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Abstract. We study Bohr conditions for functions on topological groups taking values in locally

convex spaces. We show that functions satisfying Bohr conditions are uniformly continuous. We show

that in quasi-complete spaces, Bohr conditions are equivalent to Bochner’s characterizations of almost

periodicity. We prove the existence of invariant mean for almost periodic functions with values in

quasi-complete spaces.

1. Introduction

In [2], Bochner and von Neumann studied almost periodic functions with values in locally convex

spaces E satisfying the following two conditions: (1) 0 ∈ E is a Gδ-set, and (2) every closed totally

bounded subset of E is limit-point compact (detailed properties of these spaces were developed by von

Neumann [13], and the above conditions can be found in Definitions 2b, 8, and 10 of this reference).

As noted by these authors, condition (2) is necessary for a “smooth working” of the theory. One of

the aims of this paper is to show that condition (1) is not needed for a development of the theory, and

in particular, this condition is not needed to prove the existence of almost periodic invariant mean.

In Section 2 we discuss some preliminaries from topological vector spaces and quasi-complete spaces.

In Section 3 we give a general formulation of Bohr conditions of almost periodicity for functions on

topological groups taking values in locally convex spaces (Definition 3.2). Earlier studies of this
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condition for functions on commutative groups can be found in Bochner [1], N’Guérékata [9, 10],

and Simon [11, §6.6]. In Theorem 3.4 we show that the left Bohr condition implies right uniform

continuity, and the right Bohr condition implies left uniform continuity. In Theorem 3.5 we show the

equivalence of Bohr conditions to Bochner conditions of almost periodicity for functions taking values

in quasi-complete spaces. This theorem extends and unifies earlier results on the equivalence of these

conditions found in the above references.

An important tool for the study of vector-valued almost periodic functions is the vector-valued

invariant mean (see, for example, Chou–Lau [5] for a study of vector-valued invariant means for

almost periodic operators arising from Hilbert space representations of locally compact groups). For

functions taking values in locally convex spaces, the first proof of the existence of invariant mean was

given in [2, Theorem 12, p. 27]. However, an inspection of this proof shows that it relies in an essential

way on properties derived from condition (1) imposed on locally convex spaces. For this reason, much

of the theory of vector-valued almost periodic functions in [2] is not applicable to functions taking

values in nonseparable Hilbert spaces with weak topologies, or to functions taking values in dual

Banach spaces with w∗-topologies. More important, the theory developed in [2] is not applicable to

almost periodic representations π : G −→ B(X), where X is a Banach space and B(X) has the strong

operator topology (since in general this space does not satisfy the condition (1)).

To remove the limitations imposed by the condition (1), we shall prove in Section 4 the existence

of invariant mean for almost periodic functions taking values in quasi-complete spaces (Theorem 4.6).

Quasi-complete spaces automatically satisfy the condition (2) required by Bochner and von Neumann,

but they need not satisfy the condition (1). These spaces include all the examples of locally convex

spaces mentioned above, and thus allow a wider applicability of the theory developed in [2]. The

proof of the existence of mean given here is an adaptation to vector-valued functions of a proof due

to Maak [8] (see also Hewitt and Ross [7, §18]).

2. Preliminaries

Throughout this paper G denotes a Hausdorff topological group (not necessarily locally compact),

and E denotes a Hausdorff locally convex topological vector space. We shall assume that E is equipped

with a fixed local base U of neighborhoods of 0 ∈ E consisting of absorbing, balanced, closed, and

convex sets. Two standard properties of such a local base are:

(a) If U ∈ U and 0 < r < s, then rU ⊂ int(sU).

(b) If U ∈ U , r > 0, n ∈ N, there exists V ∈ U such that

α1V + · · ·+ αnV ⊂ U if |αi| ≤ r, i = 1, . . . , n.

Let X be a Hausdorff topological space and E a locally convex space. A function f : X −→ E is

called bounded if its range f(X) is a bounded subset of E. We denote the set of all such bounded

functions by Fb(X,E). If U is a local base of 0 ∈ E and U ∈ U , we define U ′ ⊂ F b(X,E) to be the

set of all f ∈ F b(X,E) such that f(X) ⊂ U . We denote the set of all such U ′ by U ′. With U ′ as a

local base, Fb(X,E) is a locally convex space.

DOI: https://dx.doi.org/10.30504/JIMS.2023.366124.1077

https://dx.doi.org/10.30504/JIMS.2023.366124.1077


J. Iran. Math. Soc. 3 (2022), no. 2, 61-73 Y. Zhu and M. Sangani Monfared 63

The convergence in Fb(X,E) is uniform in the following sense. If fα is a net in F b(X,E) such that

fα → f , then for every U ∈ U , there is some α0 such that if α ≥ α0, then fα − f ∈ U ′, equivalently,

fα(x)− f(x) ∈ U , for all x ∈ X if α ≥ α0.

The space Cb(X,E) of all continuous bounded functions on X with values in E, is a closed linear

subspace of Fb(X,E).

Let U be a local base at 0 ∈ E, and U ′ be the corresponding local base at 0 in F b(X,E). For

each U ∈ U , let ∥ · ∥U and ∥ · ∥U ′ be the corresponding Minkowski functionals on E and Fb(X,E),

respectively. Since U and U ′ are convex balanced neighborhoods, ∥ · ∥U and ∥ · ∥U ′ are seminorms.

The following properties of the seminorms ∥ · ∥U and ∥ · ∥U ′ are easy to check: for every U ∈ U ,

f ∈ F b(X,E), and t > 0,

(i) tU ′ = (tU)′, and U ′ + U ′ ⊂ (U + U)′,

(ii) ∥f∥U ′ = inf{t > 0: f(X) ⊂ tU},
(iii) ∥f∥U ′ = supx∈X ∥f(x)∥U .

A function f : G −→ E is left [resp., right ] uniformly continuous if for every U ∈ U , there is a

neighborhood W of e ∈ G such that if x, y ∈ G and xy−1 ∈ W [resp., y−1x ∈ W ], then f(x)−f(y) ∈ U .

As for scalar-valued functions, it can be shown that f ∈ Cb(G,E) is left uniformly continuous if and

only if the function x 7→ Lxf , G −→ Cb(G,E) is continuous (similar result holds for right uniform

continuity if Lxf is replaced with Rxf).

A locally convex space E is called quasi-complete if every bounded Cauchy net in E is convergent.

The interest in quasi-complete spaces arises from the property that relatively compact subsets in

E are exactly totally bounded sets; and therefore, a set in E is compact if and only if it is closed

and totally bounded. A great number of locally convex spaces of interest in analysis are quasi-

complete: these include (i) Hilbert, Banach, Fréchet, and LF-spaces, together with their dual spaces

under w∗-topologies; (ii) all complete locally convex spaces; (iii) all operator spaces B(X) under the

strong operator topology when X is a Banach space. For more details and additional examples see

Trèves [12, Section 19], Bourbaki [4, pp. III.9–III.11].

Since the equivalence of total boundedness and relative compactness plays an important role in the

main results of this paper (see Theorem 3.5 and Theorem 4.6), we shall be mainly interested in almost

periodic functions taking values in quasi-complete spaces. If E is quasi-complete, then it is easy to

show that F b(X,E) and all its closed linear subspaces (such as Cb(G,E)) are also quasi-complete.

If f ∈ Cb(G,E), and a ∈ G, the left and right translations of f are denoted by Laf and Raf ,

respectively. The function Daf ∈ Cb(G × G,E) is defined by Daf(x, y) = f(xay) (x, y ∈ G). We

put Lf = {Laf : a ∈ G}, Rf = {Raf : a ∈ G}, and Df = {Daf : a ∈ G}. If E is quasi-complete,

then the relative compactness of Lf , Rf , and Df are equivalent (Bochner conditions), and when these

conditions hold, f is called almost periodic. The space of all almost periodic functions with values in E

is denoted by AP (G,E). Since AP (G,E) is a closed linear subspace of Cb(G,E), it is quasi-complete.
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3. Bohr conditions and almost periodicity

Bohr condition for a continuous function f : R −→ C is as follows: for every ϵ > 0 there exists some

ℓ > 0 such that every interval of length ℓ contains an element τ with the property that |f(x + τ) −
f(x)| < ϵ, for every x ∈ R ( [3, p. 30]). We may think of τ as a ‘period up to the accuracy of ϵ’, or

simply, an ‘ϵ-almost period’ of the function f . In this section we show that Bohr condition can be

adapted to functions on topological groups with values in locally convex spaces E. We will then show

that when E is quasi-complete, this condition is equivalent to Bochner conditions.

Definition 3.1. Let G be a topological group, E a locally convex space, and U a local base at

0 ∈ E. Let f : G −→ E be a function and U ∈ U . An element a ∈ G is a left U -almost period

of f if f(ax) − f(x) ∈ U (x ∈ G). Similarly, an element b ∈ G is a right U -almost period of f if

f(xb)− f(x) ∈ U (x ∈ G).

Uniformly continuous functions have plenty U -almost periods. To see this, suppose f : G −→ E

is left uniformly continuous and U ∈ U . Then there exists a neighborhood W of e ∈ G such that

xy−1 ∈ W implies f(x) − f(y) ∈ U . In that case, every a ∈ W is a left U -almost period of f , since

for every x ∈ G, (ax)x−1 ∈ W and therefore f(ax) − f(x) ∈ U . A similar situation holds for right

uniformly continuous functions.

Definition 3.2. Let G be a topological group, E a locally convex space, and f : G −→ E, be a

continuous function.

(a) f satisfies the left Bohr condition if for every U ∈ U , there is a compact set K ⊂ G such that

yK contains a left U -almost period for all y ∈ G.

(b) f satisfies the right Bohr condition if for every U ∈ U , there is a compact set K ⊂ G such

that Ky contains a right U -almost period for all y ∈ G.

Remark 3.3. (a) Since the relations a ∈ yK and f(ax) − f(x) ∈ U for all x ∈ G, are equivalent to

a−1 ∈ K−1y−1 and f(a−1x)−f(x) ∈ U for all x ∈ G (just replace x with a−1x and note that −U = U),

and since K−1 is compact, it follows that the left Bohr condition can be rephrased as follows: for every

U ∈ U , there is a compact set K ⊂ G such that Ky contains a left U -almost period for all y ∈ G.

Similarly for the right Bohr condition.

(b) If G is compact, then every continuous function f : G −→ E satisfies both left and right Bohr

conditions trivially (by taking K = G, and e ∈ G as U -almost period).

Theorem 3.4. Let G be a topological group and E be a locally convex space. Suppose that f : G −→ E

is a continuous function.

(a) If f satisfies the left Bohr condition, then it is bounded and right uniformly continuous.

(b) If f satisfies the right Bohr condition, then it is bounded and left uniformly continuous.

Proof. (a) Let f satisfy the left Bohr condition. First we show that f must be bounded. Let x ∈ G,

and U ∈ U . Corresponding to U , there exists a compact set K0 ⊂ G such that K0x
−1 contains a left
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U -almost period, say k0x
−1 (k0 ∈ K0). Thus

f(k0x
−1y)− f(y) ∈ U for all y ∈ G.

Therefore, for y = x, we find f(k0)− f(x) ∈ U , and hence ∥f(x)− f(k0)∥U ≤ 1. It follows that

∥f(x)∥U = ∥f(x)− f(k0) + f(k0)∥U ≤ ∥f(x)− f(k0)∥U + ∥f(k0)∥U ≤ 1 + sup
k∈K0

∥f(k)∥U .

Since K0 is compact and the map y 7→ ∥f(y)∥U is continuous, it follows that supk∈K0
∥f(k)∥U < ∞.

However, K0 is independent of x, and thus f is bounded in the seminorm ∥ · ∥U . Since U ∈ U is

arbitrary, it follows that f is bounded.

Next, we show that f is right uniformly continuous. Given U ∈ U , we need to find a neighborhood

W of e ∈ G such that y−1x ∈ W implies that f(y)− f(x) ∈ U . Choose U1 ∈ U such that

U1 + U1 + U1 + U1 ⊂ U.

For each y ∈ G, Lyf is continuous at e, and so there is a neighborhood Vy of e such that if z ∈ Vy,

then

Lyf(z)− Lyf(e) ∈ U1.

Therefore if z, z′ ∈ Vy, then

Lyf(z)− Lyf(z
′) = Lyf(z)− Lyf(e) + Lyf(e)− Lyf(z

′) ∈ U1 + U1.

Choose a neighborhood Wy of e such that W 2
y ⊂ Vy. Then it follows from the above that for all

z, z′, z′′ ∈ Wy:

(3.1) Lyz′′f(z)− Lyz′′f(z
′) ∈ U1 + U1.

By the assumption that f satisfies the left Bohr condition, we know that corresponding to U1 there

exists a compact set K ⊂ G so that for all y ∈ G, there exists some w ∈ K such that wy−1 ∈ Ky−1 is

a left U1-almost period of f , i.e.,

(3.2) Lwy−1f(a)− f(a) ∈ U1 for all a ∈ G.

Hence for the same choices of y and w, we have

(3.3) Lwf(a)− Lyf(a) = Lwy−1f(ya)− f(ya) ∈ U1 for all a ∈ G.

Since the family {yWy}y∈K is a covering of K, there exists y1, . . . , yℓ ∈ K so that

K ⊂
ℓ∪

j=1

yjWyj .

Let us define a neighborhood W of e ∈ G by putting

W =

ℓ∩
j=1

Wyj .
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If y ∈ K, then for some 1 ≤ j ≤ ℓ, y = yjzj , with zj ∈ Wyj , and hence for all z, z′ ∈ W , it follows

from (3.1) that

(3.4) Lyf(z)− Lyf(z
′) = Lyjzjf(z)− Lyjzjf(z

′) ∈ U1 + U1.

Now suppose that x, y ∈ G are such that y−1x ∈ W , then with w ∈ K chosen as in the paragraph

preceding to (3.2) (w depending on y), it follows from (3.3) and (3.4) that

f(y)− f(x) = Lyf(e)− Lyf(y
−1x)

= Lyf(e)− Lwf(e) + Lwf(e)− Lwf(y
−1x) + Lwf(y

−1x)− Lyf(y
−1x)

∈ U1 + (U1 + U1) + U1 ⊂ U,

where the first and the last inclusions have followed from (3.3) because of our choice of w, and the

middle inclusion Lwf(e) − Lwf(y
−1x) ∈ U1 + U1 has followed from (3.4) since we know that w ∈ K

and e, y−1x ∈ W . This proves that f is right uniformly continuous.

The proof of (b) is similar to the above argument with natural modifications. □

Theorem 3.5. Let G be a topological group, E be a quasi-complete space, and let f ∈ Cb(G,E). Then

f ∈ AP (G,E) if and only if f satisfies both left and right Bohr conditions.

Proof. Suppose that f ∈ AP (G,E). We will show that f satisfies both left and right Bohr conditions.

Given U ∈ U , the total boundedness of Lf = {Lyf : y ∈ G} implies that we can pick y1, . . . , yℓ ∈ G

so that for every Lyf there corresponds some Lyjf (1 ≤ j ≤ ℓ) such that

Lyf(a)− Lyjf(a) ∈ U for all a ∈ G.

Let K = {y−1
1 , . . . , y−1

ℓ }. For a given x ∈ G, pick yj (1 ≤ j ≤ ℓ) so that

Lxf(a)− Lyjf(a) ∈ U for all a ∈ G.

Then

Lxy−1
j
f(a)− f(a) = Lxf(y

−1
j a)− Lyjf(y

−1
j a) ∈ U for all a ∈ G.

This means that the element xy−1
j ∈ xK is a left U -almost period of f . Since x ∈ G and U ∈ U are

both arbitrary, it follows that f satisfies the left Bohr condition.

To prove that f satisfies the right Bohr condition, given U ∈ U , the total boundedness of Rf =

{Ryf : y ∈ G} implies that we can pick y1, . . . , yℓ ∈ G so that for every Ryf there corresponds some

Ryjf (1 ≤ j ≤ ℓ) such that

Ryf(a)−Ryjf(a) ∈ U for all a ∈ G.

Let K = {y−1
1 , . . . , y−1

ℓ }. For a given x ∈ G, pick yj (1 ≤ j ≤ ℓ) so that

Rxf(a)−Ryjf(a) ∈ U for all a ∈ G.

Then

Ry−1
j xf(a)− f(a) = Rxf(ay

−1
j )−Ryjf(ay

−1
j ) ∈ U for all a ∈ G.
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This means that the element y−1
j x ∈ Kx is a right U -almost period of f . Since x ∈ G and U ∈ U are

both arbitrary, it follows that f satisfies the right Bohr condition.

Conversely, suppose that f satisfies both left and right Bohr conditions and we will show that

Lf = {Lyf : y ∈ G} is totally bounded in Cb(G,E) (and hence f is almost periodic). Given U ∈ U ,

we want to find finitely many y1, . . . , yn ∈ G so that for every Lyf there corresponds some Lyjf

(1 ≤ j ≤ n) such that

(3.5) Lyf(a)− Lyjf(a) ∈ U for all a ∈ G.

We choose U1 ∈ U such that U1 + U1 ⊂ U . Since f satisfies the left Bohr condition, there exists a

compact subset K of G (depending on U1 and f) such that for all y ∈ G, there is some x ∈ K so that

(3.6) Lxy−1f(a)− f(a) ∈ U1 for all a ∈ G.

Since f also satisfies the right Bohr condition, by Theorem 3.4 it is left uniformly continuous, and

therefore the mapping

G −→ Cb(G,E), x 7→ Lxf,

is continuous. Thus compactness of K implies that {Lxf : x ∈ K} is a compact subset of Cb(G,E),

and in particular, it is totally bounded in Cb(G,E). As a result, we can find y1, . . . , yn ∈ K so that

for every Lxf (x ∈ K) there corresponds some Lyjf (1 ≤ j ≤ n) such that

(3.7) Lxf(y)− Lyjf(y) ∈ U1 for all y ∈ G.

We claim that the elements y1, . . . , yn satisfy the required condition in (3.5). In fact, for y ∈ G, we

first choose x ∈ K such that (3.6) holds, and subsequently, we choose yj ∈ K so that (3.7) holds, in

which case for all a ∈ G, we can write

Lyf(a)− Lyjf(a) = Lyf(a)− Lxf(a) + Lxf(a)− Lyjf(a)

= Ly(f − Lxy−1f)(a) + Lxf(a)− Lyjf(a) ∈ U1 + U1 ⊂ U.

This proves that Lf = {Lyf : y ∈ G} is totally bounded in Cb(G,E), and hence f ∈ AP (G,E). □

Combining Theorems 3.4 and 3.5 gives:

Corollary 3.6. If G is a topological group and E is a quasi-complete space, then each f ∈ AP (G,E)

is uniformly continuous.

By applying Remark 3.3(b) and Theorem 3.5 we obtain

Corollary 3.7. If G is a compact topological group and E is a quasi-complete space, then AP (G,E) =

Cb(G,E).
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4. Invariant mean on AP (G,E)

In this section we give a proof for the existence of the invariant mean for almost periodic functions

taking values in quasi-complete spaces. Throughout this section, E is a quasi-complete locally convex

space, U is a local base at 0 ∈ E, and G is a Hausdorff topological group.

Definition 4.1. If A ⊂ E and U ∈ U , then a U -mesh of A is a finite set {u1, . . . , un} in E such that

for every u ∈ A there exists some ui, 1 ≤ i ≤ n, such that u− ui ∈ U.

Thus a set A ⊂ E is totally bounded if and only if A has a U -mesh for every U ∈ U . In particular,

if f ∈ AP (G,E) then {Daf : a ∈ G} ⊂ Cb(G×G,E) is totally bounded, and hence has a U ′-mesh for

every U ∈ U , where

(4.1) U ′ = {F ∈ Cb(G×G,E) : F (G×G) ⊂ U},

(cf. Section 2).

The following combinatoric lemma is due to Hall [6, Theorem 1, p. 27].

Lemma 4.2. Suppose that P and Q are nonempty sets, P is finite, and P(Q) is the collection of all

nonempty subsets of Q. Let ρ : P −→ P(Q) be a function such that for every S ⊂ P ,∣∣∣∣∣∪
x∈S

ρ(x)

∣∣∣∣∣ ≥ |S|,

where | · | denotes the cardinality. Then there is an injective map σ : P −→ Q such that σ(x) ∈ ρ(x),

for all x ∈ P .

Lemma 4.3. Let A ⊂ E, U ∈ U , and {u1, . . . , un} be a U -mesh of A such that the number n of

elements of the mesh is minimum for the given U . Let B be any subset of E such that for each u ∈ A

there is some v ∈ B with u− v ∈ U . Then there is an injective map σ : {u1, . . . , un} −→ B such that

uk − σ(uk) ∈ U + U (k = 1, . . . , n).

Proof. For every k = 1, . . . , n, let

ρ(uk) = {v ∈ B : there exists w ∈ A with w − v ∈ U and w − uk ∈ U}.

Consider an arbitrary subset {uj1 , . . . , ujr} of {u1, . . . , un} and write the remaining elements as

ujr+1 , . . . , ujn . We will verify that

(4.2) |ρ(uj1) ∪ · · · ∪ ρ(ujr)| ≥ r.

If the set ρ(uj1)∪· · ·∪ρ(ujr) is infinite, then (4.2) trivially holds. So, suppose that ρ(uj1)∪· · ·∪ρ(ujr)

is finite, and write ρ(uj1) ∪ · · · ∪ ρ(ujr) = {v1, . . . , vs}, where the v’s are distinct. Form the set

S = {v1, . . . , vs, ujr+1 , . . . , ujn}.

The set S is a U -mesh of A, for if w ∈ A and

w − ujp ̸∈ U for p = r + 1, . . . , n,
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then since {u1, . . . , un} is a U -mesh of A, we must have

w − ujp ∈ U for some p = 1, . . . , r.

But, by assumption, there is a v ∈ B such that

w − v ∈ U,

and so by the definition of ρ, we have v ∈ ρ(ujp), i.e., v = vℓ for some ℓ = 1, 2, . . . , s. This proves that

S is a U -mesh of A. By the choice of n, we have n ≤ |S| ≤ s+ n− r, so that s ≥ r. This establishes

(4.2).

Now we apply Lemma 4.2 with P = {u1, . . . , un}, Q = B, and ρ as defined above. So, there is an

injective map σ : P −→ B, uk 7→ σ(uk), such that σ(uk) ∈ ρ(uk). By definition of ρ(uk), we can find

wk ∈ A such that

wk − uk ∈ U, wk − σ(uk) ∈ U,

and therefore

uk − σ(uk) = uk − wk + wk − σ(uk) ∈ U + U,

since −U = U . This complete the proof of the lemma. □

Lemma 4.4. Let f ∈ AP (G,E), U ∈ U , and U ′ be the corresponding neighborhood of 0 in Cb(G ×
G,E) defined in (4.1). Let {Da1f, . . . , Danf} and {Db1f, . . . ,Dbnf} be U ′-meshes of {Daf : a ∈ G} ⊂
Cb(G×G,E), both having the least cardinal number n among all U ′-meshes. Then

(4.3)
1

n

n∑
k=1

Dakf − 1

n

n∑
k=1

Dbkf ∈ (U + U)′.

Proof. Applying Lemma 4.3 to the U ′-meshes {Da1f, . . . , Danf} and {Db1f, . . . , Dbnf} of {Daf : a ∈
G}, we find an injective map σ : {1, . . . , n} −→ {1, . . . , n} such that

Dakf −Dbσ(k)
f ∈ U ′ + U ′ (k = 1, . . . , n).

Multiplying these relations by 1/n and adding over k = 1, . . . , n, we obtain

n∑
k=1

(
1

n
Dakf − 1

n
Dbσ(k)

f

)
∈ 1

n
(U ′ + U ′) + · · ·+ 1

n
(U ′ + U ′) = U ′ + U ′ ⊂ (U + U)′,

where the equality on the right side has followed from properties of convex sets and the fact that

U ′ + U ′ is convex. Since σ is a permutation of {1, . . . , n}, (4.3) follows. □

Lemma 4.5. Let f ∈ AP (G,E), U ∈ U , and U ′ be the corresponding neighborhood of 0 in Cb(G ×
G,E). Let {Da1f, . . . , Danf} be a U ′-mesh of {Daf : a ∈ G}, having the least cardinal number n.

Then

(4.4)
1

n

n∑
k=1

f(ak)−
1

n

n∑
k=1

Dakf ∈ (U + U)′,

where we regard the first sum on the left side as a constant function on G×G.
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Proof. Let c, d ∈ G be arbitrary. We claim that {Dca1df, . . . , Dcandf} is a U ′-mesh of {Daf : a ∈ G}.
To prove this, using the assumption that {Da1f, . . . , Danf} is a U ′-mesh, we find that given a ∈ G,

there is some 1 ≤ k ≤ n such that

(4.5) Dc−1ad−1f −Dakf ∈ U ′.

Now, for x, y ∈ G, letting x′ = xc and y′ = dy, we get

Daf(x, y)−Dcakdf(x, y) = f(xay)− f(xcakdy)

= f(x′c−1ad−1y′)− f(x′aky
′)

by (4.5) = Dc−1ad−1(x′, y′)−Dakf(x
′, y′) ∈ U.

Since x, y ∈ G are arbitrary, Daf −Dcakdf ∈ U ′, proving that {Dca1df, . . . ,Dcandf} is a U ′-mesh of

{Daf : a ∈ G}.
For {Dakf} and {Dbkf} with bk = cakd, computing the function in (4.3), at the point (e, e) ∈ G×G,

we obtain

1

n

n∑
k=1

f(ak)−
1

n

n∑
k=1

f(cakd) ∈ U + U.

Since (c, d) ∈ G×G is arbitrary, we find

1

n

n∑
k=1

f(ak)−
1

n

n∑
k=1

Dakf ∈ (U + U)′,

which is what we needed to show. □

We are now ready to prove the existence of an invariant mean for f ∈ AP (G,E).

Theorem 4.6. Let G be a topological group and E be a quasi-complete space. If f ∈ AP (G,E), there

exists a unique vector M(f) ∈ E (the mean of f) such that for every U ∈ U , there is a sequence

{a1, . . . , an} in G, for which

(4.6) M(f)− 1

n

n∑
k=1

f(xaky) ∈ U for all x, y ∈ G.

Moreover, M(f) ∈ ch(Lf ) ∩ ch(Rf ) (the intersection of closed convex hulls of Lf and Rf ).

Proof. Let f ∈ AP (G,E) and U ∈ U be given. Let ch(f(G)) be the convex hull of f(G) in E, and

let EU be the set of all vectors u ∈ ch(f(G)), such that for some sequence c1, . . . , cp in G,

(4.7) u− 1

p

p∑
j=1

f(xcjy) ∈ U for all x, y ∈ G.

If we choose V ∈ U such that V + V ⊂ U , then applying Lemma 4.5 to the function f ∈ AP (G,E)

and the neighborhood V , we find that EU ̸= ∅. Suppose that u1, u2 ∈ EU , so that for suitable cj and
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dk in G:

u1 −
1

p

p∑
j=1

f(xcjy) ∈ U for all x, y ∈ G,(4.8)

u2 −
1

q

q∑
k=1

f(xdjy) ∈ U for all x, y ∈ G.(4.9)

Setting x = e and y = dk in (4.8), adding over k = 1, . . . , q and dividing by q we obtain

u1 −
1

pq

q∑
k=1

p∑
j=1

f(cjdk) ∈ U.

Setting y = e and x = cj in (4.9), we obtain similarly

u2 −
1

pq

p∑
j=1

q∑
k=1

f(cjdk) ∈ U.

Hence

(4.10) u1 − u2 ∈ U + U.

Since f is almost periodic, Rf is totally bounded. By evaluating the functions in Rf at x = e, we

find that f(G) ⊂ E must be totally bounded. Therefore ch(f(G)) is a compact subset of E since E is

quasi-complete. Thus EU is a compact subset of E.

If U1, U2 ∈ U , U1 ⊂ U2, then obviously EU1 ⊂ EU2 , and so EU1 ⊂ EU2 . Thus the relation

EU1 ∩ · · · ∩ EUn ⊃ EU1∩···∩Un ̸= ∅,

shows that
∩

U∈U EU ̸= ∅. Now, the relation (4.10) shows that
∩

U∈U EU contains exactly one point.

In fact, if v1, v2 ∈
∩

U∈U EU , then for every U ∈ U , v1, v2 ∈ EU , and thus there are u1, u2 ∈ EU such

that

u1 − v1 ∈ U, u2 − v2 ∈ U.

Therefore,

v1 − v2 = v1 − u1 + u1 − u2 + u2 − v2 ∈ U + U + U + U,

and since U is arbitrary, v1 = v2.

Let the point in
∩

U∈U EU be denoted by M(f). If U, V ∈ U are such that U + U ⊂ V , then

EU ⊂ EV . To see this, let u ∈ EU and find u0 ∈ EU such that u− u0 ∈ U . Since u0 ∈ EU , there are

c1, . . . , cp ∈ G such that

u0 −
1

p

p∑
j=1

f(xcjy) ∈ U for all x, y ∈ G.

Thus

u− 1

p

p∑
j=1

f(xcjy) = u− u0 + u0 −
1

p

p∑
j=1

f(xcjy) ∈ U + U ⊂ V,

thus u ∈ EV . It follows that M(f) lies in all EU (U ∈ U ), and therefore M(f) is an invariant mean

of f .
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Next we show the uniqueness of M(f). Suppose M(f)′ ∈ E is another invariant mean of f . Let

U ∈ U , and choose V ∈ U such that V + V ⊂ U . The characteristic property of invariant mean in

(4.6), implies that there are c1, . . . , cn, d1, . . . , dm in G such that for all x ∈ G:

M(f)− 1

n

n∑
i=1

f(cix) ∈ V(4.11)

M(f)′ − 1

m

m∑
j=1

f(xdj) ∈ V.(4.12)

We multiply (4.11) by 1/m, replace x with xdj and add over j = 1, . . . ,m, to obtain

M(f)− 1

nm

m∑
j=1

n∑
i=1

f(cixdj) ∈ V.

Similarly, We multiply (4.12) by 1/n, replace x with cix and add over i = 1, . . . , n, to obtain

M(f)′ − 1

nm

n∑
i=1

m∑
j=1

f(cixdj) ∈ V.

Subtracting the above expressions,

M(f)−M(f)′ ∈ V + V ⊂ U.

Since U is arbitrary, M(f) = M(f)′.

The fact that M(f) ∈ ch(Lf ) ∩ ch(Rf ) is immediate from (4.6).

□

For completeness we summarize the properties of almost periodic invariant means in quasi-complete

spaces. The proof which is similar to the proof of [2, Theorem 16, p. 29] is omitted.

Theorem 4.7. Let G be a Hausdorff topological group, E a quasi-complete space, and M : AP (G,E) −→
E, f 7→ M(f), be the mean defined in Theorem 4.6. Then:

(i) M is linear.

(ii) M is two-sided invariant: M(Laf) = M(Raf) = M(f), for all a ∈ G.

(iii) If f(x) = u (u ∈ E) is a constant function, then M(f) = u.

(iv) If f̌(x) = f(x−1), then M(f̌) = M(f).

(v) If U ∈ U , ∥M(f)∥U ≤ m(∥f∥U ) ≤ ∥f∥U ′ , where m is the scalar-valued almost periodic

invariant mean.

(vi) If U ∈ U , and f − g ∈ U ′, then M(f − g) ∈ 2U .

(vii) M is the unique left [or right] translation invariant, linear map satisfying properties (iii) and

(vi).
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