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CENTRALIZER NEARRINGS

G. L. WALLS

Abstract. Suppose that (G,+) is a group (possibly nonabelian) and that X is a submonoid of the
monoid of all endomorphisms of G under the operation of composition of functions, (End(G), ◦). We
define the X-centralizer nearring of G by X by saying that MX(G) := {f : G → G | f(0G) = 0G and f ◦
α = α ◦ f for all α ∈ X}. This set of functions, MX(G), is a nearring under the “usual” operations of
function “addition” and “composition” of functions. This paper investigates how centralizer nearrings
can be defined and investigates their ideals when X is a group of automorphisms.

1. Introduction

In this paper we are always assuming that (G,+) is a group (possibly nonabelian). We let 0G

denote the identity of G and we let G∗ := G \ {0G}. In general in this paper X denotes a submonoid
of the monoid of endomorphisms of the group G under the operation of composition of functions,
(End(G), ◦). In some cases we need to assume a little more, namely that X ≤ Aut(G), the group of
automorphisms of the group G. We make it clear when this assumption applies.

Suppose that g is an element of the group G. We let Tg denote the function Tg : G → G defined
by Tg(x) = g−1xg for all x ∈ G. For each g ∈ G,Tg is an automorphism of G. It is called an inner
automorphism of G. The inner automorphism group of G is defined by Inn(G) := {Tg | g ∈ G}. It is
a normal subgroup of Aut(G).
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If G is a group and x ∈ G, we define the centralizer of x in G to be CG(x) := {g ∈ G | x+g = g+x}
and the center of G to be Z(G) :=

∩
g∈G

CG(g), the set of all elements of G which commute with all the

elements of G.
We use the following definition.

Definition 1.1. We define MX(G) := {f : G → G | f(0G) = 0G and f ◦ α = α ◦ f for all α ∈ X}.

It is well-known that (MX(G),+, ◦) is a nearring using the “usual” operations of function “addition”
and “composition” of functions. The elements of MX(G) are just functions from G to G that are zero-
preserving. We call MX(G) an X-centralizer nearring or just a centralizer nearring when X is clear.

It can be seen that every nearing with identity is isomorphic to MX(G) for some G and X [4,
Theorem 14.3]. For more information on nearrings, see the books [4, 9], and [10].

The notation used in this paper is standard. If X and Y are sets, we use X ⊆ Y to mean that “X is
a subset of Y ”. We use the notation X ≤ Y to mean that “X and Y are groups and X is a subgroup
of Y ”. If H ≤ G we use H ◁G to mean that “H is a normal subgroup of G”.

2. An equivalence relation

The following equivalence relation is important in what follows. It helps to determine what the
images of elements of MX(G) can be.

We let RX denote the unique smallest equivalence relation on G which contains the relation T =

{(x, α(x)) | x ∈ G,α ∈ X}. It follows that (x, y) ∈ RX if and only if for some positive integer n, there
exist g0, g1, . . . , gn−1, gn ∈ G and α1, β1, . . . , αn, βn ∈ X so that x = g0, y = gn and αi(gi−1) = βi(gi)

for i = 1, 2 . . . , n. It is clear that if X ≤ Aut(G), then RX must equal T .
The next few definitions are important in determining the elements of MX(G). Note the lemma.

Lemma 2.1. If f ∈ MX(G), x, y ∈ G and xRXy, then f(x)RXf(y).

Proof. Since xRXy, there exist g0, g1, . . . , gn ∈ G and α1, β1, . . . , αn, βn ∈ X so that x = g0, y = gn

and αi(gi−1) = βi(gi) for i = 1, 2, . . . , n. It follows that f(x) = f(g0), f(y) = f(gn) and αi(f(gi−1)) =

f(αi(gi−1)) = f(βi(gi)) = βi(f(gi)) for i = 1, 2, . . . , n. It follows that f(x)RXf(y). □

Thus, the elements of MX(G) must fix the equivalence classes of RX . The next sequence of lemmas
is important in what follows.

Definition 2.2. We say that a subset P ⊆ G is a P -pointer set for X in G provided for all non-zero
g ∈ G there is an x ∈ P and θ ∈ X so that θ(x) = g.

Note that if we have X ≤ Aut(G), we can pick a pointer set for X in G, by picking an element from
each RX -equivalence class and indeed, in this case, all the pointer sets arise in this fashion.

Definition 2.3. Suppose that G is a group and X is a submonoid of
(End(G), ◦).
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(1) For all x ∈ G,α ∈ X define
i) LX(α;x) := {β ∈ X | α(x) = β(x)} and
ii) CX(α;x) := {y ∈ G | for all β ∈ LX(α;x) α(y) = β(y)}.

(2) For all x ∈ G,define FX(x) :=
∩

α∈X
CX(α;x).

Note that since CX(α;x) ≤ G for all x ∈ G, we have that FX(x) ≤ G for all x ∈ G. The next
lemma shows the importance of the above definition.

Lemma 2.4. Suppose that f ∈ MX(G). Then, for all x ∈ G, f(x) ∈ FX(x).

Proof. Suppose that α ∈ X. We need to prove that for all x ∈ G, f(x) ∈ CX(α;x). Thus, suppose
that β ∈ L(α;x). Then, α(x) = β(x), and thus

α(f(x)) = f(α(x))

= f(β(x)) = β(f(x)).

Hence, f(x) ∈ CX(α;x) , as required. Thus, f(x) ∈ FX(x). □

A few comments are in order.

Lemma 2.5. If X ⊆ Y are both submonoids of End(G), then for all x ∈ G we have FY (x) ≤ FX(x)

Proof. Since X ⊆ Y , it is clear that for all x ∈ G,α ∈ X we have LX(α;x) ⊆ LY (α, x) and that
CY (α;x) ≤ CX(α;x). It follows that FY (x) ≤ FX(x). □

The next lemma is very useful.

Lemma 2.6. Suppose that X ≤ Aut(G). Then for all x ∈ G, FX(x) =
∩

β∈CX(x)

CG(β).

Proof. Let α ∈ X. Now

LX(α;x) = {β ∈ X | α(x) = β(x)}

= {β ∈ X | α−1β(x) = x}

= {β ∈ X | α−1β ∈ CX(x)}

= αCX(x)

and CX(α;x) =
∩

β∈αCX(x)

CG(α
−1β). So for all x ∈ G

FX(x) =
∩
α∈X

CX(α;x)

=
∩
α∈X

∩
β∈αCX(x)

CG(α
−1β)

=
∩

γ∈CX(x)

CG(γ),

as required. □
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The next lemma considers the special case that X = Inn(G).

Lemma 2.7. Suppose that X = Inn(G). Then, FX(x) = Z(CG(x)) for all x ∈ G.

Proof. From the above lemma we have that

FX(x) =
∩

Tg∈CX(x)

CG(Tg)

=
∩

g∈CG(x)

CG(g) which since x ∈ CG(x) is contained in CG(x).

It follows that FX(x) = Z(CG(x)). Since for every g ∈ CG(x) we have Z(CG(x)) ≤ CG(g) and every
z ∈ FX(x) must commute with every g ∈ CG(x). □

If the pointer set for X in G is P = {x}, then the elements of MX(G) depend only on the elements
of FX(x). We want to extend this fact to be able to consider the cases where the X-pointer sets of G
have more points. The following definition is what is needed.

Definition 2.8. Suppose that G is a group and that X is a submonoid of (End(G), ◦).

(1) For all x1, x2 ∈ G,α ∈ X define
i) LX(α;x1, x2) := {β ∈ X | α(x1) = β(x2)} and
ii) CX(α;x1, x2} := {(y1, y2) ∈ FX(x1)× FX(x2) |

for all β ∈ LX(α;x1, x2) we have α(y1) = β(y2)}.
(2) For all x1, x2 ∈ G define FX(x1, x2) :=

∩
α∈X

CX(α;x1, x2).

(3) For all x1, x2, . . . , xm ∈ G we define FX(x1, x2, . . . , xm) :=

{(c1, c2, . . . , cm) ∈ FX(x1)× FX(x2)× · · · × FX(xm) | for all
1 ≤ i < j ≤ m we have (ci, cj) ∈ FX(xi, xj)}.

Note that if there is no β ∈ X so that β(x2) = α(x1), then LX(α;x1, x2) = ∅ and we must have
CX(α;x1, x2) = FX(x1)× FX(x2) = FX(x1, x2). The next result is similar to Lemma 2.4.

Lemma 2.9. Suppose that f ∈ MX(G). Then, for all x1, x2, . . . , xm ∈ G we have (f(x1), f(x2), . . . , f(xm))

∈ FX(x1, x2, . . . , xm).

Proof. Suppose that for 1 ≤ i ≤ m xi ∈ G, then by Lemma 2.4, f(xi) ∈ FX(xi). Now suppose that
1 ≤ i < j ≤ m. If β ∈ L(α;xi, xj)

as in Lemma 2.4 we have

α(f(xi)) = f(α(xi))

= f(β(xj))

= β(f(xj)).

It follows that (f(xi), f(xj)) ∈ FX(α;xi, xj), as required □

The next result is a generalization of Betsch’s Theorem [9, Lemma 3.3].
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Theorem 2.10 (Generalization of Betsch’s Theorem). Suppose that P = {x1, x2, . . . , xm} is an X-
pointer set for G. Then, for each (c1, c2, . . . , cm) ∈ FX(x1, x2, . . . , xm), there is a unique f ∈ MX(G)

so that for all 1 ≤ i ≤ m, f(xi) = ci.

Proof. (uniqueness) Suppose that f, g ∈ MX(G) and for each i = 1, 2, . . . ,m

f(xi) = ci = g(xi). Let z ∈ G. Since P is an X-pointer set for G, there is an xk ∈ P and θ ∈ X so
that θ(xk) = z. It follows that

f(z) = f(θ(xk)) = θ(f(xk)) = θ(ck)

= θ(g(xk)) = g(θ(xk)) = g(z).

Thus, f = g, as required.
(existence) Suppose that (c1, c2, . . . , cm) ∈ FX(x1, x2, . . . , xm) and define a function f [c1, c2, . . . , cm] :

G → G by

f [c1, c2, . . . , cm](z) =

0G if z = 0G

θ(cj) if θ(xj) = z for some xj ∈ P, θ ∈ X.

First, we need to show that f [c1, c2, . . . , cm] is well-defined. Thus, we suppose that there are
θ1, θ2 ∈ X and xi, xj ∈ P so that

θ1(xi) = θ2(xj) = z.

Now if i < j, as θ1(xi) = θ2(xj), we have θ2 ∈ LX(θ1;xi, xj). Since (ci, cj) ∈ CX(θ1;xi, xj), we must
have θ1(ci) = θ2(cj), as required.

Similarly, if i = j, then as θ1(xi) = θ2(xi), we must have θ2 ∈ LX(θ1, xi). Again since ci ∈
CX(θ1;xi), we must have θ1(ci) = θ2(ci), as required.

It follows that f [c1, c2, . . . , cm] is well-defined.
Next we want to show that f [c1, c2, . . . , cm] ∈ MX(G).Thus, let β ∈ X and z ∈ G. Now pick α ∈ X

so that α(xk) = z for some xk ∈ P . It follows that

f [c1, c2, . . . , cm](β(z)) = f [c1, c2, . . . , cm](β(α(xk)))

= f [c1, c2, . . . , cm]((β ◦ α)(xk))

= (β ◦ α)(ck) = β(α(ck)) = β(f(z))

and hence, f [c1, c2, . . . , cm] ∈ MX(G).
Since IdG ∈ X and for i = 1, 2, . . . ,m IdG(xi) = xi we have

f [c1, c2, . . . , cm](xi) = IdG(ci) = ci, as required. □

Corollary 2.11. Let P be an X-pointer set for G. Then,

f ∈ MX(G) ⇔ f = f [f(x1), f(x2), . . . , f(xm)].

In particular
MX(G) = {f [c1, c2, . . . , cm] | (c1, c2, . . . , cm) ∈ FX(x1, x2, . . . , xm)}.

DOI: https://doi.org/10.30504/jims.2022.362376.1074

https://doi.org/10.30504/jims.2022.362376.1074


16 J. Iranian Math. Soc. Vol. 3 No. 1 (2022) 11-21 G. L. Walls

In the case that X ≤ Aut(G) we pick an X-pointer set for G by picking exactly one element from
each RX -eqivalence class of G, as was stated above Definition 2.3.

The next result is an application of the above result.

Theorem 2.12. Let E := End(G) where G = ⟨x⟩ ×D and |x| = exp(G). Then, ME(G) = ⟨IdG⟩.

Proof. It is easy to see that P = {x} is an E-pointer set for G. Thus, we only need to consider FE(x).
Now FE(x) ≥ ⟨x⟩ so we can write FE(x) = ⟨x⟩ × C where C = D ∩ FE(x).

If C ̸= {0G}, pick 0G ̸= c ∈ C and define α ∈ E by α(x) = x and α |D= 0G. Now IdG ∈ LE(α;x),
so since c ∈ FE(x) we have 0G = α(c) = IdG(c) = c. It follows that FE(x) = ⟨x⟩ and that
ME(G) = ⟨f [x]⟩ = ⟨IdG⟩, as required. □

Corollary 2.13. Let G be a finite abelian group, E = End(G) and suppose e = exp(G). Then,
ME(G) = ⟨IdG⟩ = Ze.

From the above corollary (Corollary 2.13) we see that ME(Z10 × Z2) is isomorphic to (Z10,+, ·)
which is a ring. Below we consider MA(Z10 × Z2) where A := Aut(Z10 × Z2). For convenience let
G := Z10 × Z2.

Since G has 12 elements of order 10 and 3 elements of order 2, it is easy to see that |Aut(G)| = 24.
One can map (1, 0) to any element of order 10 and there are then two possible elements of order 2 to
map (0, 1).

It is easy to see that P = {(1, 0), (2, 0), (5, 0)} is an A-pointer set for G. Considering all the
possibilities one can see that FA((1, 0)) = ⟨(1, 0)⟩,
FA((2, 0) = ⟨(2, 0)⟩, FA((5, 0)) = ⟨(5, 0)⟩. It follows that
|MA(G)| = 10 · 5 · 2 = 100.

Clearly, f [c1, c2, c3] ◦ f [(1, 0), (2, 0), (5, 0)] = f [c1, c2, c3], so
f [(1, 0), (2, 0), (5, 0)] is a right identity for MX(G). However,
f [(1, 0), (2, 0), (5, 0)] ◦ f [(4, 0), (4, 0), (0, 0)] = f [(7, 0), (4, 0), (0, 0)] so
f [(1, 0), (2, 0), (5, 0)] is not an identity of MA(G).
Of course if I := Inn(G), then for x ∈ G, we would have FI(x) = G and MI(G) = {f : G → G |
f(0G) = 0G} which has order 109.

3. Automorphic centralizer nearrings

This section is concerned mainly with automorphic centralizer nearrings. This is the case when we
have X ≤ Aut(G). The next lemma is useful.

Lemma 3.1. Suppose X ≤ Aut(G). If α ∈ X, then FX(α(x)) ≥ α(FX(x)).

Proof. Now

β ∈ CX(α(x)) ⇔ β(α(x)) = α(x)

⇔ α−1βα(x) = x

⇔ α−1βα ∈ CX(x)
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and

w ∈ CG(α
−1βα) ⇔ α−1βα(w) = w

⇔ βα(w) = α(w)

⇔ α(w) ∈ CG(β)

⇔ w ∈ α−1(CG(β))

It follows that α(CG(α
−1βα)) = CG(β). Hence, using Lemma 2.6

FX(α(x)) =
∩

β∈CX(α(x))

CG(β)

=
∩

α−1βα∈CX(x)

α(CG(α
−1βα))

= α(
∩

α−1βα∈CX(x)

CB(α
−1βα))

≥ α(
∩

γ∈CX(x)

CG(γ)) = α(FX(x))

□

Now we want to specfically determine the elements of MX(G). To begin we find elements of G,
{x1, x2, · · · , xn}, so that

G∗ = orbX(x1)∪̇ orbX(x2)∪̇ · · · ∪̇ orbX(xn).

Thus, we have a partition of the nonidentity elements of G. Since
X ≤ Aut(G), P = {x1, x2, . . . , xn} is an X-pointer set for G.

Recall that by Corollary 2.11 MX(G) = {f [c1, c2, . . . , cn] | (c1, c2, . . . , cn) ∈ FX(x1, x2, . . . , xn)}. (
We know that every element of MX(G) must take 0G to 0G.)

It is easy to see that
f [c1, c2, · · · , cn] + f [d1, d2, . . . , dn] = f [c1 + d1, . . . , cn + dn]. Hence, (MX(G),+) is an abelian group
provided Inn(G) ≤ X ≤ Aut(G) (See Lemma 2.7.).

Now we go back to Lemma 3.1. Let α ∈ X and suppose that
x ∈ orbX(xi), then α(x) ∈ orbX(xi). It follows that in the definition of FX [c1, c2, · · · , cn] we may
replace the “xi” by “α(x)” or by “x”. It then is easy to see that |FX(α(x))| = |FX(x)|. Now using
Lemma 3.1 we see that

Lemma 3.2. Suppose that α ∈ X ≤ Aut(G), then FX(α(x)) = α(FX(x)).

Here are some examples.

Example 3.3. Let G = Zn
p be an elementary abelian p-group of order pn and suppose that X = Aut(G).

Suppose that 1 ̸= x ∈ G. Then if G = ⟨x⟩, MX(G) = ⟨x⟩. Otherwise, for all y ∈ G \ ⟨x⟩, then we can
write G = ⟨x⟩ × ⟨y⟩ ×E for some E ≤ G. There is an α ∈ X so that α(x) = x and α(y) = x+ y ̸= y.
It follows that y /∈ MX(x). Since y was arbitrary, not in ⟨x⟩, it follows that FX(x) = ⟨x⟩.
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It is clear that G∗ = orbX(x) and hence that, using the notation of Theorem 2.10, MX(G) =

{f [ix] | 0 ≤ i < p} = Zp. The last equality is as rings.

Example 3.4. Let G = Q8 = ⟨x, y | x4 = 1, x2 = y2, y−1xy = x−1⟩, the quaternion group of order 8.

a) Suppose X = Aut(G). In this case G∗ = orbX(x2)∪̇ orbX(x), FX(x2) = ⟨x2⟩, and FX(x) =

⟨x⟩. It follows that |MX(G)| = 8.
b) Suppose that X = Inn(G).

Now G∗ = orbX(x2)∪̇ orbX(x)∪̇ orbX(y)∪̇ orbX(xy),

FX(x2) = ⟨x2⟩, FX(x) = ⟨x⟩, FX(y) = ⟨y⟩, FX(xy) = ⟨xy⟩. It follows that |MX(G)| = 2·4·4·4 =

27 = 128.

Example 3.5. Suppose that G = S5, the symmetric group on {1, 2, 3, 4, 5}. In this case we let X =

Inn(G) = Aut(G). It follows from Lemma 2.7 that for each x ∈ G, FX(x) = Z(CG(x)).
nos. x CG(x) MX(G) = Z(CG(x))

A (12) Z2 × S3 Z2

B (12)(34) D8 Z2

C (123) Z3 × Z2 Z6

D (123)(45) Z3 × Z2 Z6

E (1234) Z4 Z4

F (12345) Z5 Z5

We know that G∗ = orbX((12))∪̇ orbX((12)(34))∪̇ orbX((123))∪̇
orbX((123)(45))∪̇ orbX((1234))∪̇ orbX((12345)). It follows that
|MX(S5)| = 2 · 2 · 6 · 6 · 4 · 5 = 2880.

We will discuss this example more in the next section.

4. Ideals of centralizer nearrings

Supose that G is a group and X ≤ Aut(G). Suppose that x1, x2, . . . xn ∈ G and G∗ = orbX(x1)∪̇
orbX(x2)∪̇ · · · ∪̇ orbX(xn). We define a graph whose vertices are the set V = {1, 2, . . . , n} where

two distinct vertices i and j are connected by an (undirected) edge provided that either FX(xi) ∩
orbX(xj) ̸= ∅ or orbX(xi) ∩ FX(xj) ̸= ∅. Let E be the set of edges. The graph is (V,E). Now let
{C1, C2, . . . , Cr} be the set of connected components of this graph.

Let C be a connected component of the graph V , above and define

I[C] = {f [c1, c2, . . . , cn] | (c1, c2, . . . , cn) ∈ FX(x1, x2, . . . , xn)

and for all i = 1, 2, . . . , n we have ci = 0 provided i /∈ C}.

We claim that I[C] is an ideal of MX(G).

Lemma 4.1. Suppose Inn(G) ≤ X ≤ Aut(G) and that C is a connected component of the graph
(V,E). Then, I[C] is an ideal of MX(G).
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Proof. We need to verify the conditions for I[C] to be an ideal.

i) Since (MX(G),+) is an abelian group, it is clear that
(I[C],+)◁ (MX(G),+).

ii) Let g = f [c1, c2, . . . , cn], h = f [d1, d2, . . . , dn] ∈ MX(G) and suppose that j = f [e1, e2, . . . , en] ∈
I[C]. Now we let k = g(h+ j)− gh. We need to show that k ∈ I[C]. We do this by showing
that if i /∈ C, then k(xi) = 0. So we have

k(xi) = (g(h+ j)− gh)(xi)

= g(h+ j)(xi)− gh(xi)

= g((h+ j)(xi))− g(h(xi))

= g(h(xi) + j(xi))− g(h(xi))

= g(h(xi) + 0)− g(h(xi)) since i /∈ C

= g(h(xi))− g(h(xi)) = 0

Thus, indeed k = g(h+ j)− gh ∈ I[C] whenever j ∈ I[C], g, h ∈ MX(G).
iii) Suppose that k = jh where j = f [c1, c2, . . . cn] ∈ I[C] and h = f [d1, d2, . . . , dn] ∈ MX(G) and

suppose that i /∈ C.

k(xi) = j(h(xi))

= j(di)

[ Now di ∈ FX(xi).

and di ∈ orbX(xi′) for some i′ ∈ V.

Now, if i = i′. then i′ /∈ C and if i ̸= i′,

then i and i′

form an edge. Thus, in either case i′ /∈ C and so ]

= α(0) = 0 where α(xi′) = di for some α ∈ X.

It follows that k ∈ I[C] and hence, I[C]MX(G) ≤ MX(G).

It follows that I[C] is an ideal of MX(G). □

Theorem 4.2. Suppose Inn(G) ≤ X ≤ Aut(G). Let (V,E) be the graph defined above and suppose
that {C1, C2, . . . , Cr} is the set of connected components of the graph (V,E). Then,

MX(G) = I[C1]⊕ I[C2]⊕ · · · ⊕ I[Cr].

Proof. The proof is clear. □

Here are a few facts. Suppose that G is a group, Inn(G) ≤ X ≤ Aut(G) and that (V,E) is the
graph as defined above.
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i) If (V,E) is not a connected graph, then MX(G) is not a simple nearring. Indeed, it is decom-
posable as a direct sum of ideals.

ii) If G∗ = orbX(x), then all the nonidentity elements of G have the same order, which must be
a prime, and G must be abelian (Since the center is a characteristic subgroup of G.). It follows
that G is an elementary abelian p-group for some prime p. Now Example 3.3 implies that (in
this case ) if X = Aut(G), then MX(G) is isomrphic to Zp which is a simple ring.

iii) Returning to Example 3.5, we can see that the connected components of the graph (V,E) are
{{A,D,C}, {B,E}, {F}}. Hence, we get

MX(S5) = I[A,D,C]⊕ I[B,E]⊕ I[F ]

where I[A,D,C] is an ideal of order 2 · 6 · 6 = 72, I[B,E] is an ideal of order 2 · 4 = 8, and
I[F ] is an ideal of order 5.

One final remark.

Lemma 4.3. Suppose that G is a finite group so that
(i) Inn(G) ≤ X ≤ Aut(G) and

(ii) There is x ∈ G, so that |x| = p, p a prime and CG(x) = ⟨x⟩

Then, C = orbX(x) is a connected component of the graph (V,E). In particular, if MX(G) is a
simple nearring, then G = ⟨x⟩ is a cyclic group of order p and MX(G) = ⟨IdG⟩.

Proof. Suppose that y /∈ C and (y, xi) is an edge. it follows that there is an α ∈ X so that either
(i) α(y) ∈ FX(xi) or (ii) α(xi) ∈ FX(y).
In case (i) α(y) ∈ FX(xi) ≤ Z(CG(x

i)) = ⟨x⟩. It follows that y ∈ C, a contradiction.
In case (ii) α(xi) ∈ FX(y) ≤ Z(CG(y)). Thus, y ∈ CG(x

i) = CG(x) = ⟨x⟩. Again this is a contradic-
tion.

It follows that C is a connected component of the graph (V,E). The result follows. □
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