n).

Since (Γ, ω) is T dependent, there are non-zero integers P ,Q such that (M,N) = P
Q(m,n), i.e, such

that, (QM,QN) = (Pm,Pn). Then, an application of Proposition 2.5 to H1(Ke ∪ e) ∼= H1(Ce)
produces the equation M · [S1

e− ] = N · [S1
e+ ] in H1(CS). Consequently,

φ(P · [∂De]) = Pm · [S1
e− ] + [e]− Pn · [S1

e+ ]− [e]

= Pm · [S1
e− ]− Pn · [S1

e+ ]

= QM · [S1
e− ]−QN · [S1

e+ ]

= Q ·
(
M · [S1

e− ]−N · [S1
e+ ]

)
= 0.

Since P ̸= 0 and [∂De] generates a copy of Z, the exactness of equation (4.2), produces a short exact

sequence

(4.3) 0 →
(

|E(Γ)|−|V (Γ)|
⊕
i=1

Z
)
⊕ 0 → H2(K)

∂→ Z → 0

But (4.3) is a short exact sequence of abelian groups with a free abelian group in the penultimate slot.

As such, it splits. Consequently, H2(K) is free abelian of rank β2(K) = |E(Γ)| − |V (Γ)| + 1. Since

(Γ, ω) is T dependent, we have ϵ(Γ, ω) = 1 and the result follows. □

By choosing a maximal subtree of Γ we can apply the argument in Lemma 4.1 to obtain

Proposition 4.3. If (Γ, ω) is a tree dependent GBS graph with associated GBS complex K and

v ∈ V (Γ), then [S1
v ] has infinite order in H1(K).

DOI: https://doi.org/10.30504/JIMS.2023.379086.1082

https://doi.org/10.30504/JIMS.2023.379086.1082


J. Iran. Math. Soc. 3 (2022), no. 2, 75-90 M. Timm 87

5. The proof for (Γ, ω) non-tree dependent

Theorem 5.1. Suppose that (Γ, ω) is a non-tree dependent GBS graph with associated GBS complex

K. Then H2(K) is free abelian of rank β2(K) = |E(Γ)| − |V (Γ)| + ϵ(Γ, ω). Consequently β1(K) =

|E(Γ)| − |V (Γ)|+ 1 + ϵ(Γ, ω). Furthermore, for each vertex v of Γ, [S1
v ] has finite order in H1(K).

Proof. We use the notation developed in the previous section. Choose a maximal subtree T of Γ.

Since tree dependence is independent of the maximal subtree of Γ, there is at least one non-T edge e

of Γ such that for every pair P , Q of non-zero integers,

(5.1)

P
Q(ω−(e), ω+(e)) = P

Q(m,n)

̸= (p−(e), p+(e)) = (M,N)

Consequently, for every such P and Q, (QM − Pm,QN − Pn) ̸= (0, 0). In particular, for every

0 ̸= α ∈ Z, setting Q = αM and P = αm

(5.2)

(0, 0) ̸= Q(m,n)− P (M,N)

= (αMm− αmM,Qn− PN)

= (0, Qn− PN)

= (0, αMn− αmN)

Therefore, equation (5.2) implies 0 ̸= Qn− PN = αMn− αmN .

We induct on the number n of non-T edges e for which the cycle (γ(e−), γ(e+)) ∪ e is not T

dependent. That is, we induct on the number of non-T edges for which (5.1) and (5.2) hold.

Assume the number of non-T edges for which (5.1) holds is n = 1 and let e be the only such edge.

Then (Γe, ω) is T dependent and Theorem 4.2 applies to Ke. In fact, the conclusions about the terms

of Mayer-Vietoris Sequence for (K, CS ,DS) = (K, Ce, De) leading to the long exact sequence (4.2) are

valid and, consequently, we again must understand φ in (4.2).

We claim that ker(φ) = 0. Assume to the contrary that it does not. Then there is a non-zero

integer α for which ker(φ) = Z⟨α · [∂De]⟩. Observe that e+ can be homotoped along γ(e) to v = e− to

produce the loop [v, v]. Then it follows that Ce is then homotopic to Ke∪ loop. But with appropriately

chosen orientations for ∂De, S
1
e± , and te, we have

(5.3)

0 = φ(α[∂De])

= α
(
m[S1

e− ] + [e]− n[S1
e+ ]− [e]

)
= αm[S1

e− ]− αn[S1
e+ ].
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But, by Proposition 2.5 there is the equation M [S1
e− ] − N [S1

e+ ] = 0 in H1(Ke). We have, as a

consequence, the system

(5.4)

Q = αM, P = αm, Qn− PN ̸= 0

αm[S1
e− ]− αn[S1

e+ ] = 0

M [S1
e− ]−N [S1

e+ ] = 0

Multiply the second line in (5.4) by M, the third line in (5.4) by αm, and subtract. This produces

0 = (αmN − αMn)[S1
e+ ] = −(Qn− PN)[S1

e+ ].

Then, from the first line in (5.4), (Qn− PN) ̸= 0. Therefore [S1
e+ ] has finite order in H1(Ke).

But, by Proposition 4.3, the homology class of every vertex circle [S1
u] of Ke has infinite order in

H1(Ke). Contradiction. Therefore, ker(φ) = im(∂) = 0. Therefore, we can extract the exact sequence

(5.5) 0 →
(

|E(Γ)|−|V (Γ)|
⊕
i=1

Z
)
⊕ 0 → H2(K)

∂→ 0

from (4.2). It follows that β2(K) = |E(Γ)| − |V (Γ|. Since (Γ, ω) is not tree dependent, ϵ(Γ, ω) = 0

and the formulas for β1 and β2 given in theorem hold for the base case of the induction.

Finally, consider the vertex e− of the non-T edge e and turn the cycle γ(e−, e+)∪ e into an oriented

simple cycle. Reading along this path produces the relation x
p−(e)ω+(e)
e− = x

p+(e)ω−(e)
e− . Consequently,

[xe− ] has finite order in H1(K). Because there is a path in the maximal subtree T from e− to every

other vertex v of Γ, it follows that every vertex generator xv has finite order in H1(K) and the result

follows for the base case of our induction.

We now prove the general case. Assume that the result holds when Γ is T dependent with n ≥ 1

tree dependent cycles.

Suppose Γ is T dependent with n+1 non-T dependent edges. Deleting one of these non-T dependent

edges e from Γ produces the non-T dependent graph (Γe, ω) with maximal subtree T , the associated

GBS complexes K(e, ω), K(Γe, ω), the associated disk De, and its associated closed complement

Ce = K \ (intDe).

But De ∩ Ce = ∂De and De strong deformation retracts to a point. With CS = Ce, equation (2.2)

becomes

(5.6) 0 → H2(Ce)⊕ 0 → H2(K)
∂→ Z⟨∂De⟩

φ→ H1(Ce)⊕ 0 → · · ·

Now Ce strong deformation retracts toKe∪e = Ke∪te and e+ can be homotoped along γ(e−, e+) ⊂ te

to produce a loop [v, v] based at v = e−. It follows that Ce is homotopy equivalent to Ke ∪ [v, v].

Consequently, Hi(Ce) ∼= Hi(Ke)⊕Hi([v, v]). But, H2(te) = 0 and H1([v, v]) = Z⟨[te]⟩.
The induction hypothesis applies to Ke. Consequently,

H2(Ke) ∼=
|E(Γe)|−|V (Γe)|+ϵ(Γe,ω)

⊕
i=1

Z =
|E(Γ)|−1−|V (Γe)|

⊕
i=1

Z

since |E(Γe)| = |E(Γ)| − 1 and ϵ(Γe, ω) = 0.
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Therefore, equation (5.6) becomes

(5.7) 0 →
|E(Γ)|−1−|V (Γe)|

⊕
i=1

Z⊕ 0 → H2(K)
∂→ Z⟨[∂De]⟩

φ→ H1(Ke)⊕ Z⟨te⟩ ⊕ 0 → · · ·

We again need to understand ker(φ) = im(∂). Specifically, we want to show ker(φ) is nontrivial.

Now, in H1(Ce) ∼= H1(Ke)⊕ Z⟨[∂De]⟩, with appropriate orientations on ∂De, S
1
e− , and S1

e+ ,

φ([∂De]) = m[S1
e− ] + [e]− n[S1

e+ ]− [e]

= m[S1
e− ]− n[S1

e+ ].

But Ke satisfies the induction hypothesis. Therefore, there are nonzero integers, R and S, such that

R · [S1
e− ] = 0 and S · [S1

e+ ] = 0. Setting λ = lcm{R,S}, it follows that φ(λ · [∂De]) = λ · (m[S1
e− ] −

n[S1
e+ ]) = 0. Thus some nonzero multiple k · [∂De] generates ker(φ).

Thus, from 5.7 we extract the short exact sequence

0 →
|E(Γ)|−1−|V (Γe)|

⊕
i=1

Z⊕ 0 → H2(K)
∂→ Z⟨k · [∂De]⟩

φ→ 0

Because it is a short exact sequence of abelian groups ending in a free group, it splits and this

gives that H2(K) is free abelian of rank β2(K) = |E(Γ)| − |V (Γ)|. Since (Γ, ω) is non-T dependent,

ϵ(Γ, ω) = 0 and the formula for β2(K) is valid for non-tree dependent GBS graphs. Note that by

reading around the GBS circuit te in (Γ, ω), it is easy to see that [S1
e− ] has finite order in H1(K).

Since there is a GBS path from e− to every other vertex v of the GBS graph (Γ, ω), it follows that

the homology class of every vertex circle [S1
v ] has finite order. □

6. Two open problems

The Hawaian Earring is the subspace H = {(x, y) : x2 + (y − 1
n)

2 =
(
1
n

)2} ⊂ R2, a countable

infinite sequence of circles with radus converging to 0, all of which are tangent to the x-axis at (0, 0).

Setting x0 = (0, 0), its fundamental group G = π1(H, x0) has the property that every finite index

subgroup N of G is isomorphic to G. However, Derek’s structure theorem in [13] does not apply to G

because it is (uncountably) infinitely generated. One wonders if it is possible to extend the structure

theorem to infinitely generated groups which have the property that all their finite index subgroups

are isomorphic to the whole group. If so, what does this extension tell us about G = π1(H, x0).

A group G is non-cohopfian if it has a proper finite index subgroup H isomorphic to the whole

group G. Thus, the groups for which Derek’s structure theorem [13] applies and those which have

at least one proper finite index subgroup isomorphic to the whole group, including the GBS groups,

are non-cohopfian. In this context, the GBS groups are exceptionally interesting because they have a

graph of groups description in which all the vertex and edge groups are also non-cohopfian (they are

all copies of Z) and the edge maps are monomorphisms of the edge groups onto finite index subgroups

of the vertex groups which are also isomorphic to the entire vertex group. This suggests the next

problem. Assume G0 is a non-cohopfian group. It then has proper finite index subgroups isomorphic

to all of G0. Let G be a group which has a graph of groups description in which all vertex and edge

groups are copies of G0 and all edge maps are monomorphisms onto a subgroup of each vertex group

which is isomorphic to G0. Is G also non-cohopfian? This problem also appears in [15].
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