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HANKEL OPERATORS ON BERGMAN SPACES INDUCED BY REGULAR
WEIGHTS

ERMIN WANG™ AND JIAJIA XU

ABSTRACT. In this paper, given two regular weights w, ), we characterize these symbols f € L, for
which the induced Hankel operators H? are bounded (or compact) from weighted Bergman space A?,
to Lebesgue space L} for all 1 < p,q < oo. Moreover, we answer a question posed by X. Lv and K.
Zhu [Integr. Equ. Oper. Theory, 91(2019), 91:5] in the case n = 1.

1. Introduction

Let D be the unit disc in the complex plane. Given some non-negative integrable functions w on D
and 1 < p < oo, the space LL, (or LP(wdA)) consists of all Lebesgue measurable functions f in I such
that

11 = ([ If(Z)I”w(Z)dA(Z)>; <0,

where dA is the normalized area measure on . We use LP to stand the usual p-th Lebesgue space
with the norm || - [|z» = ([ |- \pdA)%. Let H(D) denote the space of analytic functions in . The
weighted Bergman space is defined as A%, = Lf, N H(D).

As mentioned in [22], a radial weight w belongs to the class D if w € L'[0,1) and &(z) = f|i| w(s)ds
satisfies the doubling condition that &(r) < K&(3L) for all 0 < r < 1, where K is a constant

Communicated by Mohammad Sal Moslehian

MSC(2020): Primary: 47B35; Secondary: 30H20.

Keywords: Bergman spaces; regular weights; Hankel operator; boundedness.
Received: 13 June 2022, Accepted: 27 August 2022.

*Corresponding author

DOI: https://dx.doi.org/10.30504/JIMS.2022.342003.1067

123


http://jims.iranjournals.ir
http://en.ims.ir/
https://dx.doi.org/10.30504/JIMS.2022.342003.1067

124 J. Iranian Math. Soc. Vol. 2 No. 2 (2021) 123-138 Wang and Xu

independent of r. Furthermore, we say w belongs to the class R of regular radial weights if w € D and
satisfies

frl w(s)ds

for 0<r<1.
1—r

w(r) =~

Given w radial we can extend it to D with w(z) = w(|z|). Notice the classical weight w(r) = (1 —r2)®
with o > —1 and the weights in [1] and [9] are regular. Recently, Bergman spaces A% with w € R are
studied in [10, 18,20-22].

The space A%, is closed in Lf,. A2 is a Hilbert space with the inner product
(Fade = [ FEGE(EAG). L€ A2,

for any fixed z € D, the mapping f — f(2) is a bounded linear functional on A2. By the Riesz
representation theorem in functional analysis, there exists a unique function B, € A2 such that
f(z) = (f,B.), for all f € A2. The function B, is called the Bergman kernel of A2. The orthogonal

projection P, from L2 to A2 can be represented as

Pu(g)(2) = /D 9(O)B(Ow(Q)dA(Q).

With this expression, P, can be extended to a bounded linear operator from LE, to A, forall 1 < p <
oo. The Hankel operator HY with symbol f is defined by

H§(g) = (Id = P,)(fg),

where Id is the identity operator.

The study of Hankel operators on Bergman spaces initialed from [1] where Axler characterized the
boundedness and compactness of Hankel operators induced by conjugate analytic functions. Later
on, Axler’s result was generalized in [2, 3] to weighted Bergman spaces of the unit ball in C". For
general symbol functions, Zhu in [23] first established the connection between size estimates of Hankel
operators and the mean oscillation of the symbols in the Bergman metric. This idea was further
investigated in the context of bounded symmetric domains and strongly pseudo convex domains,
see [5—7,12,13]. In [16], based on the Hilbert space property, Pau characterized those f € L?PHQ) s
such that Hy is bounded on A?1—|-|2)ﬂ' On the unit ball of C", restricted themselveson 1 < p < ¢ < o0,
Pau, Zhao and Zhu in [17] obtained the characterization on f € L((II—\~|2)5 such that Hy and Hy are
both bounded (or compact) from /11(714_'2)(l to L?I_HQ)B. Then Lv and Zhu in [14] discussed the same
question in the case 1 < ¢ < p < oo under the restriction “pn < ¢(n + 1 + «)”, Later on, for
1 < p < q < 00, Peldez, Perilld and Réttyi in [19] obtained the the condition on f € L such that
both Hy, H : AL, — L} are bounded, where v € B, being radial and w € D. More recently, for regular
weight w, Hu and Lu in [10] characterized those f € L} such that, for given 1 < p,q < oo, H 7 is
bounded (or compact) from A%, to L.

The purpose of this paper is to extend Hu and Lu’s results to the case of different regular weights.

To be precise, given w,{) € R, we characterize these symbols f € Lg) for which the induced Hankel
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operators HJS? are bounded (or compact) from AL, to L{, for all possible 1 < p, ¢ < co. We summarize

the main results of the paper as below:

Theorem 1.1. Let w,2 € R, 1 < p < g < co. Then for f € L}, the following statements are
equivalent:
(A) HY : AL, — L, is bounded;
o 1 1
(B) For some (or any) 0 <r <, Q1w »Gqr(f) € L™;
(C) f admits a decomposition f = fi + fa, where fi € C1(D) satisfies

(1.1) (1—|- Qe [af1] € L,
and fo has the property that, for some (or any) r >0,

(1.2) Q™ v M,(|fo]?)7 € L.
Moreover, for 0 <r < «,

vl _1
(1.3) VR gy, = 27675 Gon ()|

Theorem 1.2. Let w,2 € R, 1 < p < g < oo. Then for f € L}z, the following statements are
equivalent:

(A) H? : A — LY, is compact;

(B) For some (or any) 0 <r < a, lim|,|_,; Q(z)%d}(z)fqu,r(f)(z) =0;

(C) f admits a decomposition f = fi + fa, where fi € CY(D) satisfies

lim (1 — [2])2(2)3¢3(2)"#[f1(2)] = 0,

|z]—1

and fo satisfies

for some (or any) r > 0.

Theorem 1.3. Let w,2 € R, 1 < g < p < . Then for f € L}z, the following statements are
equivalent:

(A) HY : AL — LY, is bounded;

(B) Hy : AL, — L, is compact;

(C) For some (or any) 0 <r < /2, Q%w_%Gqﬁr(f) € L%;

(D) f admits a decomposition f = f1 + fo, where

(1.4) f1 € CY(D), Qiw v (1—|-|)[3fi| € Li7,
and
(1.5) Qiw v M, (|fo|?)s € L7-a

for some (or any) r > 0. Moreover,

1 _1
(1.6) Vg g, = || Q0072 G ()| 22 -

Lp—a
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The paper is organized as follows. In Section 2, we will give some preliminaries. Section 3 is devoted
to give the proofs of our main theorems. Throughout this paper, we use C' to denote positive constants
whose value may change from line to line, but do not depend on functions being considered. For two
quantities A and B, we write A < B if there exists some C' such that A < CB. We call A and B are
equivalent, denoted by A~ B, if A< B < A.

2. Preliminaries

We begin by stating some known results which are used in the proof of the main results. Let

11+ le(9)
B Z,§ = 710g
A R NG
be the Bergman distance of z,£ in D, where ¢,(§) = 16—_225' For z € D and r > 0, let D(z,7r) = {w €

D: fB(z,w) < r} denote the Bergman disk with center z and radius r. Given w € R, write
0(z) = (1= |z)’w(2).
The following lemma exhibits some basic estimates. See [22] for more details.

Lemma 2.1. Suppose w € R, then

(A) For 1 < p < oo, there holds
I1B.lLag = (=),

(B) There is some positive constant o such that

|B=(€)] = B(2) ~ Be(£) ~

for all z,& € D with 8(z,&) <.
(C) Forr >0 fized,

For 1 < p < oo, write b, . = B, /|| B;|| 4». Clearly, ||by .| 4» = 1. By Lemma 2.1 we know

1

2.1 inf  [b,.(§)|~ sup |bp.(§)| 2w(z) ».
(2.1) B CECIES N OSCIEES
For any r > 0, [3, Lemma 2.13] tells us there exists a sequence {z;}32; such that
D=U2,D(z,r), D (zj, %) nD <zk, %) — 0 for j £k

Such a sequence is called an r-lattice of D. For EZ C D Lebesgue measurable, let x g be the characteristic
function of E, and write |E| = [, xgdA. Given some r-lattice {z;}32; and R > 0, we have some
constant N such that

(e e}
(2:2) > Xpe.p) <N
=1
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1
loc

1
MANE = o /D @i,

Given r > 0, the local mean operator M, on L;  is defined as

For any r > 0, M, is a bounded linear operator on L% for 1 < p < 0.
Let ¢ > 1 and 7 > 0. For f € L} , define Gy, (f) to be

loc?

1
q

i L a : zZ,r z
Ggr(f)(2) = inf (l)(zar)‘/[)(zm)‘f_}” dA) :he H(D(z,r)) p, e D.

Since w € R,

Gyr(F)(2) = inf (w(D(z,r)) /D(m \f—h!%dA) . h e H(D(2,1))

Let  be a finite positive Borel measure on D, y is called a g-Carleson measure for A?, if the identity
operator Id : AY, — L9(u) is bounded, p is called a vanishing g-Carleson measure for A% if the identity
operator Id : AL, — L%(u) is compact.

The following two lemmas give the equivalent conditions of a positive Borel measure p belonging a

(vanishing) g-Carleson measure for Af,. See [20] and [22] respectively.

Lemma 2.2. Suppose 1 <p < q < oo, w € R, and let i be a positive Borel measure on . Then the
following assertions hold:
(A) p is a q-Carleson measure for AL if and only if
D
(2.3) sup M < 00
2€D w(D(z,r))?r
for some (or any) r € (0,a]. Moreover,
n(D(z,7))
| Id]|4 ~sup ——— 7.
AL=Ladn) — e w(D(z,r))%
(B) u is a vanishing q-Carleson measure for A%, if and only if
D
(D)

=1 w(D(z, )

for some (or any) r € (0, .

Lemma 2.3. Suppose 1 < qg<p < oo, w € R, and let i be a positive Borel measure on . Then the
following statements are equivalent:
(A) w is a g-Carleson measure for AL;
(B) u is a vanishing q-Carleson measure for AL;
(C) For some (or any) r € (0,a], u(D(-,7))/w(D(-,r)) € Lﬁ.
Furthermore,
1d|| a2 a(apy = 0D ) /w (D7) e

Ly
The following lemmas was proved in [10], which are important in the proof of the main results.
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Lemma 2.4. Suppose 1 <p < oo andw € R. For f € LP((1 —|-|)PwdA), let

)= 282 | e e

Then u weakly solves the equation Ou = f in' D, and there is some constant C, independent of f, such

that
Jullzz < Clfler

1—|-)Pw
Lemma 2.5. Suppose Q € R, f € L}, and 0f € L]()I_H)pQ for some p > 1. Then for g € H* there
holds
H{(9) = u— Pa(u),
where

W) =S B (s ¥ (&) 5
=280 [ = O

3. Proof of the main results

Now we are ready to prove Theorems 1.1-1.3.

Proof of Theorem 1.1. For 1 < p < oo, H*® is dense in AY. So for f € L}, H]? is well (densely)
defined on AZ,.
(A) = (B). Let r € (0, a] be fixed, (2.1) tells us

1
inf |bp., > by (2) 2d(z) P >0
B 1B (6)] 2 s (2)  0()

for z € D. Thus, iPQ(fbp,Z) € H(D(z,r)). This together with Lemma 2.1 shows

180, = [ 1041 ~ Pa(5,0(O" 2(E)A()

1 q
b, (6)]4 — Po(fb,.» O(&)dA

> [ 00|10~ g el @) 260
) 2@ [ |0 - o Palh) ) 200

~oRE D(z,r) bp,z(&) & .

2 bp,2(2)1Q(D(z,7)) Gy (f)(2)?

~ &(2) P U(2)Gar (f)(2)4.
On the other hand, the boundedness of HJQ : A, — L{, shows

(O P T 17 G

Therefore, we obtain
_lyg 1
(3:2) 0(2) P U2)1Ger(F)(2) S IHF N apsrg-

From this we know, Q%(I)_%Gq’r(f) € L>(D).
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(B) = (C). Suppose HQ%J)_%G%T(]‘)HLW < oo for some r € (0,a]. Fix {2;}72, to be an g5-lattice,
and take {1/;} to be a partition of unity subordinate to {D(z;,r/2)}, satisfying |(1 — |z;|)9v;| < C.

A normal family argument shows that for each j, there exists some h; € H(D(z;,r)) such that

= q
Q(D(z:. 7)) — hi|"dA = Gy, 4
QD (z,7)) /D(Zjﬂ") 1= by Gar(£)(2))

Set

f1(2) = 22520 hi(2)1(2) € C=(D)

and fo = f — fi. For z€ D, set J, ={j : 2 € D(zj,r)}. Then, 1 — |zj| ~1—|2| for j € J.. And

| Jz| == ZXD(Z]‘,T)(Z) <C
j=1

A similar way to that on pages 254-255 in [ }, for z € D, there holds

(3.3) 91(2) ¥ > Gor(H)(z).
jEJ:
This shows
(3.4) (1= D) 5() P B S 252 G| -
Thus (1.1) follows.
For f5, we have
. 7 @
—_— 1dA ) = — h;)|TdA
(’D(Z,T)’ D(z,r) |f2| > ]; (’D Z r ’ D(z,r) |(f J)¢]| )
(3.5) 1
= — h;|7dA
;<|DZT|/ZTHDZJ,T/2)’f J‘ )
Hence,
(3.6) =) 10(2) P M (1) ()7 S [| 23872 Go (1)

Lo
This shows (1.2) holds. Notice that (1.2) is independent of precise values of r, and different values of
Lo’ We finish the proof of implication (B) = (C).

(C) = (A). Set du = |f2|9QdA. We show dpu is a g-Carleson measure for A%,. Since Q(¢) ~ Q(z)
for £ € D(z,r), we have

g1, 1 1
r give equivalent norms Hqu) » M, (| f2|?)

2

/ RO QEIAE) ~ Q) / ()] dAE)
D(z,r) D(z,r)

QD(z,1))
D(,1)] /D(m)|f2<s>|qu<a>.
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Thus,

D) S 126 QEA(E)
“(D)? D7)
. QUD(zr) 1 q
 w(D(z,r)r \D(z,r)‘/D(w)\h(f)l dA(€)
Q(Z)OVJ(ZY%MT(UQ]‘I)(Z)'

SRS

12

It follows from (1.2) that
D
i, A (Zﬂ"))q < 0o
zeD w(D(z,r))r

Thus Lemma 2.2 shows dy is a ¢-Carleson measure for A%. Moreover,

Q=

~ sup (2)165(2) > My(| fa]?)
z€D

(2)-

~—
W= Q=

D(z,r
1Tl oy = sup 22ED)
22D (D(z,1)

Therefore,

1

280l S 1ol = ( [ \lolalo0aa)”

g1, _1 1
S )y oy Mgl zg, = |56 M (| fol)

(3.7)

gllze.

Now we suppose f; satisfies (1.1). For g € H*, pick u as in Lemma 2.5 that

=3B, [ A G OBAEOIA)
j=1 K

Then Lemma 2.4 and Lemma 2.5 give
Hj(9) = u— Pa(u) and |lull g S 11—+ )90l

By the boundedness of Py on ng we obtain

1 gll o < O+ 1Pallzg)llullzg < (0= 1-Dgdfi g -
Meanwhile, we know from (1.1) and Lemma 2.2 that dv = [(1—|- |)]5f1|]quA is a g-Carleson
measure for AL, and the Carleson constant of dv is less than or equal to C H (1—1- |)Q%Jf% |0.f1] HL .
Then
_ %1, 1
l@=1-Dgdhillys < |@—1-D2a s [PAl| gl

Hence, we have
1

|ES ol < [ =1 D2aa7s BAl|, - llzs-
With this and (3.7) we obtain
ol _1 o1 _1 1
38 [H |y S {01 Do RAl |+ S (R

This finishes the proof of the equivalence among (A),(B) and (C). Moreover, the desired norm
estimate (1.3) come from (3.2), (3.4), (3.6) and (3.8). O
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Proof of Theorem 1.2. Suppose H? : A, — LY, is compact. Since by, . tends to 0 weakly in AL, for
0 <r <a, from (3.1) we have

D(2) 1U2) G (F)(2)1 S | HP(0p)||,0 — 0

) HLq
as |z| = 1. So, (A) implies (B).
Suppose (B) is valid. From (3.3) and (3.6) we have

D)7 (1= 2DBAE)] S Y Uz)76(2) 7 G ()(2))

JjeJz

Q=

Q(z)

and

1 1 1,
(2)0(2) T My(|fol") ()7 < C 3 25 105(2) 7 Gy £)(39).
jedz
From these the statement (C') follows.
Now we prove the implication (C') = (A). As that in the proof of Theorem 1.1, we know du =
| f2|7QdA and dv = [(1—|- |)]5f1|]quA are both vanishing g-Carleson measures for AL. For any

bounded sequence {g, }5°_; in A% with g, — 0 uniformly on any compact subset of D as m — oo, we

have

15 (gl 1o < N[ =1 DIOAL] gim| g — 0.
and

q

5 0mly < ( [ 16lgniraa) " 0

Consequently,
T [ H (g g, = 0.

This shows HJQ is compact from AL, to L{,. The proof is ended. O

Proof of Theorem 1.3. (B) = (A) is trivial. We need only to prove the directions (4) = (C), (C) =
(D) and (D) = (B).

(A) = (C). Forr € (0, o] fixed, take {2;}32, to be an r/4-lattice. It follows from the decomposition
for A, (see [22, Proposition 14]) that for {\;} € [P, there holds

> Aibp | < ClI{A -
j=1

AL
As in [11], take {¢;}72; to be the sequence of Rademacher functions on [0, 1]. Khintchine’s inequality
implies
q - 3
/ Z)‘J‘JSJ bp,;(2)| dt ~ Z PYIRL ,zj(z)|2

Jj=1
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This together with Fubini’s theorem gives
1 0 !
/ HP )Xo ()b, dt
0 = L

9
2

Z/ (Z )‘sz?(bp,z])(z)Q) Q(2)dA(2)
(zk,7) =1

12

q )4 ~ _M P ! P 2
> ;mb,%() IIRCEE @ aEaae)
> Al (219D 1) G () (2)

k=1

12

> el (2) ™ 7 2k) G (f) (21)7.
=1

Meanwhile, the boundedness of H? AP L?) indicates

HY (Z qusj(t)bp,zj)
j=1

IN

00

HHJQHAE,%L‘é ’ Z)‘jd)j(t)bp,zj

Le Jj=1 AP
Q w

1
S HHf HAP_>L¢1 ||{|)‘ ‘q}Hq
Hence
D Nl (z1) "7 22) G (£ (20)” S (1 (| g KNI g

Since the conjugate of B is %q, a duality argument shows

p

o0
S w(an) T z) 71 G (f) ()P0 S || HY HAuLg,
k=1

Notice that &(z) = (1 — |z])?w(z). For z and w with 3(z,&) < %, one has &(z) ~ @(£) and

(3.9) Gz (f)(§) < CGqr(f)(2).

Thus we have

[ @776, 5 (05 aae

> 1 a4 a pg_
< — X p—q () =1 Q)G r—adA
<> /| ooy (T R T TRUO PTGy (5O
< p qv _ﬁv ﬁ
S 3 Garl e i) i /D L A
>~ ZG%T Zk P qcf)(zk)_ﬁ(vl(zk)zﬂ%q.

k=1
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11 pa_
This shows Qew™ Gy, (f) € Lr—1(D) with
11 Q
(3.10) | i 5 Gor(D|, 2o S 1HR g rs -
(C) = (D). As in the proof of Theorem 1.1, set

fi(z) = 32521 hi(2)95(2) € C2(D) and fo = f — f1.

By (3.9) we know

_pq_ 1
Grquz'S/ G7r
q72( )77 () |D(2j,7/2)| D(zj,r/2) !

pq

(f)r=a(u)dA(uw).
It follows from (3.3) that

(A= 12) [BAENT £ 3 Gor(h)Fa(z)

Jj€J>
1
S e o L., CartDF5 04w
1 pq_
S &BET / o Gar 5 00,

This and Fubini’s theorem imply

[ 101D 5] 7 0027077 dAC)

N

1
Q(D(u. 1)) /Dw,m fz)dA(z)

| @576y (1) ) w),

12

/Q 5 Gy () ()

12

Thus we get (1.4) with

(3.11) |aiwTr - 1-Dios

1 1
Cllop 1
Ly S [0 G ()

Pg
Lpr—q

For fs, by (3.5) we obtain

< — hi|7QdA
) = Z (Q ;7)) /D(z PND(z;,1/2) £ = Rl >

D) o Cor V2400

p

1 _pPq_
: (fZ(l?(W/D(z,zr) Carl )07 q9<u>dA<u>>
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This together with (3.9) shows

P __q 1 _pg_
S [ ) (Q(D()) /| _ GarlD)0) qﬂ(u)dA<u>> dA(2)

< / Q)P w(z) 75 Gy () (2) P dA(2).
D

11 1
Qaw» M (| f2|*)s

Pg
Lp—a

This shows

11 1
Qaw » M (| f2|*) -

(3.12) | L

1 _1
Qaw qu,2r<f)‘

< ‘
Pq
Lpr—q ~

It is trivial that the condition (1.5) is independent of r, these give the statement (D).
Now we prove (D) = (B). Set dv = [(1— |- |)|5f1Hq QdA. It follows from Hoélder’s inequality with

p 7 and its conjugate to get

[ 0= kPR @A)
D(&,r)

< { L, [0 rcrpa@reo ] dA<<>} ( /| Mﬂ(om(o)
xGan (= PR A !
This, together with Fubini’s theorem, gives
V(D(VT))
WD) ||
[ e (1= DTRA(OIPQAQAA) ] 77
i [ gL W(E)dAE)

A

567
-/ (/ UOTT e)aae )>(1—|C|)“|0f1( EEQ(OAA).
D D(¢,r)

/ < [ a-i#pns <<>dA<<>) UOTT L eyaace)
D D(,r)

Since Q(&) ~ Q(¢) for € € D(C,r), we have

Q(&)ﬁw A ~ O(¢)7 e Q0P
‘/D(QT’) (:j(g)ﬁ (g) (g) (D(C)ﬁ /D((,r) (g) (5) w(c)fiq
Therefore,

Z/(D('77')) %w _% B B %

w(D (7)) || 7% S /D [0 10(Q) P (1= [CNBA] " dAQ).
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By (1.4) we know dv is a g-Carleson measure for A,. Lemma 2.3 tells us Id : Af, — L%(dv) is compact

and
V(D('?T))

||Id||Apc—>L‘1 (dv) ~ w(D(-,r))

L1

11 — e
e S| Qw (=1 DA 2
Lp—a

Now for g € H*, which is dense in AY,, we have

0 _
[Hpglls < (=1 Dglofille S Il ap s paavy l9llz

|rw > @ = 1-DIBA|, 2o Nz

N

Therefore, Hf% : A, — LY, is bounded with the norm estimate
11 =
(3.13) VB agosrs, S || 07077 (U= | DIBA|| 2o

We claim H% is compact as well. To see this, let {g,,}>°_; be any bounded sequence in A%, with
gm — 0 uniformly on any compact subset of D as m — oo, we need only to prove H?l (gm) — 0 in
L{,. For this purpose, for each m, pick some t,, € (1 —1/m,1) so that ||gn(-) — gm (tm)| a» < L. Set
P (+) = gm(tm-) € H®. Since w is radial, ||hm|| 42 < ||gmll a2 As in Lemma 2.5, set

B [ 9O, g
- JZ; Bl )/D (€ - 2)B., (&) hin ()0 f1(€)dA(E).

Then, Ou,, = hmOf1 and
g, < @),

o = Wl

It follows from the compactness of Id : AL, — L(dv) that limy, oo [|Am |74,y = 0- Then limy, o0 [|um| £y =
0. Therefore,

Jim (| H () o < (14 [[Pallzg) lim fluml|rg = 0.
Meanwhile, we have
Q . _
"}gnoo HHf HL% < Hj, [l az 1o, %E}HOO lgm — hmll 4z = 0.

Therefore,
Jim (1R (g < i {IEE (o= )+ [ () } = 0.
which gives the compactness of HY 7, from Al to LY.

For fy satisfying (1.5), du = |f2|92dA is a vanishing ¢-Carleson measure for A%. Equivalently,
Id: AY, — L9(dp) is compact. By

(3.14) 1H @) o < [1F29]1 g, = 1Hd(9)] s

[f2]9€

we know H ]% is compact from Af, to L{, as well. This finishes the proof of implication (D) = (B).
Furthermore, from (3.13), (3.14) and (3.11), (3.12) we have

Pg_
LpP—4

. 1 _1
VR g pe S 8 (IR g s + 1B 2l } S 25072
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where the ”inf” is taken over all decomposition f = f; + f2 as (1.4). This and (3.10) imply (1.6). The
proof is finished.

Recall that for f € LY and r >0,

=

P

1
MOy, (f)(z) = {M /D(Z’T) |f - fD(z,r)|qu} ,

where fp(.r) = gy Jper f4A- And
Oss (f)(z) = sup |f(§) — f(2)|
£eD(z,r)

g

As an application of the main results, we can characterize real-valued functions f € Lb such that
HJS} is bounded (or compact) from A%, to L?z with 1 < p,q < oo. This is equivalent to show complex-
valued functions f € L}z such that both H 19, H% are bounded (or compact) between the above spaces.
The proofs of the following corollaries are similar to that of Theorems 4.5-4.7 in [10], so we omit the

details here.

Corollary 3.1. Suppose w,Q € R, 1 <p<q<oo. Then for f € Lb,
o 1l 1
(1) Both H?, H% : AL, — LY are bounded if and only if for some (or any) r > 0, Qaw™» MOy, (f) €
L, as well as equivalent to f = f1 + fo with fi € C1(D), and for some (or any) r > 0,
Qa7 - Oss,(f1) € L% and Q15 M, (|fo|7)7 € L.
Furthermore,

~

AL —LY

i 5210,.(7)

Q Q
HHf HA5_>L;§ + HH?’ ‘LOO

(2) HJSP,H%2 o AL, — LY, are simultaneously compact if and only if for some (or any) r > 0,
limy, Q(z)Ew(z)_%Mqu(f)(z) = 0, which is also equivalent to f = f1 + fo with fi € C1(D)

satisfying

=

and

for some (or any) r > 0.

Corollary 3.2. Suppose w,Q2 € R, 1 < q<p < oo. Then for f € L%z, the following statements are
equivalent:

(A) HY, H% : A, — L, are bounded;

(B) H?,H% : A, — LY, are compact;

(C) For some (or any) r > 0, Q%w_%MOq,r(f) € L%;
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(D) f = f1 + f2 with fi € CY(D), for some (or any) v > 0 there hold
11 P
Qaw »Oss,(f1) € Lr—a,
and
1 _1 1 P4
Qaw M, (|f2|?)e € Lra.
Furthermore,

Lpr—a

w1 _1
17 s, + 7y = 27772000

Remark 3.3. Given 1 < ¢ < p < oo and o, > —1, Lv and Zhu in [14] obtained the equivalent
conditions for H? and H? are both bounded (or compact) from A?I—HQ)O‘ to Lgl_HQ)
restriction “pn < g(n + 1+ «)”. They were not sure if this restriction could remove. From Corollary

5 under the

3.2 we know, the condition is not necessary at least in the case n = 1.
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