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Abstract. We introduce the notion of an asymptotically equicontinuous sequence of linear operators,

and use it to prove the following result. If X,Y are topological vector spaces, if Tn, T : X → Y are

continuous linear maps, and if D is a dense subset of X, then the following statements are equivalent:

(i) Tnx → Tx for all x ∈ X, and (ii) Tnx → Tx for all x ∈ D and the sequence (Tn) is asymptotically

equicontinuous.

1. Introduction

The following theorem is a standard exercise in functional analysis.

Theorem 1.1. Let X and Y be Banach spaces, let (Tn)n≥1 and T be continuous linear maps from X

to Y , and let D be a dense subset of X. Then the following statements are equivalent:

(i) Tnx → Tx for all x ∈ X;

(ii) Tnx → Tx for all x ∈ D and supn ∥Tn∥ < ∞.

The implication (ii)⇒(i) is an easy ϵ/3-argument. The implication (i)⇒(ii) is an application of the

Banach–Steinhaus theorem; in fact it dates back to the original paper of Banach and Steinhaus [1].
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The completeness of Y is not really needed here, since we can always embed Y in its completion. The

completeness of X, however, is needed for the Banach–Steinhaus theorem. Without it the implication

(i)⇒(ii) may actually fail.

Example 1.2. Let X = c00, the space of finitely supported sequences of real numbers, with the sup-

norm, and let Y = R. Let πn : c00 → R be the n-th coordinate functional, let Tn := nπn and let

T := 0.

For each x ∈ c00, we have Tnx = 0 for all sufficiently large n, so (i) holds. However, ∥Tn∥ = n for

all n, so (ii) fails.

Theorem 1.1 has a corollary for weak topologies.

Corollary 1.3. Let X and Y be Banach spaces, let (Tn)n≥1 and T be continuous linear maps from

X to Y , and let D be a weakly dense subset of X. Then the following statements are equivalent:

(i) Tnx → Tx weakly for all x ∈ X;

(ii) Tnx → Tx weakly for all x ∈ D and supn ∥Tn∥ < ∞.

Proof. The implication (i)⇒(ii) holds because, by the Banach–Steinhaus theorem, weakly bounded

implies norm bounded.

For the implication (ii)⇒(i), let ϕ ∈ Y ∗, the dual of Y . If (ii) holds, then (ϕ ◦ Tn)x → (ϕ ◦ T )x for

all x ∈ D, hence also for all x in the linear span of D, and if the latter is weakly dense then it is also

norm dense (see e.g. [3, Corollary to Theorem 3.12]). Thus we may apply Theorem 1.1 to deduce that

(ϕ ◦ Tn)x → (ϕ ◦ T )x for all x ∈ X. As this holds for each ϕ ∈ Y ∗, we conclude that (i) holds. □

If X and Y happen to be dual spaces, then we may also ask whether the analogue of Corollary 1.3

holds for weak* topologies. This problem arose recently in [2] in the context of summability operators.

It turns out that the answer is negative. This time, interestingly, it is the implication (ii)⇒(i) that

breaks down.

Example 1.4. Let X = ℓ∞, the space of bounded sequences, normed by the sup-norm, and let Y = R.
Let πn : ℓ∞ → R be the n-th coordinate functional, let Tn := πn and let T := 0. Let D = c0, the

subspace of ℓ∞ consisting of sequences that tend to zero.

Since the bidual of c0 is ℓ∞, it follows that c0 is weak* dense in ℓ∞ (see e.g. [3, Chapter 4, Exercise

1]). Also Tnx → 0 for all x ∈ c0 and supn ∥Tn∥ = 1 < ∞, so (ii) holds. However, if x is the constant

sequence (1, 1, . . . ), then x ∈ ℓ∞ and Tnx ̸→ 0, so (i) fails.

One might reasonably argue that, to obtain a true weak* version of Corollary 1.3, one should also

replace the condition supn ∥Tn∥ < ∞ by one that is more closely tied to the weak* topologies on X

and Y . A natural candidate is that the sequence (Tn) be weak* equicontinuous, i.e., that for each

weak* 0-neighbourhood V in Y , there exists a weak* 0-neighbourhood U in X such that Tn(U) ⊂ V

for all n. With this change, it is true that (ii) implies (i) (for the weak* topologies). However, as the

following example shows, we then lose the implication (i)⇒(ii).
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Example 1.5. Let X = ℓ2, with the usual ℓ2-norm, and let Y = R. Let πn : ℓ2 → R be the n-th

coordinate functional, let Tn := πn and let T := 0.

For each x ∈ ℓ2, we have Tnx → 0 in R, so (i) holds. However, if U is any weak* 0-neighbourhood in

ℓ2, then U contains a non-zero subspace of ℓ2 (see e.g. [3, p. 66]), and it follows easily that Tn(U) = R
for all n. We conclude that the sequence (Tn) is not weak* equicontinuous, and so (ii) fails in this

setting.

In the article [2], these difficulties were circumvented by exploiting the structure of the particular

operators involved. But for general operators, the problem remains. Our purpose in this article is to

propose a solution, by replacing the condition supn ∥Tn∥ < ∞ in Theorem 1.1 with an appropriate

condition so that the equivalence (i) ⇐⇒ (ii) holds for weak* topologies, and indeed for arbitrary

topological vector spaces.

2. Asymptotic equicontinuity

Given a set X and a sequence (Fn) of subsets of X, we write lim infn Fn for the set of x ∈ X that

belong to Fn for all but finitely many n.

Definition 2.1. Let X,Y be topological vector spaces, and let (Tn) be a sequence of continuous linear

maps from X to Y . We say that (Tn) is asymptotically equicontinuous if, for each 0-neighbourhood

V in Y , the set lim infn T
−1
n (V ) is a 0-neighbourhood in X.

Let us spell this out explicitly: (Tn) is asymptotically equicontinuous if, for each 0-neighbourhood

V in Y , there exists a 0-neighbourhood U in X such that, whenever x ∈ U , then Tnx ∈ V for all large

enough n.

Clearly, if (Tn) is equicontinuous with respect to X and Y , then it is asymptotically equicontinuous.

The converse is true if X and Y are Banach spaces. Indeed, in this case, (Tn) asymptotically

equicontinuous implies that supn ∥Tnx∥ < ∞ for each x ∈ X, which in turn implies that supn ∥Tn∥ < ∞
by the Banach–Steinhaus theorem, whence (Tn) is equicontinuous.

However, in general, asymptotically equicontinuous does not imply equicontinuous. For example,

the sequence (Tn) in Example 1.2, being unbounded in norm, is not equicontinuous. However it is

asymptotically equicontinuous: this follows from Theorem 2.2 below, but it is also easy to verify

directly.

We can now state our main result.

Theorem 2.2. Let X and Y be topological vector spaces, let (Tn)n≥1 and T be continuous linear maps

from X to Y , and let D be a dense subset of X. Then the following statements are equivalent:

(i) Tnx → Tx for all x ∈ X;

(ii) Tnx → Tx for all x ∈ D, and the sequence (Tn) is asymptotically equicontinuous.

For the proof of Theorem 2.2, we require a lemma.

Lemma 2.3. If (Sn) and (Tn) are asymptotically equicontinuous sequences of linear maps from X to

Y , then so is (Sn + Tn).
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Proof. Let V be a 0-neighbourhood in Y . Let W be a 0-neighbourhood in Y such that W +W ⊂ V .

As (Sn) and (Tn) are asymptotically equicontinuous sequences, the sets U1 := lim inf S−1
n (W ) and

U2 := lim inf T−1
n (W ) are 0-neighbourhoods in X. Set U := U1 ∩U2. Then U is a 0-neighbourhood in

X and, if x ∈ U , then, for all large enough n, we have Snx ∈ W and Tnx ∈ W , whence (Sn + Tn)x ∈
W +W ⊂ V . This shows that U ⊂ lim inf(Sn + Tn)

−1(V ). □

Proof of Theorem 2.2. (i)⇒(ii): Suppose that Tnx → Tx for all x ∈ X. Obviously this holds, in

particular, for all x ∈ D. Also, for each 0-neighbourhood V in Y , we have lim inf(Tn − T )−1(V ) = X,

simply by the definition of convergence of Tnx to Tx. Therefore the sequence (Tn−T ) is asymptotically

equicontinuous. Obviously the constant sequence (T ) is asymptotically equicontinuous, so, by the

lemma, (Tn) is asymptotically equicontinuous.

(ii)⇒(i): Suppose that the hypotheses in (ii) hold. Set Rn := Tn − T . Then Rnx → 0 for all

x ∈ D, and by the lemma, the sequence (Rn) is asymptotically equicontinuous. We need to show that

Rnx → 0 for all x ∈ X.

Let x ∈ X and V be a 0-neighbourhood in Y . We shall prove that Rnx ∈ V for all large enough n.

We may choose another 0-neighbourhood W in Y such that W −W ⊂ V . Since (Rn) is asymptotically

equicontinuous, U := lim inf R−1
n (W ) is a 0-neighbourhood in X. Since D is dense in X, there exists

x′ ∈ D such that x′ ∈ x+ U . Since x′ − x ∈ U , there exists N such that

n ≥ N ⇒ Rn(x
′ − x) ∈ W.

Also, since x′ ∈ D, we have Rnx
′ → 0, so there exists N ′ such that

n ≥ N ′ ⇒ Rnx
′ ∈ W.

Hence, finally,

n ≥ max(N,N ′) ⇒ Rnx = Rn(x
′)−Rn(x

′ − x) ∈ W −W ⊂ V.

This completes the proof. □

3. Concluding remarks

We have formulated the notion of asymptotic continuity for sequences of operators. However, given

that our main result, Theorem 2.2, treats topological vector spaces that are not necessarily metrizable,

it would perhaps be more logical to define asymptotic continuity for nets rather than sequences. In

this section, we discuss the (relatively minor) changes to the preceding section needed to achieve this.

Let X be a set, and let (Fα)α∈A be a net of subsets of X, i.e., a collection of subsets indexed by

a directed set A. We write lim infα Fα for the set of x ∈ X with the following property: there exists

α0 ∈ A (depending on x) such that x ∈ Fα for all α ≥ α0.

Definition 3.1. Let X,Y be topological vector spaces, and let (Tα) be a net of continuous linear maps

from X to Y . We say that (Tα) is asymptotically equicontinuous if, for each 0-neighbourhood V in

Y , the set lim infα T
−1
α (V ) is a 0-neighbourhood in X.
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The following results are the extensions of Lemma 2.3 and Theorem 2.2 to nets. The proofs are

obtained by making the obvious modifications to the arguments for sequences. We omit the details.

Lemma 3.2. If (Sα) and (Tα) are asymptotically equicontinuous nets of linear maps from X to Y ,

indexed by the same directed set, then (Sα + Tα) is also an asymptotically equicontinuous net.

Theorem 3.3. Let X and Y be topological vector spaces, let (Tα) be a net of continuous linear maps

from X to Y , let T : X → Y be another continuous linear map, and let D be a dense subset of X.

Then the following statements are equivalent:

(i) Tαx → Tx for all x ∈ X;

(ii) Tαx → Tx for all x ∈ D, and the net (Tα) is asymptotically equicontinuous.

Acknowledgments

Mashreghi supported by an NSERC Discovery Grant. Ransford supported by grants from NSERC

and the Canada Research Chairs program.

References

[1] S. Banach and H. Steinhaus, Sur le principe de la condensation de singularités, Fund. Math. 9 (1927) 50–61.

[2] S. Ghara, J. Mashreghi and T. Ransford, Summability and duality, preprint, 2022.

[3] W. Rudin, Functional Analysis, Second edition, International Series in Pure and Applied Mathematics, McGraw-Hill,

Inc., New York, 1991.

Javad Mashreghi
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