Journal of the Iranian Mathematical Society ISSN (on-line): 2717-1612
J. Iranian Math. Soc. 2 (2021), no. 2, 111-122
© 2021 Iranian Mathematical Society

SOME CAYLEY GRAPHS WITH PROPAGATION TIME 1

Z. RAMEH AND E. VATANDOOST*

ABSTRACT. In this paper we study the zero forcing number as well as the propagation time of Cayley graph $Cay(G, \Omega)$, where G is a finite group and $\Omega \subset G \setminus \{1\}$ is an inverse closed generator set of G. It is proved that the propagation time of $Cay(G, \Omega)$ is 1 for some Cayley graphs on dihedral groups and finite cyclic groups with special generator set Ω .

1. Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will often use the notation $\Gamma = (V, E)$ to denote the graph with non-empty vertex set $V = V(\Gamma)$ and edge set $E = E(\Gamma)$. Order of a graph is the number of vertices in the graph and size of a graph is the number of edges in the graph. An edge of Γ with endpoints u and v is denoted by u - v. For every vertex $x \in V(\Gamma)$, the open neighborhood of vertex x is denoted by N(x) and defined as $N(x) = \{y \in V(\Gamma) \mid x - y\}$. Also the close neighborhood of vertex $x \in V(\Gamma)$, N[x], is $N[x] = N(x) \cup \{x\}$. The degree of a vertex $x \in V(\Gamma)$ is $\deg_{\Gamma}(x) = |N(x)|$. The minimum degree and maximum degree of a graph Γ denoted by $\delta(\Gamma)$ and $\Delta(\Gamma)$, respectively. The complement of graph Γ denoted by $\overline{\Gamma}$ is a graph with vertex set $V(\Gamma)$ which $e \in E(\overline{\Gamma})$ if and only if $e \notin E(\Gamma)$. For any $S \subseteq V(\Gamma)$, the induced subgraph on S, denoted by $\Gamma[S]$ is the subgraph whose vertex set is S and which contains all edges with both endpoints in S. The set $S \subseteq V(\Gamma)$, is independent, if $\Gamma[S]$ is empty graph.

A t-partite graph is a graph whose vertices are or can be partitioned into t different independent

*Corresponding author

Communicated by Alireza Abdollahi

MSC(2020): Primary: 05C76.

Keywords: Cayley graph; zero forcing number; propagation time.

Received: 11 December 2021, Accepted: 19 April 2022.

DOI: https://dx.doi.org/10.30504/JIMS.2022.319293.1049

sets. A complete t-partite graph is a t-partite graph in which there is an edge between every pair of vertices from different independent sets. A complete multipartite graph is a complete t-partite graph for some t.

Let G be a non-trivial group with identity element 1 and $\Omega \subseteq G$ such that $1 \notin \Omega$, $\Omega = \Omega^{-1} = \{\omega^{-1} \mid \omega \in \Omega\}$. The *Cayley graph* of G and Ω , denoted by $Cay(G, \Omega)$, is a graph with vertex set G and two vertices u and v are adjacent if and only if $uv^{-1} \in \Omega$.

The set of $n \times n$ real symmetric matrices will be denoted by $S_n(\mathbb{R})$. For $A \in S_n(\mathbb{R})$, the graph of $A = (a_{ij})$, denoted by $\mathcal{G}(A)$, is a graph with vertices $\{1, \ldots, n\}$ and edges $\{i - j | a_{ij} \neq 0, 1 \leq i, j \leq n\}$. Note that the diagonal of A is ignored in determining $\mathcal{G}(A)$.

The set of symmetric matrices of graph Γ is defined by

$$S(\Gamma) = \{ A \in S_n(\mathbb{R}) \mid \mathcal{G}(A) = \Gamma \}$$

The maximum nullity of Γ is

$$M(\Gamma) = \max\{null(A) \mid A \in S(\Gamma)\}$$

and the minimum rank of G is

$$mr(\Gamma) = \min\{rank(A) \mid A \in S(\Gamma)\}.$$

A matching in a graph is a set of edges without common vertices. A perfect matching of graph is a matching in which every vertex of the graph is incident to exactly one edge of the matching. Suppose that $H_1 = (V_1, E_1)$ and $H_2 = (V_2, E_2)$ are two graphs of equal order and $\mu : V_1 \to V_2$ is a bijection. Define the matching graph (H_1, H_2, μ) to be the graph constructed with the disjoint union of H_1, H_2 and perfect matching between V_1 and V_2 defined by μ .

Let each vertex of a graph Γ be given one of two colors "black" and "white". Let Z denote the (initial) set of black vertices in Γ . If a white vertex u_2 is the only white neighbor of a black vertex u_1 , then u_1 changes the color of u_2 to black (color-change rule) and we say " u_1 forces u_2 ". The set Z is said to be a zero forcing set of Γ if all of the vertices of Γ will be turned black after finitely many applications of the color-change rule. The zero forcing number of Γ , $Z(\Gamma)$, is the minimum cardinality among all zero forcing sets. The notation of a zero forcing set, as well as the associated zero forcing number, of a simple graph was introduced by the "AIM Minimum Rank-Special Graphs Work Group" in (2008) [2]. They used the technique of zero forcing sets. For more results, see [3,4,6], [7] and [12]. Let $\Gamma = (V, E)$ be a graph and Z a zero forcing set of Γ . Define $Z^{(0)} = Z$ and for $t \ge 0$, $Z^{(t+1)}$ is the set of vertices w for which there exists a vertex $b \in \bigcup_{s=0}^{t} Z^{(s)}$ such that w is the only neighbor of b

not in $\bigcup_{s=0}^{t} Z^{(s)}$. The propagation time of Z in Γ , denoted by $Pt(\Gamma, Z)$, is the smallest integer t_0 such that $V = \bigcup_{t=0}^{t_0} Z^{(t)}$. The propagation time of Γ is

 $Pt(\Gamma) = \min\{Pt(\Gamma, Z) \mid Z \text{ is a minimum zero forcing set of } \Gamma\}.$

The propagation time of a zero forcing set was implicit in [5] and explicit in [10]. In 2012 Hogben et al. [8] established some results regarding graphs having propagation time 1.

These motivated us to consider the zero forcing number and propagation time of some Cayley graphs.

We show that $Pt(Cay(G, \Omega)) = 1$ for some Cayley graphs on dihedral groups and finite cyclic groups with special generator set Ω .

2. Preliminary

For investigating the zero forcing number and propagation time of graphs, the following Lemmas and Theorems are useful.

Theorem 2.1 ([4]). For any graph Γ , $\delta(\Gamma) \leq Z(\Gamma)$, where $\delta(\Gamma)$ is the minimum degree of the graph Γ .

Theorem 2.2 ([7]). Let Γ be a connected graph of order $n \ge 2$. Then $Z(\Gamma) = n - 1$ if and only if Γ is isomorphic to a complete graph of order n.

Theorem 2.3 ([2]). Let $\Gamma = (V, E)$ be a graph and $Z \subseteq V$ a zero forcing set for Γ . Then $M(\Gamma) \leq Z(\Gamma)$.

Lemma 2.4 ([2]). Let λ be an eigenvalue of the adjacency matrix of graph Γ with multiplicity of m. Then $M(\Gamma) \ge m$.

Theorem 2.5 ([8]). Let Γ be a graph. Then any two of the following conditions imply the third: 1. $|\Gamma| = 2Z(\Gamma)$.

- 2. $Pt(\Gamma) = 1$.
- 3. Γ is a matching graph.

Theorem 2.6 ([11]). Let $t \ge 2$ and K_{n_1,\dots,n_t} be a complete multipartite graph, with at least one i $(1 \le i \le t)$ such that $n_i > 1$. Then $Z(K_{n_1,\dots,n_t}) = n_1 + \dots + n_t - 2$.

Lemma 2.7. Let $t \ge 2$ and K_{n_1,\dots,n_t} $(n_1 \le n_2 \le \dots \le n_t)$ be a complete multipartite graph. If $1 = n_1 = n_2 = \dots = n_{t-1} < n_t$, then $Pt(K_{n_1,\dots,n_t}) = 2$. Otherwise, $Pt(K_{n_1,\dots,n_t}) = 1$.

Proof. Let $V(K_{n_1,\dots,n_t})$ is partitioned parts of V_1,\dots,V_t with $|V_i| = n_i$ for $1 \le i \le t$. Let Z be a zero forcing set of K_{n_1,\dots,n_t} with minimum cardinality. By Theorem 2.6, $|Z| = n_1 + \dots + n_t - 2$. Also let $V(K_{n_1,\dots,n_t}) \setminus Z = \{x, y\}.$

If $1 = n_1 = \cdots = n_{t-1} < n_t$, then $x \in V_t$ and $y \in V_i$ for some $1 \leq i \leq t-1$. Since y is not black vertex, x can not be forced by any black vertices in the first stage. But every black vertex in V_t forces y and then x is forced by y. Therefore, $Z^{(0)} = Z$, $Z^{(1)} = \{y\}$ and $Z^{(2)} = \{x\}$. Hence $Pt(K_{n_1,\cdots,n_t}, Z) = 2$ and so $Pt(K_{n_1,\cdots,n_t}) = 2$.

Let there are *i* and *j* with $1 \leq i < j \leq t$ such that $1 < |V_i|$ and $1 < |V_j|$, $x \in V_i$ and $y \in V_j$. Then $Z = V(K_{n_1, \dots, n_t}) \setminus \{x, y\}$ is a zero forcing set of K_{n_1, \dots, n_t} . Furthermore every black vertex in V_i forces *y* and every black vertex in V_j forces *x*, simultaneously. Thus, $Z^{(0)} = Z$, $Z^{(1)} = \{x, y\}$ and $V(K_{n_1, \dots, n_t}) = Z^{(0)} \cup Z^{(1)}$. Therefore $Pt(K_{n_1, \dots, n_t}, Z) = 1$ and so $Pt(K_{n_1, \dots, n_t}) = 1$.

Lemma 2.8 ([9]). Let G be a group and H be a proper subgroup of G. Also let [G : H] = t. If $\Omega = G \setminus H$, then $Cay(G, \Omega)$ is a complete t-partite graph.

Theorem 2.9 ([11]). Let $G = D_{2n} = \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ be the dihedral group of order 2n, where n = 2k. Also let $\Omega = \{a, a^3, \dots, a^{2k-1}, b\}$. Then $Z(Cay(D_{2n}, \Omega)) = 2|\Omega| - 2$.

A graph is called integral, if its adjacency eigenvalues are integers.

Theorem 2.10 ([1]). Let $T_{4n} = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle$, n = 2m + 1 where $m \in \mathbb{N}$ and $\Omega = \{a^k \mid 1 \leq k \leq 2n - 1, k \neq n\} \cup \{ab, a^{n+1}b\}$. Then $Cay(T_{4n}, \Omega)$ is integral.

Lemma 2.11. Let $T_{4n} = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle, n = 2m + 1$ where $m \in \mathbb{N}$ and $\Omega = \{a^k \mid 1 \leq k \leq 2n - 1, k \neq n\} \cup \{ab, a^{n+1}b\}$. Then $Z(Cay(T_{4n}, \Omega)) \leq 3n$. If n = 3, then $Z(Cay(T_{12}, \Omega)) \leq 8$.

Proof. Let n = 3 and $X = \{1, a, a^2, a^4, a^5, b, ab, a^2b\}$ be the set of initial black vertices of $Cay(T_{12}, \Omega)$. Then since $N(1) = \Omega$, and a^4b is the only white neighbor of 1, 1 forces a^4b . We have $N(b) = \{a, a^4, ab, a^2b, a^4b, a^5b\}$. So a^5b is the only white neighbor of b. Hence, b forces a^5b . Since $N(a^2) = \{1, a, a^3, a^4, a^2b, a^5b\}$ and a^3 is the only white neighbor of a^2 , a^3 is forced by a^2 . Finally, a^3b is forced by vertex a. Thus X is a zero forcing set of $Cay(T_{12}, \Omega)$ and so $Z(Cay(T_{12}, \Omega)) \leq 8$.

Now, let n > 3 and $X = \langle a \rangle \cup \{a^i b \mid 0 \leq i \leq n-1\}$ be the set of initial black vertices of $Cay(T_{4n}, \Omega)$. For every $k \in \{0, 1, \dots, n-1\}$, we have $N(a^k) = \{a^{n-k+1}b, a^{2n-k+1}b\} \cup \langle a \rangle \setminus \{a^k, a^{n+k}\}$. Thus $a^{n+1}b$ and $a^n b$ are the only white neighbors of vertices 1 and a, respectively. Also $a^{2n-k+1}b$ is the only white neighbor of vertex a^k , for $2 \leq k \leq n-1$. Hence, 1 forces $a^{n+1}b$, a forces $a^n b$ and a^k forces $a^{2n-k+1}b$, for $2 \leq k \leq n-1$. Thus X is a zero forcing set of $Cay(T_{4n}, \Omega)$. Therefore $Z(Cay(T_{4n}, \Omega)) \leq 3n$. \Box

3. Main results

Let G be a finite group and $\Omega = \Omega^{-1} \subset G \setminus \{1\}$ be a generator of G. In the following results we provide groups G and sets Ω such that $Pt(Cay(G, \Omega)) = 1$.

Theorem 3.1. Let G be a finite group and $G = \langle \Omega \rangle$, where $\Omega = G \setminus \{1, a\}$ and o(a) = 2. Then $Pt(Cay(G, \Omega)) = 1$.

Proof. Since $\{1, a\}$ is a subgroup of G, by Lemma 2.8, $Cay(G, \Omega)$ is a complete multipartite graph with more than one part of order at least two. By Lemma 2.7, $Pt(Cay(G, \Omega)) = 1$.

Theorem 3.2. Let G be a finite group of order n and $G = \langle \Omega \rangle$, where $\Omega = G \setminus \{1, a, b\}$ and $\Omega = \Omega^{-1}$. Then $Pt(Cay(G, \Omega)) = 1$ if and only if one of the followings hold: 1. $o(a) \in \{3, 4, 6\}$. 2. o(a) = 2 and ab = ba. 3. o(a) = 2, $ab \neq ba$ and o(ab) = 3.

Proof. (\Rightarrow) Let $Pt(Cay(G, \Omega)) = 1$ and on the contrary o(a) = 5 or $o(a) \ge 7$ or o(a) = 2, $ab \ne ba$ and $o(ab) \ne 3$.

Let $Pt(Cay(G, \Omega)) = 1$ and o(a) = 5. Then $N(a) = G \setminus \{1, a^2\}$ and $N(a^{-1}) = G \setminus \{1, a^{-2}\}$. With a not so difficult calculation we have $X = G \setminus \{a^3, a, a^4\}$ is a zero forcing set of $Cay(G, \Omega)$. By Theorem

2.1, $Z(Cay(G, \Omega)) = n - 3$. Let B be a zero forcing set of $Cay(G, \Omega)$ with minimum cardinality such that $Pt(Cay(G, \Omega), B) = 1$. Since $Cay(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in B$ is a first forcing vertex. Hence $\{a, a^4\} \cap B = \emptyset$. So $B = G \setminus \{x, a, a^4\}$, where $x \in \Omega$.

If $x \neq a^2$ and $x \neq a^3$, then $x \in N(a^2) \cap N(a^3)$. Thus $B^{(1)} = \{x\}, B^{(2)} = \{a, a^4\}$ and so $G = B^{(0)} \cup B^{(1)} \cup B^{(2)}$, where $B^{(0)} = B$. Hence $Pt(Cay(G, \Omega), B) = 2$.

If $x = a^2$, then $B^{(1)} = \{a, a^2\}$, $B^{(2)} = \{a^4\}$. So $G = B^{(0)} \cup B^{(1)} \cup B^{(2)}$, where $B^{(0)} = B$. Thus $Pt(Cay(G, \Omega), B) = 2$.

If $x = a^3$, then $B^{(1)} = \{a^3, a^4\}$, $B^{(2)} = \{a\}$. So $G = B^{(0)} \cup B^{(1)} \cup B^{(2)}$, where $B^{(0)} = B$. Thus $Pt(Cay(G, \Omega), B) = 2$. Which is not true.

Let $Pt(Cay(G,\Omega)) = 1$ and $o(a) \ge 7$. Then $N(a) = G \setminus \{1, a^2\}$ and $N(a^{-1}) = G \setminus \{1, a^{-2}\}$. It is easy to see that $X = G \setminus \{a^3, a, a^{-1}\}$ is a zero forcing set of $Cay(G,\Omega)$. By Theorem 2.1, $Z(Cay(G,\Omega)) = n - 3$. Let B be a zero forcing set of $Cay(G,\Omega)$ with minimum cardinality and $Pt(Cay(G,\Omega), B) = 1$. Since $Cay(G,\Omega)$ is a vertex transitive graph, we may assume that $1 \in B$ is a first forcing vertex. Hence $B = G \setminus \{x, a, a^{-1}\}$, where $x \in \Omega$. It is clear that $a^2 \in N(a^{-2}), a^{-1} \in N(a^2)$ and $a \in N(a^{-2})$. If $x = a^2$ or $x = a^{-2}$, then $B^{(1)} = \{a^2\}$ or $B^{(1)} = \{a^{-2}\}$, respectively. However $G \neq B^{(0)} \cup B^{(1)}$ and so $Pt(Cay(G,\Omega), B) \ge 2$. This is a contradiction. Now let $x \in \Omega \setminus \{a^2, a^{-2}\}$. Since $Pt(Cay(G,\Omega), B) = 1, x \notin N(a^2) \cup N(a^{-2})$. Hence $a^3 = x = a^{-3}$. Thus o(a) = 6, which is a contradiction.

Let $Pt(Cay(G,\Omega)) = 1$, o(a) = 2, $ab \neq ba$ and $o(ab) \neq 3$. If o(ab) = 2, then ab = ba, which is not true. So $o(ab) \geq 4$. Since a is not adjacent to ba and b is not adjacent to ab, $Z = G \setminus \{a, b, ab\}$ is a zero forcing set of $Cay(G,\Omega)$ and so $Z(Cay(G,\Omega)) \leq n-3$. By Theorem 2.1, $Z(Cay(G,\Omega)) \geq n-3$. Hence $Z(Cay(G,\Omega)) = n-3$. Since $Pt(Cay(G,\Omega)) = 1$, we may assume that B is a zero forcing set of $Cay(G,\Omega)$ with $Pt(Cay(G,\Omega), B) = 1$ and $1 \in B$ is a first forcing vertex. Thus $B = G \setminus \{a, b, x\}$, where $x \in \Omega$. Hence there are two elements x' and x'' in Ω such that x is not adjacent to x' and x''. Furthermore, x' is not adjacent to b and x'' is not adjacent to a. By easy computing we have x' = aband x'' = ba and aba = x = bab. Thus ababab = 1, which is false.

(\Leftarrow) Conversely, let $o(a) \in \{3, 4, 6\}$ or o(a) = 2 and ab = ba or $o(a) = 2, ab \neq ba$ and o(ab) = 3. If o(a) = 3, then $\{1, a, b\}$ is a subgroup of G. By Lemma 2.8, $Cay(G, \Omega)$ is a complete multipartite graph. Hence, $Pt(Cay(G, \Omega)) = 1$, by Lemma 2.7.

Let o(a) = 4 and Z be a zero forcing set of $Cay(G, \Omega)$ with $Z(Cay(G, \Omega)) = |Z|$. Since $Cay(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Since $|\Omega| = n - 3$ and $N(1) = \Omega$, there is $C \subseteq \Omega \cap Z$ such that |C| = n - 4. Hence, $n - 3 \leq |Z|$. Also we have $N[a] = N[b] = G \setminus \{1, a^2\}$. Thus $a \in Z$ or $b \in Z$. So $n - 2 \leq |Z|$. Since $Cay(G, \Omega)$ is not a complete graph, by Lemma 2.2, $Z(Cay(G, \Omega)) = n - 2$. It is clear that $B = G \setminus \{a, a^2\}$ is a zero forcing set of $Cay(G, \Omega)$ with minimum cardinality such that $B^{(0)} = B$, $B^{(1)} = \{a, a^2\}$ and $G = B^{(0)} \cup B^{(1)}$. Hence, $Pt(Cay(G, \Omega), B) = 1$ and so $Pt(Cay(G, \Omega)) = 1$.

Let o(a) = 6 and $B = G \setminus \{a, a^3, a^5\}$ be the set of initial black vertices of $Cay(G, \Omega)$. Then 1 forces a^3 , a^4 forces a and a^2 forces a^5 in one stage. By Theorem 2.1, $Z(Cay(G, \Omega)) = n - 3$. Thus B is a zero forcing set of $Cay(G, \Omega)$ with minimum cardinality. Also we have $B^{(0)} = B$, $B^{(1)} = \{a, a^3, a^5\}$

and $G = B^{(0)} \cup B^{(1)}$. Thus $Pt(Cay(G, \Omega), B) = 1$ and so $Pt(Cay(G, \Omega)) = 1$.

Let o(a) = 2 and ab = ba. Since $b \notin \Omega$ and $\Omega = \Omega^{-1}$, o(b) = 2. Also let Z be a zero forcing set of $Cay(G,\Omega)$ with $Z(Cay(G,\Omega)) = |Z|$. Since $Cay(G,\Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Thus there is $C \subseteq \Omega \cap Z$ such that |C| = n - 4. Hence, $n - 3 \leq |Z|$. Also we have $N(a) = N(b) = G \setminus \{1, ab\}$. Thus $a \in Z$ or $b \in Z$. So $n - 2 \leq |Z|$. Since $Cay(G,\Omega)$ is not a complete graph, $Z(Cay(G,\Omega)) = n - 2$. It is easy to check that $B = G \setminus \{b, ab\}$ is a zero forcing set of $Cay(G,\Omega)$ such that $B^{(0)} = B$, $B^{(1)} = \{b, ab\}$ and $G = B^{(0)} \cup B^{(1)}$. Hence $Pt(Cay(G,\Omega), B) = 1$ and so $Pt(Cay(G,\Omega)) = 1$.

Let o(a) = 2, $ab \neq ba$ and o(ab) = 3. Since $b \notin \Omega$ and $\Omega = \Omega^{-1}$, o(b) = 2. We have $N(a) = G \setminus \{1, ba\}$, $N(b) = G \setminus \{1, ab\}$, aba = bab and $N(aba) = G \setminus \{ab, ba\}$. Let $B = G \setminus \{aba, a, b\}$ be the set of initial black vertices. In the first stage aba, a and b are forced by 1, ab and ba, respectively. By Theorem 2.1, B is a zero forcing set of $Cay(G, \Omega)$ with minimum cardinality such that $B^{(0)} = B$, $B^{(1)} = \{aba, a, b\}$ and $G = B^{(0)} \cup B^{(1)}$. Thus $Pt(Cay(G, \Omega), B) = 1$ and so $Pt(Cay(G, \Omega)) = 1$. This completes the proof.

Theorem 3.3. Let $G = \langle \Omega \rangle$ be a group of order 2t, where $1 \notin \Omega = \Omega^{-1}$ and $|\Omega| = t$. If the induced subgraph on Ω in $Cay(G, \Omega)$ is isomorphic to $\overline{K_t}$, then $Pt(Cay(G, \Omega)) = 1$.

Proof. Since $Cay(G, \Omega)$ is $|\Omega|$ -regular graph, $|\Omega| = t$ and induced subgraph on Ω in $Cay(G, \Omega)$ is isomorphic to $\overline{K_t}$, $N(x) = G \setminus \Omega$ and $N(y) = \Omega$ for every $x \in \Omega$ and $y \in G \setminus \Omega$. Thus $Cay(G, \Omega)$ is isomorphic to $K_{t,t}$. Therefore, $Pt(Cay(G, \Omega) = 1$ by Lemma, 2.7.

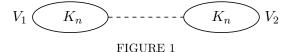
Theorem 3.4. Let $G = D_{2n} = \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$ be the dihedral group of order 2n, where n = 2k. Also let $\Omega = \{a, a^3, \dots, a^{2k-1}, b\}$. Then $Pt(Cay(D_{2n}, \Omega)) = 1$.

Proof. By the proof of Theorem 2.9 in [11], $Cay(D_{2n}, \Omega)$ is a matching graph. Since $Z(Cay(D_{2n}, \Omega)) = n$, $Pt(Cay(D_{2n}, \Omega)) = 1$ by Theorem 2.5.

Theorem 3.5. Let $G = \langle a \rangle$ be a cyclic group of order 2n. If n is odd and $\Omega = \{a^{2k} \mid 1 \leq k \leq n-1\} \cup \{a^n\}$, then $Z(Cay(G, \Omega)) = n$ and $Pt(Cay(G, \Omega)) = 1$.

Proof. Let $V_1 = \{a^{2k+1} \mid 0 \leq k \leq n-1\}$ and $V_2 = \{a^{2k} \mid 0 \leq k \leq n-1\}$. Then the induced subgraphs on V_1 and V_2 are isomorphic to K_n and $Cay(G, \Omega)$ is isomorphic to a graph having the structure given in Figure 1. So $Cay(G, \Omega)$ is a matching graph.

Now let V_2 be the set of initial black vertices of $Cay(G,\Omega)$. Then for every $0 \leq k \leq n-1$, a^{2k} forces a^{2k+n} . Thus $Z(Cay(G,\Omega)) \leq |V_2| = n$. By Theorem 2.1, $Z(Cay(G,\Omega)) = n$. Since $Cay(G,\Omega)$ is a matching graph and $|G| = 2Z(Cay(G,\Omega))$, by Theorem 2.5, $Pt(Cay(G,\Omega)) = 1$.



Dashed line: Every vertex of V_1 is adjacent to exactly one vertex of V_2 .

Theorem 3.6. Let $G = \langle a \rangle$ be a cyclic group of order 2n and $\Omega = \{a^{2k+1} \mid 0 \leq k \leq n-1\}$. Then $Pt(Cay(G, \Omega)) = 1$.

Proof. It is easy to see that $G \setminus \Omega$ is a subgroup of G. By Lemma 2.8, $Cay(G, \Omega)$ is a complete bipartite graph. By Lemma 2.7, $Pt(Cay(G, \Omega)) = 1$.

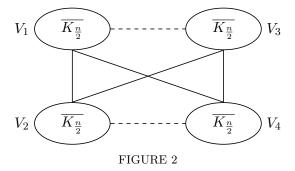
Theorem 3.7. Let $G = \langle a \rangle$ be a cyclic group of order 2n, where n is even. If $\Omega = \{a^{2k+1} \mid 0 \leq k \leq n-1\} \cup \{a^n\}$, then $Z(Cay(G, \Omega)) = \frac{3n}{2}$ and $Pt(Cay(G, \Omega)) = 1$.

Proof. For every $k \in \{0, 1, \dots, n-1\}$, we have $N(a^{2k+1}) = \{a^{2k+1+n}\} \cup \{a^{2j} \mid 1 \leq j \leq n\}$, and $N(a^{2k}) = \{a^{2k+n}\} \cup \Omega \setminus \{a^n\}$. If $V_1 = \{a^{2k+1} \mid 0 \leq k \leq \frac{n}{2} - 1\}$, $V_2 = \{a^{2k} \mid 0 \leq k \leq \frac{n}{2} - 1\}$, $V_3 = \{a^{2k+1} \mid \frac{n}{2} \leq k \leq n-1\}$ and $V_4 = \{a^{2k} \mid \frac{n}{2} \leq k \leq n-1\}$, then the induced subgraph on V_i is isomorphic to $\overline{K_{\frac{n}{2}}}$ for $1 \leq i \leq 4$ and $Cay(G, \Omega)$ is isomorphic to a graph having the structure given in Figure 2.

Let Z be a zero forcing set of $Cay(G, \Omega)$ such that $Z(Cay(G, \Omega)) = |Z|$. We may assume that $1 \in Z$ is a first forcing vertex. Thus there is $C \subseteq \Omega \cap Z$ such that |C| = n. Without loss of generality, let $C = \Omega \setminus \{a^n\}$. Then $n + 1 \leq |Z|$. Now if $|Z \cap \{a^{2k} \mid 1 \leq k \leq n - 1, k \neq \frac{n}{2}\}| < \frac{n-2}{2}$, then there is $1 \leq j \leq n-1$ such that $a^{2j} \in V_2$ and $a^{2j+n} \in V_4$ are not in Z. Since a^{2j} is adjacent to a^{2j+n} , they are not forced by any vertices. Which is a contradiction. Hence,

$$|Z \cap \{a^{2k} \mid 1 \leqslant k \leqslant n-1, k \neq \frac{n}{2}\}| \ge \frac{n-2}{2}$$

So $\frac{3n}{2} = n + 1 + \frac{n-2}{2} \leq |Z|$. Now let $B = V_1 \cup V_2 \cup V_3$ be the set of initial black vertices in $Cay(G, \Omega)$. Then 1 forces a^n . Since for every $1 \leq k \leq \frac{n-2}{2}$, a^{n+2k} is the only white adjacent vertex a^{2k} , a^{2k} forces a^{n+2k} . Thus B is a zero forcing set of $Cay(G, \Omega)$ and so $Z(Cay(G, \Omega)) \leq \frac{3n}{2}$. Thus $Z(Cay(G, \Omega)) = \frac{3n}{2}$. Also we have $B^{(0)} = B$, $B^{(1)} = V_4$ and $G = B^{(0)} \cup B^{(1)}$. Hence, $Pt(Cay(G, \Omega), B) = 1$. Therefore $Pt(Cay(G, \Omega)) = 1$.



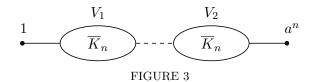
Bold line: Every vertex of the set is adjacent to every vertex of the other set. Dashed line: Every vertex of the set is adjacent to exactly one vertex of the other set.

Theorem 3.8. Let $G = \langle a \rangle$ be a cyclic group of order 2n, where n is odd and $\Omega = \{a^{2k+1} \mid 0 \leq k \leq n-1\} \setminus \{a^n\}$. Then $Z(Cay(C_n, \Omega)) = 2n - 4$ and $Pt(Cay(G, \Omega)) = 1$.

Proof. Let $V_1 = \{a^{2k+1} \mid 0 \leq k \leq n-1\} \setminus \{a^n\}$ and $V_2 = \{a^{2k} \mid 1 \leq k \leq n-1\}$. Then the induced subgraph on V_i is isomorphic to $\overline{K_n}$, for $i \in \{1, 2\}$ and $Cay(G, \Omega)$ is isomorphic to a graph having the structure given in Figure 3.

Let Z be a zero forcing set of $Cay(G, \Omega)$ with minimum cardinality. Since $Cay(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Then there exists $C \subseteq V_1 \cap Z$ such that |C| = n - 2. Thus $n - 1 \leq |Z|$. If $|Z \cap V_2| \leq n - 4$, then every black vertex in V_1 and a^n have at least two white neighbor vertices in V_2 . This contradicts the fact that Z is a zero forcing set of $Cay(G, \Omega)$. Thus $|Z \cap V_2| \geq n - 3$. Hence $|Z| \geq (n - 1) + (n - 3) = 2n - 4$.

Now let $B = G \setminus \{a^{2n-1}, a^2, a^{n+1}, a^n\}$ be the set of initial black vertices in $Cay(G, \Omega)$. In the first stage, the vertices a^{2n-1} , a^2 , a^{n+1} and a^n are forced by 1, a, a^{n+2} and a^{n-1} , respectively. Therefore, $Z(Cay(G, \Omega)) = 2n - 4$. Also we have $B^{(0)} = B$, $B^{(1)} = \{a^{2n-1}, a^2, a^{n+1}, a^n\}$ and $G = B^{(0)} \cup B^{(1)}$. Therefore, $Pt(Cay(G, \Omega), B) = 1$ and so $Pt(Cay(G, \Omega)) = 1$.



Bold line: Every vertex of the set is adjacent to every vertex of the other set. Dashed line: Every vertex of the set is adjacent to all vertices of other set except one vertex.

Theorem 3.9. Let $T_{4n} = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle$ where, *n* is odd and $\Omega = \{a^k \mid 1 \leq k \leq 2n - 1, k \neq n\} \cup \{ab, a^{n+1}b\}$. If n = 3, then $Z(Cay(T_{12}, \Omega)) = M(Cay(T_{12}, \Omega)) = 8$. Otherwise, $Z(Cay(T_{4n}, \Omega)) = M(Cay(T_{4n}, \Omega)) = M(Cay(T_{4n}, \Omega)) = 1$.

Proof. Let n = 3. Then by the proof of Theorem 2.10 [1], zero is an eigenvalue of $Cay(T_{12}, \Omega)$ with multiplicity of 8. By Lemma 2.4, $M(Cay(T_{4n}, \Omega)) \ge 8$. Hence $Z(Cay(T_{12}, \Omega)) = M(Cay(T_{12}, \Omega)) = 8$, by Lemma 2.11 and Theorem 2.3.

Let n > 3. Then $\Omega a^n = \Omega a^{-n} = \Omega$, because $a^n = a^{-n}$. Now let $0 \le k \le n - 1$ and $x \in N(a^k)$. Then $xa^{-k} \in \Omega$. So $xa^{-k}a^{-n} \in \Omega a^{-n} = \Omega$. Hence, $x \in N(a^{n+k})$ and so $N(a^k) \subseteq N(a^{n+k})$. If $x \in N(a^{n+k})$, then $xa^{-n-k} \in \Omega$. Thus $xa^{-k} \in \Omega a^n = \Omega$. Hence, $x \in N(a^k)$. This shows that $N(a^{n+k}) \subseteq N(a^k)$. Therefore, $N(a^k) = N(a^{n+k})$, for $0 \le k \le n - 1$.

By similar argument, we have $N(a^k b) = N(a^{n+k}b)$, where $0 \le k \le n-1$. It is easy to see that $N(a^k b) = \{a^{n-k+1}, a^{2n-k+1}\} \cup \{a^i b \mid 0 \le i \le 2n-1\} \setminus \{a^k b, a^{n+k}b\}$ and $N(a^k) = \{a^{n-k+1}b, a^{2n-k+1}b\} \cup \langle a \rangle \setminus \{a^k, a^{n+k}\}$. Let L be a $n \times n$ matrix such that $L_{12} = L_{21} = L_{j(n-j+3)} = 1$, for $3 \le j \le n$ and the other entries are zero. It follows that :

$$L = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$

Then the adjacency matrix of $Cay(T_{4n}, \Omega)$, A, is as following, where if $1 \leq i \leq 2n$, then $R_i(A)$ is the corresponding row of vertex a^{i-1} and for $2n+1 \leq i \leq 4n$, $R_i(A)$ is the corresponding row of vertex $a^{i-2n-1}b$.

A =	$\int J_n - I_n$	$J_n - I_n$	L	L
	$J_n - I_n$	$J_n - I_n$	L	L
	L	L	$J_n - I_n$	$J_n - I_n$
	L	L	$J_n - I_n$	$J_n - I_n$

Now let C be a $4n \times 4n$ matrix obtained by scaling some entries of A. as following :

C =	$\left((n-1)(J_n - I_n) \right)$	$(n-1)(J_n-I_n)$	(n-1)L	(n-1)L
	$(n-1)(J_n - I_n)$	$(n-1)(J_n - I_n)$	(n-1)L	(n-1)L
	(n-1)L	(n-1)L	$J_n - (n-1)I_n$	$J_n - (n-1)I_n$
	(n-1)L	(n-1)L	$J_n - (n-1)I_n$	$J_n - (n-1)I_n$

DOI: https://dx.doi.org/10.30504/JIMS.2022.319293.1049

Then $C \in S(Cay(T_{4n}, \Omega))$. It is not hard to see that in C, we have

$$\begin{split} &(\sum_{j=0}^{n-1}R_{2n+j+1}(C))-R_{2n+2}(C)=R_1(C)\ ,\ \sum_{j=1}^{n-1}R_{2n+j+1}(C)=R_2(C)\ \text{and for }2\leqslant i\leqslant n-1,\\ &(\sum_{j=0}^{n-1}R_{2n+j+1}(C))-R_{3n-i+2}(C)=R_{i+1}(C).\\ &\text{Also }N(a^k)=N(a^{n+k})\ \text{and }N(a^kb)=N(a^{n+k}b)\ \text{for }0\leqslant k\leqslant n-1\ \text{implies that }R_{k+1}(C)=R_{n+k+1}(C)\\ &\text{and }R_{2n+k+1}(C)=R_{3n+k+1}(C). &\text{By elementary row operation, we have }null(C)\geqslant 3n. &\text{Thus }M(Cay(T_{4n},\Omega))\geqslant 3n. &\text{By Lemma 2.11}\ \text{and Theorem 2.3},\ M(Cay(T_{4n},\Omega))=Z(Cay(T_{4n},\Omega))=3n.\\ &\text{Now let }B=<a>\cup\{a^ib\mid 0\leqslant i\leqslant n-1\}\ \text{be the set of initial black vertices of }Cay(T_{4n},\Omega))=3n.\\ &\text{Now let }B=<a>\cup\{a^ib\mid 0\leqslant i\leqslant n-1\}\ \text{be the set of }Cay(T_{4n},\Omega)\ \text{such that }Z(Cay(T_{4n},\Omega))=|B|.\\ &\text{Furthermore, }a^{n+1}b,\ a^nb\ \text{and }a^{2n-k+1}b\ \text{are forced by }1,\ a\ \text{and }a^k,\ \text{respectively in one stage, where }2\leqslant k\leqslant n-1.\ &\text{Thus }B^{(0)}=B\ \text{and }B^{(1)}=\{a^{n+k}b\mid 0\leqslant k\leqslant n-1\}.\ &\text{Hence, }T_{4n}=B^{(0)}\cup B^{(1)}\ \text{and so }Pt(Cay(T_{4n},\Omega),B)=1.\ &\text{Therefore, }Pt(Cay(T_{4n},\Omega))=1.\\ &\square$$

Theorem 3.10. Let $T_{4n} = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle$ where *n* is even and $\Omega = \{a^{2k+1} \mid 0 \leq k \leq n-1\} \cup \{b, b^{-1}\}$. Then $Z(Cay(T_{4n}, \Omega)) = 3n$ and $Pt(Cay(T_{4n}, \Omega)) = 1$.

Proof. Let $V_1 = \{a^{2k+1} \mid 0 \leq k \leq n-1\}$, $V_2 = \{a^{2k} \mid 0 \leq k \leq n-1\}$. Then $T_{4n} = V_1 \cup V_2 \cup V_1 b \cup V_2 b$ and the induced subgraphs on V_i and $V_i b$ are isomorphic to $\overline{K_n}$, for $i \in \{1, 2\}$. If $0 \leq k \leq n-1$, then $N(a^{2k}) = V_1 \cup \{a^{2n-2k}b, a^{n-2k}b\}$, $N(a^{2k}b) = V_1 b \cup \{a^{2n-2k}, a^{n-2k}\}$, $N(a^{2k+1}) = V_2 \cup \{a^{2n-2k-1}b, a^{n-2k-1}b\}$ and $N(a^{2k+1}b) = V_2 b \cup \{a^{2n-2k-1}, a^{n-2k-1}\}$. Furthermore $Cay(T_{4n}, \Omega)$ is isomorphic to a graph having the structure given in Figure 4.

Let $X = V_1 \cup V_2 \cup \{a^{2k}b \mid 0 \leq k \leq \frac{n}{2} - 1\} \cup \{a^{2k+1}b \mid 0 \leq k \leq \frac{n}{2} - 1\}$ be the set of initial black vertices of $Cay(T_{4n}, \Omega)$. Then for every $1 \leq k \leq \frac{n}{2} - 1$, $a^{2n-2k}b$ is the only white neighbor of a^{2k} and $a^{2n-2k-1}b$ is the only white neighbor of a^{2k+1} . Thus a^{2k} forces a^{2n-2k} and a^{2k+1} forces $a^{2n-2k-1}$. Also it is clear that b^{-1} and $a^{2n-1}b$ are forced by 1 and a, respectively. Hence, X is a zero forcing set of $Cay(T_{4n}, \Omega)$. Therefore, $Z(Cay((T_{4n}, \Omega)) \leq 3n$.

Now let Z be a zero forcing set of $Cay(T_{4n}, \Omega)$ with cardinality at most 3n - 1. Since $Cay(T_{4n}, \Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Thus there is $C \subseteq (V_1 \cup \{b, b^{-1}\}) \cap Z$ such that |C| = n + 1. Without loss of generality, let $C = V_1 \cup \{b\}$. Let t_i and t'_i be the number of white vertices in V_i and $V_i b$, respectively for $i \in \{1, 2\}$. Then $t_2 + t'_1 + t'_2 = n + 1$. If $t'_1 > \frac{n}{2}$, then there is $0 \leq k \leq \frac{n}{2} - 1$ such that $a^{2k+1}b$ and $a^{n+2k+1}b$ are white vertices. Since $N(a^{2k+1}b) \cap V_1 = N(a^{n+2k+1}b) \cap V_1 = \{a^{2n-2k-1}, a^{n-2k-1}\}, a^{n+2k+1}$ and $a^{2k+1}b$ are not forced by any vertices of V_1 . Also every vertex in V_2b has at least two white vertices $a^{2k+1}b$ and $a^{n+2k+1}b$. Thus $a^{n+2k+1}b$ and $a^{2k+1}b$ are not forced by any vertices, which is a contradiction. Hence, $t'_1 \leq \frac{n}{2}$. The same argument shows $t_2 \leq \frac{n}{2}$ and $t'_2 \leq \frac{n}{2}$. If $t_2 = t'_1 = 2$, then every vertex in $V_1 \cup V_2b$ has at least two white neighbor vertices and so the zero forcing process is stopped. Hence, $(t_2, t'_1, t'_2) \in \{(1, \frac{n}{2}, \frac{n}{2}), (\frac{n}{2}, 1, \frac{n}{2})\}$. Let $(t_2, t'_1, t'_2) = (1, \frac{n}{2}, \frac{n}{2})$ and a^{2j} be the only white vertex in V_2 for some $1 \leq j \leq n - 1$. Since $V_1b \subset N(V_2b)$ and $t'_2 = \frac{n}{2}$, a^{2j} is forced by a vertex in V_1 , which we denote a^{2i+1} . Thus, $a^{2n-2i-1}b$ and $a^{n-2i-1}b$ are black vertices. Also all of vertices in V_1b are forced by V_1 . Since $N(a^{2k+1}) \cap V_1b =$

 $\{a^{2n-2k-1}b, a^{n-2k-1}b\}$, for every $0 \leq k \leq n-1$, $a^{2n-2k-1}b \in Z$ or $a^{n-2k-1}b \in Z$. We have $t'_1 = \frac{n}{2}$, so for every $0 \leq k \leq n-1$ if $a^{2n-2k-1} \in Z$, then $a^{n-2k-1} \notin Z$ (or if $a^{n-2k-1} \in Z$, then $a^{2n-2k-1} \notin Z$). This is contradiction by this fact that $a^{2n-2i-1} \in Z$ and $a^{n-2i-1} \in Z$.

Let $(t_2, t'_1, t'_2) = (\frac{n}{2}, 1, \frac{n}{2})$. The same argument runs as before. Therefore, $Z(Cay(T_{4n}, \Omega)) = 3n$.

Let $B = V_1 \cup V_2 \cup \{a^{2k}b, a^{2k+1}b \mid 0 \leq k \leq \frac{n}{2} - 1\}$ be the set of initial black vertices in $Cay(T_{4n}, \Omega)$. In one stage the vertices of V_1 force $\{a^{2k+1}b \mid \frac{n}{2} \leq k \leq n-1\}$ and the vertices of V_2 force $\{a^{2k}b \mid \frac{n}{2} \leq k \leq n-1\}$. Thus $B^{(1)} = \{a^{2k}b, a^{2k+1}b \mid \frac{n}{2} \leq k \leq n-1\}$. Hence $T_{4n} = B^{(0)} \cup B^{(1)}$ and so $Pt(Cay(T_{4n}, \Omega), B) = 1$. Therefore, $Pt(Cay(T_{4n}, \Omega)) = 1$.

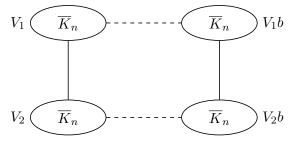


FIGURE 4

Bold line: Every vertex of the set is adjacent to every vertices of the other set. Dashed line: Every vertex of the set is adjacent to exactly two vertices of the other set.

Acknowledgments

The authors are very grateful to the referee for his/her useful comments.

References

- [1] A.Abdollahi, E. Vatandoost, Which Cayley graphs are integral? Electron. J. Combin. 16 (2009), no. 1, 1–17.
- [2] AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, *Linear Algebra Appl.* 428 (2008), no. 7, 1628–1648.
- [3] J.S.Alameda, E.Curl, A. Grez, L. Hogben, A.Schulte, D.Young and M.Young, Families of graphs with maximum nullity equal to zero forcing number, *Spec. Matrices* 6 (2018) 56–67.
- [4] A. Berman,S. Friedland,L. Hogben,U.G. Rothblum and B.Shader, An upper bound for the minimum rank of a graph, *Linear Algebra Appl.* 429 (2008), no. 7, 1629–1638.
- [5] D. Burgarth, and V. Giovannetti, Full control by locally induced relaxation, *Physical Review Letters* 99 (2007), no. 10, p100501.
- [6] C.J. Edholm, L. Hogben, M. Huynh, J. LaGrange and D.D. Row, Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph, *Linear Algebra Appl.* 436 (2012), no. 12, 4352–4372.
- [7] L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 6, 731–747.
- [8] L. Hogben, M.Huynh, N. Kingsley, S.Meyer S. Walker and M. Young, Propagation time for zero forcing on a graph, *Discrete Appl. Math.* 160 (2012), no. 13, 1994–2005.
- [9] F.Ramezani, E. and Vatandoost, Domination and Signed Domination Number of Cayley Graphs, Iran. J. Math. Sci. Inform. 14 (2019), no. 1, 35–42.

- [10] S.Severini, Nondiscriminatory propagation on trees, J. Phys. A 41 (2008), no. 48, p.482002.
- [11] E. Vatandoost and Y. Golkhandy Pour, On the zero forcing number of some Cayley graphs, Algebraic Structures and Their Applications 4 (2017), no. 2, 15–25.
- [12] E.Vatandoost, F. Ramezani and S. Alikhani, On the zero forcing number of generalized Sierpinski graphs, Trans. Comb. 6 (2019), no. 1, 41–50.

Zahra Rameh

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.

Email: z.rameh@edu.ikiu.ac.ir

Ebrahim Vatandoost

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.

Email: vatandoost@sci.ikiu.ac.ir