SOME CAYLEY GRAPHS WITH PROPAGATION TIME 1

Z. RAMEH AND E. VATANDOOST*

Abstract

In this paper we study the zero forcing number as well as the propagation time of Cayley graph $C a y(G, \Omega)$, where G is a finite group and $\Omega \subset G \backslash\{1\}$ is an inverse closed generator set of G. It is proved that the propagation time of $\operatorname{Cay}(G, \Omega)$ is 1 for some Cayley graphs on dihedral groups and finite cyclic groups with special generator set Ω.

1. Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will often use the notation $\Gamma=(V, E)$ to denote the graph with non-empty vertex set $V=V(\Gamma)$ and edge set $E=E(\Gamma)$. Order of a graph is the number of vertices in the graph and size of a graph is the number of edges in the graph. An edge of Γ with endpoints u and v is denoted by $u-v$. For every vertex $x \in V(\Gamma)$, the open neighborhood of vertex x is denoted by $N(x)$ and defined as $N(x)=\{y \in V(\Gamma) \mid x-y\}$. Also the close neighborhood of vertex $x \in V(\Gamma), N[x]$, is $N[x]=N(x) \cup\{x\}$. The degree of a vertex $x \in V(\Gamma)$ is $\operatorname{deg}_{\Gamma}(x)=|N(x)|$. The minimum degree and maximum degree of a graph Γ denoted by $\delta(\Gamma)$ and $\Delta(\Gamma)$, respectively. The complement of graph Γ denoted by $\bar{\Gamma}$ is a graph with vertex set $V(\Gamma)$ which $e \in E(\bar{\Gamma})$ if and only if $e \notin E(\Gamma)$. For any $S \subseteq V(\Gamma)$, the induced subgraph on S, denoted by $\Gamma[S]$ is the subgraph whose vertex set is S and which contains all edges with both endpoints in S. The set $S \subseteq V(\Gamma)$, is independent, if $\Gamma[S]$ is empty graph.
A t-partite graph is a graph whose vertices are or can be partitioned into t different independent

[^0]DOI: https://dx.doi.org/10.30504/JIMS.2022.319293.1049
sets. A complete t-partite graph is a t-partite graph in which there is an edge between every pair of vertices from different independent sets. A complete multipartite graph is a complete t-partite graph for some t.

Let G be a non-trivial group with identity element 1 and $\Omega \subseteq G$ such that $1 \notin \Omega, \Omega=\Omega^{-1}=$ $\left\{\omega^{-1} \mid \omega \in \Omega\right\}$. The Cayley graph of G and Ω, denoted by $\operatorname{Cay}(G, \Omega)$, is a graph with vertex set G and two vertices u and v are adjacent if and only if $u v^{-1} \in \Omega$.

The set of $n \times n$ real symmetric matrices will be denoted by $S_{n}(\mathbb{R})$. For $A \in S_{n}(\mathbb{R})$, the graph of $A=\left(a_{i j}\right)$, denoted by $\mathcal{G}(A)$, is a graph with vertices $\{1, \ldots, n\}$ and edges $\left\{i-j \mid a_{i j} \neq 0,1 \leqslant i, j \leqslant n\right\}$. Note that the diagonal of A is ignored in determining $\mathcal{G}(A)$.
The set of symmetric matrices of graph Γ is defined by

$$
S(\Gamma)=\left\{A \in S_{n}(\mathbb{R}) \mid \mathcal{G}(A)=\Gamma\right\} .
$$

The maximum nullity of Γ is

$$
M(\Gamma)=\max \{\operatorname{null}(A) \mid A \in S(\Gamma)\}
$$

and the minimum rank of G is

$$
m r(\Gamma)=\min \{\operatorname{rank}(A) \mid A \in S(\Gamma)\}
$$

A matching in a graph is a set of edges without common vertices. A perfect matching of graph is a matching in which every vertex of the graph is incident to exactly one edge of the matching. Suppose that $H_{1}=\left(V_{1}, E_{1}\right)$ and $H_{2}=\left(V_{2}, E_{2}\right)$ are two graphs of equal order and $\mu: V_{1} \rightarrow V_{2}$ is a bijection. Define the matching graph $\left(H_{1}, H_{2}, \mu\right)$ to be the graph constructed with the disjoint union of H_{1}, H_{2} and perfect matching between V_{1} and V_{2} defined by μ.

Let each vertex of a graph Γ be given one of two colors "black" and "white". Let Z denote the (initial) set of black vertices in Γ. If a white vertex u_{2} is the only white neighbor of a black vertex u_{1}, then u_{1} changes the color of u_{2} to black (color-change rule) and we say " u_{1} forces u_{2} ". The set Z is said to be a zero forcing set of Γ if all of the vertices of Γ will be turned black after finitely many applications of the color-change rule. The zero forcing number of $\Gamma, Z(\Gamma)$, is the minimum cardinality among all zero forcing sets. The notation of a zero forcing set, as well as the associated zero forcing number, of a simple graph was introduced by the "AIM Minimum Rank-Special Graphs Work Group" in (2008) [2]. They used the technique of zero forcing parameter of graph Γ and found an upper bound for the maximum nullity of Γ related to zero forcing sets. For more results, see [3, 4, 6], [7] and [12]. Let $\Gamma=(V, E)$ be a graph and Z a zero forcing set of Γ. Define $Z^{(0)}=Z$ and for $t \geqslant 0, Z^{(t+1)}$ is the set of vertices w for which there exists a vertex $b \in \bigcup_{s=0}^{t} Z^{(s)}$ such that w is the only neighbor of b not in $\bigcup_{s=0}^{t} Z^{(s)}$. The propagation time of Z in Γ, denoted by $\operatorname{Pt}(\Gamma, Z)$, is the smallest integer t_{0} such that $V=\bigcup_{t=0}^{t_{0}} Z^{(t)}$. The propagation time of Γ is

$$
\operatorname{Pt}(\Gamma)=\min \{P t(\Gamma, Z) \mid Z \text { is a minimum zero forcing set of } \Gamma\} .
$$

The propagation time of a zero forcing set was implicit in [5] and explicit in [10]. In 2012 Hogben et al. [8] established some results regarding graphs having propagation time 1.
These motivated us to consider the zero forcing number and propagation time of some Cayley graphs.

We show that $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$ for some Cayley graphs on dihedral groups and finite cyclic groups with special generator set Ω.

2. Preliminary

For investigating the zero forcing number and propagation time of graphs, the following Lemmas and Theorems are useful.

Theorem 2.1 ([4]). For any graph $\Gamma, \delta(\Gamma) \leqslant Z(\Gamma)$, where $\delta(\Gamma)$ is the minimum degree of the graph Γ.

Theorem 2.2 ([7]). Let Γ be a connected graph of order $n \geqslant 2$. Then $Z(\Gamma)=n-1$ if and only if Γ is isomorphic to a complete graph of order n.

Theorem 2.3 ([2]). Let $\Gamma=(V, E)$ be a graph and $Z \subseteq V$ a zero forcing set for Γ. Then $M(\Gamma) \leqslant Z(\Gamma)$.
Lemma 2.4 ([2]). Let λ be an eigenvalue of the adjacency matrix of graph Γ with multiplicity of m. Then $M(\Gamma) \geqslant m$.

Theorem 2.5 ([8]). Let Γ be a graph. Then any two of the following conditions imply the third:

1. $|\Gamma|=2 Z(\Gamma)$.
2. $\operatorname{Pt}(\Gamma)=1$.
3. Γ is a matching graph.

Theorem 2.6 ([11]). Let $t \geq 2$ and $K_{n_{1}, \cdots, n_{t}}$ be a complete multipartite graph, with at least one i $(1 \leqslant i \leqslant t)$ such that $n_{i}>1$. Then $Z\left(K_{n_{1}, \cdots, n_{t}}\right)=n_{1}+\cdots+n_{t}-2$.

Lemma 2.7. Let $t \geq 2$ and $K_{n_{1}, \cdots, n_{t}}\left(n_{1} \leqslant n_{2} \leqslant \cdots \leqslant n_{t}\right)$ be a complete multipartite graph. If $1=n_{1}=n_{2}=\cdots=n_{t-1}<n_{t}$, then $\operatorname{Pt}\left(K_{n_{1}, \cdots, n_{t}}\right)=2$. Otherwise, $\operatorname{Pt}\left(K_{n_{1}, \cdots, n_{t}}\right)=1$.

Proof. Let $V\left(K_{n_{1}, \cdots, n_{t}}\right)$ is partitioned parts of V_{1}, \cdots, V_{t} with $\left|V_{i}\right|=n_{i}$ for $1 \leq i \leq t$. Let Z be a zero forcing set of $K_{n_{1}, \cdots, n_{t}}$ with minimum cardinality. By Theorem $2.6,|Z|=n_{1}+\cdots+n_{t}-2$. Also let $V\left(K_{n_{1}, \cdots, n_{t}}\right) \backslash Z=\{x, y\}$.
If $1=n_{1}=\cdots=n_{t-1}<n_{t}$, then $x \in V_{t}$ and $y \in V_{i}$ for some $1 \leqslant i \leqslant t-1$. Since y is not black vertex, x can not be forced by any black vertices in the first stage. But every black vertex in V_{t} forces y and then x is forced by y. Therefore, $Z^{(0)}=Z, Z^{(1)}=\{y\}$ and $Z^{(2)}=\{x\}$. Hence $\operatorname{Pt}\left(K_{n_{1}, \cdots, n_{t}}, Z\right)=2$ and so $P t\left(K_{n_{1}, \cdots, n_{t}}\right)=2$.
Let there are i and j with $1 \leqslant i<j \leqslant t$ such that $1<\left|V_{i}\right|$ and $1<\left|V_{j}\right|, x \in V_{i}$ and $y \in V_{j}$. Then $Z=V\left(K_{n_{1}, \cdots, n_{t}}\right) \backslash\{x, y\}$ is a zero forcing set of $K_{n_{1}, \cdots, n_{t}}$. Furthermore every black vertex in V_{i} forces y and every black vertex in V_{j} forces x, simultaneously. Thus, $Z^{(0)}=Z, Z^{(1)}=\{x, y\}$ and $V\left(K_{n_{1}, \cdots, n_{t}}\right)=Z^{(0)} \cup Z^{(1)}$. Therefore $\operatorname{Pt}\left(K_{n_{1}, \cdots, n_{t}}, Z\right)=1$ and so $\operatorname{Pt}\left(K_{n_{1}, \cdots, n_{t}}\right)=1$.

Lemma 2.8 ([9]). Let G be a group and H be a proper subgroup of G. Also let $[G: H]=t$. If $\Omega=G \backslash H$, then $\operatorname{Cay}(G, \Omega)$ is a complete t-partite graph.

Theorem 2.9 ([11]). Let $G=D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=(a b)^{2}=1\right\rangle$ be the dihedral group of order $2 n$, where $n=2 k$. Also let $\Omega=\left\{a, a^{3}, \cdots, a^{2 k-1}, b\right\}$. Then $Z\left(\operatorname{Cay}\left(D_{2 n}, \Omega\right)\right)=2|\Omega|-2$.

A graph is called integral, if its adjacency eigenvalues are integers.
Theorem 2.10 ([1]). Let $T_{4 n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle, n=2 m+1$ where $m \in \mathbb{N}$ and $\Omega=\left\{a^{k} \mid 1 \leqslant k \leqslant 2 n-1, k \neq n\right\} \cup\left\{a b, a^{n+1} b\right\}$. Then $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$ is integral.

Lemma 2.11. Let $T_{4 n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle, n=2 m+1$ where $m \in \mathbb{N}$ and $\Omega=\left\{a^{k} \mid 1 \leqslant k \leqslant 2 n-1, k \neq n\right\} \cup\left\{a b, a^{n+1} b\right\}$. Then $Z\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right) \leqslant 3 n$. If $n=3$, then $Z\left(\operatorname{Cay}\left(T_{12}, \Omega\right)\right) \leqslant 8$.

Proof. Let $n=3$ and $X=\left\{1, a, a^{2}, a^{4}, a^{5}, b, a b, a^{2} b\right\}$ be the set of initial black vertices of $C a y\left(T_{12}, \Omega\right)$. Then since $N(1)=\Omega$, and $a^{4} b$ is the only white neighbor of 1,1 forces $a^{4} b$. We have $N(b)=$ $\left\{a, a^{4}, a b, a^{2} b, a^{4} b, a^{5} b\right\}$. So $a^{5} b$ is the only white neighbor of b. Hence, b forces $a^{5} b$. Since $N\left(a^{2}\right)=$ $\left\{1, a, a^{3}, a^{4}, a^{2} b, a^{5} b\right\}$ and a^{3} is the only white neighbor of a^{2}, a^{3} is forced by a^{2}. Finally, $a^{3} b$ is forced by vertex a. Thus X is a zero forcing set of $\operatorname{Cay}\left(T_{12}, \Omega\right)$ and so $Z\left(\operatorname{Cay}\left(T_{12}, \Omega\right)\right) \leqslant 8$.
Now, let $n>3$ and $X=\langle a\rangle \cup\left\{a^{i} b \mid 0 \leqslant i \leqslant n-1\right\}$ be the set of initial black vertices of $C a y\left(T_{4 n}, \Omega\right)$. For every $k \in\{0,1, \cdots, n-1\}$, we have $N\left(a^{k}\right)=\left\{a^{n-k+1} b, a^{2 n-k+1} b\right\} \cup\langle a\rangle \backslash\left\{a^{k}, a^{n+k}\right\}$. Thus $a^{n+1} b$ and $a^{n} b$ are the only white neighbors of vertices 1 and a, respectively. Also $a^{2 n-k+1} b$ is the only white neighbor of vertex a^{k}, for $2 \leqslant k \leqslant n-1$. Hence, 1 forces $a^{n+1} b$, a forces $a^{n} b$ and a^{k} forces $a^{2 n-k+1} b$, for $2 \leqslant k \leqslant n-1$. Thus X is a zero forcing set of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$. Therefore $Z\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right) \leqslant 3 n$.

3. Main results

Let G be a finite group and $\Omega=\Omega^{-1} \subset G \backslash\{1\}$ be a generator of G. In the following results we provide groups G and sets Ω such that $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Theorem 3.1. Let G be a finite group and $G=\langle\Omega\rangle$, where $\Omega=G \backslash\{1, a\}$ and $o(a)=2$. Then $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Proof. Since $\{1, a\}$ is a subgroup of G, by Lemma $2.8, \operatorname{Cay}(G, \Omega)$ is a complete multipartite graph with more than one part of order at least two. By Lemma 2.7, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Theorem 3.2. Let G be a finite group of order n and $G=\langle\Omega\rangle$, where $\Omega=G \backslash\{1, a, b\}$ and $\Omega=\Omega^{-1}$. Then $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$ if and only if one of the followings hold:

1. $o(a) \in\{3,4,6\}$.
2. $o(a)=2$ and $a b=b a$.
3. $o(a)=2, a b \neq b a$ and $o(a b)=3$.

Proof. (\Rightarrow) Let $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$ and on the contrary $o(a)=5$ or $o(a) \geqslant 7$ or $o(a)=2, a b \neq b a$ and $o(a b) \neq 3$.
Let $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$ and $o(a)=5$. Then $N(a)=G \backslash\left\{1, a^{2}\right\}$ and $N\left(a^{-1}\right)=G \backslash\left\{1, a^{-2}\right\}$. With a not so difficult calculation we have $X=G \backslash\left\{a^{3}, a, a^{4}\right\}$ is a zero forcing set of $C a y(G, \Omega)$. By Theorem
2.1, $Z(\operatorname{Cay}(G, \Omega))=n-3$. Let B be a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality such that $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$. Since $\operatorname{Cay}(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in B$ is a first forcing vertex. Hence $\left\{a, a^{4}\right\} \cap B=\emptyset$. So $B=G \backslash\left\{x, a, a^{4}\right\}$, where $x \in \Omega$.
If $x \neq a^{2}$ and $x \neq a^{3}$, then $x \in N\left(a^{2}\right) \cap N\left(a^{3}\right)$. Thus $B^{(1)}=\{x\}, B^{(2)}=\left\{a, a^{4}\right\}$ and so $G=$ $B^{(0)} \cup B^{(1)} \cup B^{(2)}$, where $B^{(0)}=B$. Hence $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=2$.
If $x=a^{2}$, then $B^{(1)}=\left\{a, a^{2}\right\}, B^{(2)}=\left\{a^{4}\right\}$. So $G=B^{(0)} \cup B^{(1)} \cup B^{(2)}$, where $B^{(0)}=B$. Thus $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=2$.
If $x=a^{3}$, then $B^{(1)}=\left\{a^{3}, a^{4}\right\}, B^{(2)}=\{a\}$. So $G=B^{(0)} \cup B^{(1)} \cup B^{(2)}$, where $B^{(0)}=B$. Thus $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=2$. Which is not true.

Let $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$ and $o(a) \geqslant 7$. Then $N(a)=G \backslash\left\{1, a^{2}\right\}$ and $N\left(a^{-1}\right)=G \backslash\left\{1, a^{-2}\right\}$. It is easy to see that $X=G \backslash\left\{a^{3}, a, a^{-1}\right\}$ is a zero forcing set of $\operatorname{Cay}(G, \Omega)$. By Theorem 2.1, $Z(\operatorname{Cay}(G, \Omega))=n-3$. Let B be a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality and $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$. Since $\operatorname{Cay}(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in B$ is a first forcing vertex. Hence $B=G \backslash\left\{x, a, a^{-1}\right\}$, where $x \in \Omega$. It is clear that $a^{2} \in N\left(a^{-2}\right), a^{-1} \in N\left(a^{2}\right)$ and $a \in N\left(a^{-2}\right)$. If $x=a^{2}$ or $x=a^{-2}$, then $B^{(1)}=\left\{a^{2}\right\}$ or $B^{(1)}=\left\{a^{-2}\right\}$, respectively. However $G \neq B^{(0)} \cup B^{(1)}$ and so $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B) \geq 2$. This is a contradiction. Now let $x \in \Omega \backslash\left\{a^{2}, a^{-2}\right\}$. Since $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1, x \notin N\left(a^{2}\right) \cup N\left(a^{-2}\right)$. Hence $a^{3}=x=a^{-3}$. Thus $o(a)=6$, which is a contradiction.

Let $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1, o(a)=2, a b \neq b a$ and $o(a b) \neq 3$. If $o(a b)=2$, then $a b=b a$, which is not true. So $o(a b) \geq 4$. Since a is not adjacent to $b a$ and b is not adjacent to $a b, Z=G \backslash\{a, b, a b\}$ is a zero forcing set of $\operatorname{Cay}(G, \Omega)$ and so $Z(\operatorname{Cay}(G, \Omega)) \leq n-3$. By Theorem 2.1, $Z(\operatorname{Cay}(G, \Omega)) \geq n-3$. Hence $Z(\operatorname{Cay}(G, \Omega))=n-3$. Since $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$, we may assume that B is a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$ and $1 \in B$ is a first forcing vertex. Thus $B=G \backslash\{a, b, x\}$, where $x \in \Omega$. Hence there are two elements x^{\prime} and $x^{\prime \prime}$ in Ω such that x is not adjacent to x^{\prime} and $x^{\prime \prime}$. Furthermore, x^{\prime} is not adjacent to b and $x^{\prime \prime}$ is not adjacent to a. By easy computing we have $x^{\prime}=a b$ and $x^{\prime \prime}=b a$ and $a b a=x=b a b$. Thus $a b a b a b=1$, which is false.
(\Leftarrow) Conversely, let $o(a) \in\{3,4,6\}$ or $o(a)=2$ and $a b=b a$ or $o(a)=2, a b \neq b a$ and $o(a b)=3$. If $o(a)=3$, then $\{1, a, b\}$ is a subgroup of G. By Lemma 2.8, $\operatorname{Cay}(G, \Omega)$ is a complete multipartite graph. Hence, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$, by Lemma 2.7.
Let $o(a)=4$ and Z be a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with $Z(\operatorname{Cay}(G, \Omega))=|Z|$. Since $\operatorname{Cay}(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Since $|\Omega|=n-3$ and $N(1)=\Omega$, there is $C \subseteq \Omega \cap Z$ such that $|C|=n-4$. Hence, $n-3 \leqslant|Z|$. Also we have $N[a]=N[b]=G \backslash\left\{1, a^{2}\right\}$. Thus $a \in Z$ or $b \in Z$. So $n-2 \leqslant|Z|$. Since $C a y(G, \Omega)$ is not a complete graph, by Lemma 2.2, $Z(\operatorname{Cay}(G, \Omega))=n-2$. It is clear that $B=G \backslash\left\{a, a^{2}\right\}$ is a zero forcing set of $C a y(G, \Omega)$ with minimum cardinality such that $B^{(0)}=B, B^{(1)}=\left\{a, a^{2}\right\}$ and $G=B^{(0)} \cup B^{(1)}$. Hence, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$ and so $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.
Let $o(a)=6$ and $B=G \backslash\left\{a, a^{3}, a^{5}\right\}$ be the set of initial black vertices of $\operatorname{Cay}(G, \Omega)$. Then 1 forces a^{3}, a^{4} forces a and a^{2} forces a^{5} in one stage. By Theorem 2.1, $Z(\operatorname{Cay}(G, \Omega))=n-3$. Thus B is a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality. Also we have $B^{(0)}=B, B^{(1)}=\left\{a, a^{3}, a^{5}\right\}$
and $G=B^{(0)} \cup B^{(1)}$. Thus $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$ and so $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.
Let $o(a)=2$ and $a b=b a$. Since $b \notin \Omega$ and $\Omega=\Omega^{-1}, o(b)=2$. Also let Z be a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with $Z(\operatorname{Cay}(G, \Omega))=|Z|$. Since $\operatorname{Cay}(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Thus there is $C \subseteq \Omega \cap Z$ such that $|C|=n-4$. Hence, $n-3 \leqslant|Z|$. Also we have $N(a)=N(b)=G \backslash\{1, a b\}$. Thus $a \in Z$ or $b \in Z$. So $n-2 \leqslant|Z|$. Since $C a y(G, \Omega)$ is not a complete graph, $Z(\operatorname{Cay}(G, \Omega))=n-2$. It is easy to check that $B=G \backslash\{b, a b\}$ is a zero forcing set of $C a y(G, \Omega)$ such that $B^{(0)}=B, B^{(1)}=\{b, a b\}$ and $G=B^{(0)} \cup B^{(1)}$. Hence $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$ and so $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.
Let $o(a)=2, a b \neq b a$ and $o(a b)=3$. Since $b \notin \Omega$ and $\Omega=\Omega^{-1}, o(b)=2$. We have $N(a)=G \backslash\{1, b a\}$, $N(b)=G \backslash\{1, a b\}, a b a=b a b$ and $N(a b a)=G \backslash\{a b, b a\}$. Let $B=G \backslash\{a b a, a, b\}$ be the set of initial black vertices. In the first stage $a b a, a$ and b are forced by $1, a b$ and $b a$, respectively. By Theorem 2.1, B is a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality such that $B^{(0)}=B, B^{(1)}=\{a b a, a, b\}$ and $G=B^{(0)} \cup B^{(1)}$. Thus $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$ and so $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$. This completes the proof.

Theorem 3.3. Let $G=<\Omega>$ be a group of order 2 t, where $1 \notin \Omega=\Omega^{-1}$ and $|\Omega|=t$. If the induced subgraph on Ω in $\operatorname{Cay}(G, \Omega)$ is isomorphic to $\overline{K_{t}}$, then $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Proof. Since $\operatorname{Cay}(G, \Omega)$ is $|\Omega|$-regular graph, $|\Omega|=t$ and induced subgraph on Ω in $\operatorname{Cay}(G, \Omega)$ is isomorphic to $\overline{K_{t}}, N(x)=G \backslash \Omega$ and $N(y)=\Omega$ for every $x \in \Omega$ and $y \in G \backslash \Omega$. Thus $\operatorname{Cay}(G, \Omega)$ is isomorphic to $K_{t, t}$. Therefore, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega)=1$ by Lemma, 2.7.

Theorem 3.4. Let $G=D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=(a b)^{2}=1\right\rangle$ be the dihedral group of order $2 n$, where $n=2 k$. Also let $\Omega=\left\{a, a^{3}, \cdots, a^{2 k-1}, b\right\}$. Then $\operatorname{Pt}\left(\operatorname{Cay}\left(D_{2 n}, \Omega\right)\right)=1$.

Proof. By the proof of Theorem 2.9 in [11], $\operatorname{Cay}\left(D_{2 n}, \Omega\right)$ is a matching graph. Since $Z\left(\operatorname{Cay}\left(D_{2 n}, \Omega\right)\right)=$ $n, \operatorname{Pt}\left(\operatorname{Cay}\left(D_{2 n}, \Omega\right)\right)=1$ by Theorem 2.5.

Theorem 3.5. Let $G=\langle a\rangle$ be a cyclic group of order $2 n$. If n is odd and $\Omega=\left\{a^{2 k} \mid 1 \leqslant k \leqslant\right.$ $n-1\} \cup\left\{a^{n}\right\}$, then $Z(\operatorname{Cay}(G, \Omega))=n$ and $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Proof. Let $V_{1}=\left\{a^{2 k+1} \mid 0 \leqslant k \leqslant n-1\right\}$ and $V_{2}=\left\{a^{2 k} \mid 0 \leqslant k \leqslant n-1\right\}$. Then the induced subgraphs on V_{1} and V_{2} are isomorphic to K_{n} and $\operatorname{Cay}(G, \Omega)$ is isomorphic to a graph having the structure given in Figure 1. So $\operatorname{Cay}(G, \Omega)$ is a matching graph.

Now let V_{2} be the set of initial black vertices of $\operatorname{Cay}(G, \Omega)$. Then for every $0 \leqslant k \leqslant n-1, a^{2 k}$ forces $a^{2 k+n}$. Thus $Z(\operatorname{Cay}(G, \Omega)) \leqslant\left|V_{2}\right|=n$. By Theorem 2.1, $Z(\operatorname{Cay}(G, \Omega))=n$. Since $\operatorname{Cay}(G, \Omega)$ is a matching graph and $|G|=2 Z(\operatorname{Cay}(G, \Omega))$, by Theorem 2.5, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

FIGURE 1
Dashed line: Every vertex of V_{1} is adjacent to exactly one vertex of V_{2}.

Theorem 3.6. Let $G=\langle a\rangle$ be a cyclic group of order $2 n$ and $\Omega=\left\{a^{2 k+1} \mid 0 \leqslant k \leqslant n-1\right\}$. Then $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Proof. It is easy to see that $G \backslash \Omega$ is a subgroup of G. By Lemma $2.8, \operatorname{Cay}(G, \Omega)$ is a complete bipartite graph. By Lemma 2.7, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Theorem 3.7. Let $G=\langle a\rangle$ be a cyclic group of order $2 n$, where n is even. If $\Omega=\left\{a^{2 k+1} \mid 0 \leqslant k \leqslant\right.$ $n-1\} \cup\left\{a^{n}\right\}$, then $Z(\operatorname{Cay}(G, \Omega))=\frac{3 n}{2}$ and $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Proof. For every $k \in\{0,1, \cdots, n-1\}$, we have
$N\left(a^{2 k+1}\right)=\left\{a^{2 k+1+n}\right\} \cup\left\{a^{2 j} \mid 1 \leqslant j \leqslant n\right\}$, and $N\left(a^{2 k}\right)=\left\{a^{2 k+n}\right\} \cup \Omega \backslash\left\{a^{n}\right\}$.
If $V_{1}=\left\{a^{2 k+1} \left\lvert\, 0 \leqslant k \leqslant \frac{n}{2}-1\right.\right\}, V_{2}=\left\{a^{2 k} \left\lvert\, 0 \leqslant k \leqslant \frac{n}{2}-1\right.\right\}, V_{3}=\left\{a^{2 k+1} \left\lvert\, \frac{n}{2} \leqslant k \leqslant n-1\right.\right\}$ and $V_{4}=\left\{a^{2 k} \left\lvert\, \frac{n}{2} \leqslant k \leqslant n-1\right.\right\}$, then the induced subgraph on V_{i} is isomorphic to $\overline{K_{\frac{n}{2}}}$ for $1 \leqslant i \leqslant 4$ and $\operatorname{Cay}(G, \Omega)$ is isomorphic to a graph having the structure given in Figure 2.

Let Z be a zero forcing set of $\operatorname{Cay}(G, \Omega)$ such that $Z(\operatorname{Cay}(G, \Omega))=|Z|$. We may assume that $1 \in Z$ is a first forcing vertex. Thus there is $C \subseteq \Omega \cap Z$ such that $|C|=n$. Without loss of generality, let $C=\Omega \backslash\left\{a^{n}\right\}$. Then $n+1 \leqslant|Z|$. Now if $\left|Z \cap\left\{a^{2 k} \mid 1 \leqslant k \leqslant n-1, k \neq \frac{n}{2}\right\}\right|<\frac{n-2}{2}$, then there is $1 \leqslant j \leqslant n-1$ such that $a^{2 j} \in V_{2}$ and $a^{2 j+n} \in V_{4}$ are not in Z. Since $a^{2 j}$ is adjacent to $a^{2 j+n}$, they are not forced by any vertices. Which is a contradiction. Hence,

$$
\left|Z \cap\left\{a^{2 k} \mid 1 \leqslant k \leqslant n-1, k \neq \frac{n}{2}\right\}\right| \geqslant \frac{n-2}{2} .
$$

So $\frac{3 n}{2}=n+1+\frac{n-2}{2} \leqslant|Z|$. Now let $B=V_{1} \cup V_{2} \cup V_{3}$ be the set of initial black vertices in $\operatorname{Cay}(G, \Omega)$. Then 1 forces a^{n}. Since for every $1 \leqslant k \leqslant \frac{n-2}{2}, a^{n+2 k}$ is the only white adjacent vertex $a^{2 k}, a^{2 k}$ forces $a^{n+2 k}$. Thus B is a zero forcing set of $\operatorname{Cay}(G, \Omega)$ and so $Z(\operatorname{Cay}(G, \Omega)) \leqslant \frac{3 n}{2}$. Thus $Z(C a y(G, \Omega))=\frac{3 n}{2}$. Also we have $B^{(0)}=B, B^{(1)}=V_{4}$ and $G=B^{(0)} \cup B^{(1)}$. Hence, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$. Therefore $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

FIGURE 2
Bold line: Every vertex of the set is adjacent to every vertex of the other set.
Dashed line: Every vertex of the set is adjacent to exactly one vertex of the other set.

Theorem 3.8. Let $G=\langle a\rangle$ be a cyclic group of order $2 n$, where n is odd and $\Omega=\left\{a^{2 k+1} \mid 0 \leqslant k \leqslant\right.$ $n-1\} \backslash\left\{a^{n}\right\}$. Then $Z\left(\operatorname{Cay}\left(C_{n}, \Omega\right)\right)=2 n-4$ and $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

Proof. Let $V_{1}=\left\{a^{2 k+1} \mid 0 \leqslant k \leqslant n-1\right\} \backslash\left\{a^{n}\right\}$ and $V_{2}=\left\{a^{2 k} \mid 1 \leqslant k \leqslant n-1\right\}$. Then the induced subgraph on V_{i} is isomorphic to $\overline{K_{n}}$, for $i \in\{1,2\}$ and $\operatorname{Cay}(G, \Omega)$ is isomorphic to a graph having the structure given in Figure 3.

Let Z be a zero forcing set of $\operatorname{Cay}(G, \Omega)$ with minimum cardinality. Since $\operatorname{Cay}(G, \Omega)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Then there exists $C \subseteq V_{1} \cap Z$ such that $|C|=n-2$. Thus $n-1 \leqslant|Z|$. If $\left|Z \cap V_{2}\right| \leqslant n-4$, then every black vertex in V_{1} and a^{n} have at least two white neighbor vertices in V_{2}. This contradicts the fact that Z is a zero forcing set of $\operatorname{Cay}(G, \Omega)$. Thus $\left|Z \cap V_{2}\right| \geqslant n-3$. Hence $|Z| \geqslant(n-1)+(n-3)=2 n-4$.

Now let $B=G \backslash\left\{a^{2 n-1}, a^{2}, a^{n+1}, a^{n}\right\}$ be the set of initial black vertices in $\operatorname{Cay}(G, \Omega)$. In the first stage, the vertices $a^{2 n-1}, a^{2}, a^{n+1}$ and a^{n} are forced by $1, a, a^{n+2}$ and a^{n-1}, respectively. Therefore, $Z(C a y(G, \Omega))=2 n-4$. Also we have $B^{(0)}=B, B^{(1)}=\left\{a^{2 n-1}, a^{2}, a^{n+1}, a^{n}\right\}$ and $G=B^{(0)} \cup B^{(1)}$. Therefore, $\operatorname{Pt}(\operatorname{Cay}(G, \Omega), B)=1$ and so $\operatorname{Pt}(\operatorname{Cay}(G, \Omega))=1$.

FIGURE 3
Bold line: Every vertex of the set is adjacent to every vertex of the other set.
Dashed line: Every vertex of the set is adjacent to all vertices of other set except one vertex.

Theorem 3.9. Let $T_{4 n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$ where, n is odd and $\Omega=\left\{a^{k} \mid 1 \leqslant\right.$ $k \leqslant 2 n-1, k \neq n\} \cup\left\{a b, a^{n+1} b\right\}$. If $n=3$, then $Z\left(\operatorname{Cay}\left(T_{12}, \Omega\right)\right)=M\left(\operatorname{Cay}\left(T_{12}, \Omega\right)\right)=8$. Otherwise, $Z\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=M\left(\operatorname{Cay}\left(T_{4 n}\right.\right.$
$, \Omega))=3 n$ and $\operatorname{Pt}\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=1$.

Proof. Let $n=3$. Then by the proof of Theorem 2.10 [1], zero is an eigenvalue of $\operatorname{Cay}\left(T_{12}, \Omega\right)$ with multiplicity of 8. By Lemma 2.4, $M\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right) \geqslant 8$. Hence $Z\left(\operatorname{Cay}\left(T_{12}, \Omega\right)\right)=M\left(\operatorname{Cay}\left(T_{12}, \Omega\right)\right)=8$, by Lemma 2.11 and Theorem 2.3.
Let $n>3$. Then $\Omega a^{n}=\Omega a^{-n}=\Omega$, because $a^{n}=a^{-n}$. Now let $0 \leqslant k \leqslant n-1$ and $x \in N\left(a^{k}\right)$. Then $x a^{-k} \in \Omega$. So $x a^{-k} a^{-n} \in \Omega a^{-n}=\Omega$. Hence, $x \in N\left(a^{n+k}\right)$ and so $N\left(a^{k}\right) \subseteq N\left(a^{n+k}\right)$. If $x \in N\left(a^{n+k}\right)$, then $x a^{-n-k} \in \Omega$. Thus $x a^{-k} \in \Omega a^{n}=\Omega$. Hence, $x \in N\left(a^{k}\right)$. This shows that $N\left(a^{n+k}\right) \subseteq N\left(a^{k}\right)$. Therefore, $N\left(a^{k}\right)=N\left(a^{n+k}\right)$, for $0 \leqslant k \leqslant n-1$.
By similar argument, we have $N\left(a^{k} b\right)=N\left(a^{n+k} b\right)$, where $0 \leqslant k \leqslant n-1$. It is easy to see that $N\left(a^{k} b\right)=$ $\left\{a^{n-k+1}, a^{2 n-k+1}\right\} \cup\left\{a^{i} b \mid 0 \leqslant i \leqslant 2 n-1\right\} \backslash\left\{a^{k} b, a^{n+k} b\right\}$ and $N\left(a^{k}\right)=\left\{a^{n-k+1} b, a^{2 n-k+1} b\right\} \cup<a>$ $\backslash\left\{a^{k}, a^{n+k}\right\}$. Let L be a $n \times n$ matrix such that $L_{12}=L_{21}=L_{j(n-j+3)}=1$, for $3 \leqslant j \leqslant n$ and the other entries are zero. It follows that:

$$
L=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Then the adjacency matrix of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$, A, is as following, where if $1 \leqslant i \leqslant 2 n$, then $R_{i}(A)$ is the corresponding row of vertex a^{i-1} and for $2 n+1 \leqslant i \leqslant 4 n, R_{i}(A)$ is the corresponding row of vertex $a^{i-2 n-1} b$.

$$
A=\left(\begin{array}{c|c|c|c}
J_{n}-I_{n} & J_{n}-I_{n} & L & L \\
\hline J_{n}-I_{n} & J_{n}-I_{n} & L & L \\
\hline L & L & J_{n}-I_{n} & J_{n}-I_{n} \\
\hline L & L & J_{n}-I_{n} & J_{n}-I_{n}
\end{array}\right)
$$

Now let C be a $4 n \times 4 n$ matrix obtained by scaling some entries of A. as following :
$C=\left(\begin{array}{c|c|c|c}(n-1)\left(J_{n}-I_{n}\right) & (n-1)\left(J_{n}-I_{n}\right) & (n-1) L & (n-1) L \\ \hline(n-1)\left(J_{n}-I_{n}\right) & (n-1)\left(J_{n}-I_{n}\right) & (n-1) L & (n-1) L \\ \hline(n-1) L & (n-1) L & J_{n}-(n-1) I_{n} & J_{n}-(n-1) I_{n} \\ \hline(n-1) L & (n-1) L & J_{n}-(n-1) I_{n} & J_{n}-(n-1) I_{n}\end{array}\right)$

Then $C \in S\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)$. It is not hard to see that in C, we have
$\left(\sum_{j=0}^{n-1} R_{2 n+j+1}(C)\right)-R_{2 n+2}(C)=R_{1}(C), \sum_{j=1}^{n-1} R_{2 n+j+1}(C)=R_{2}(C)$ and for $2 \leqslant i \leqslant n-1$, $\left(\sum_{j=0}^{n-1} R_{2 n+j+1}(C)\right)-R_{3 n-i+2}(C)=R_{i+1}(C)$.
Also $N\left(a^{k}\right)=N\left(a^{n+k}\right)$ and $N\left(a^{k} b\right)=N\left(a^{n+k} b\right)$ for $0 \leqslant k \leqslant n-1$ implies that $R_{k+1}(C)=R_{n+k+1}(C)$ and $R_{2 n+k+1}(C)=R_{3 n+k+1}(C)$. By elementary row operation, we have $\operatorname{null}(C) \geqslant 3 n$. Thus $M\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right) \geqslant 3 n$. By Lemma 2.11 and Theorem 2.3, $M\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=Z\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=3 n$. Now let $B=<a>\cup\left\{a^{i} b \mid 0 \leqslant i \leqslant n-1\right\}$ be the set of initial black vertices of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$. We saw in the proof of Lemma 2.11, B is a zero forcing set of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$ such that $Z\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=|B|$. Furthermore, $a^{n+1} b, a^{n} b$ and $a^{2 n-k+1} b$ are forced by $1, a$ and a^{k}, respectively in one stage, where $2 \leqslant k \leqslant n-1$. Thus $B^{(0)}=B$ and $B^{(1)}=\left\{a^{n+k} b \mid 0 \leqslant k \leqslant n-1\right\}$. Hence, $T_{4 n}=B^{(0)} \cup B^{(1)}$ and so $\operatorname{Pt}\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right), B\right)=1$. Therefore, $\operatorname{Pt}\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=1$.

Theorem 3.10. Let $T_{4 n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$ where n is even and $\Omega=\left\{a^{2 k+1} \mid 0 \leqslant\right.$ $k \leqslant n-1\} \cup\left\{b, b^{-1}\right\}$. Then $Z\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=3 n$ and $\operatorname{Pt}\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=1$.

Proof. Let $V_{1}=\left\{a^{2 k+1} \mid 0 \leqslant k \leqslant n-1\right\}, V_{2}=\left\{a^{2 k} \mid 0 \leqslant k \leqslant n-1\right\}$. Then $T_{4 n}=V_{1} \cup$ $V_{2} \cup V_{1} b \cup V_{2} b$ and the induced subgraphs on V_{i} and $V_{i} b$ are isomorphic to $\overline{K_{n}}$, for $i \in\{1,2\}$. If $0 \leqslant k \leqslant n-1$, then $N\left(a^{2 k}\right)=V_{1} \cup\left\{a^{2 n-2 k} b, a^{n-2 k} b\right\}, N\left(a^{2 k} b\right)=V_{1} b \cup\left\{a^{2 n-2 k}, a^{n-2 k}\right\}, N\left(a^{2 k+1}\right)=$ $V_{2} \cup\left\{a^{2 n-2 k-1} b, a^{n-2 k-1} b\right\}$ and $N\left(a^{2 k+1} b\right)=V_{2} b \cup\left\{a^{2 n-2 k-1}, a^{n-2 k-1}\right\}$. Furthermore $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$ is isomorphic to a graph having the structure given in Figure 4.

Let $X=V_{1} \cup V_{2} \cup\left\{a^{2 k} b \left\lvert\, 0 \leqslant k \leqslant \frac{n}{2}-1\right.\right\} \cup\left\{a^{2 k+1} b \left\lvert\, 0 \leqslant k \leqslant \frac{n}{2}-1\right.\right\}$ be the set of initial black vertices of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$. Then for every $1 \leqslant k \leqslant \frac{n}{2}-1, a^{2 n-2 k} b$ is the only white neighbor of $a^{2 k}$ and $a^{2 n-2 k-1} b$ is the only white neighbor of $a^{2 k+1}$. Thus $a^{2 k}$ forces $a^{2 n-2 k}$ and $a^{2 k+1}$ forces $a^{2 n-2 k-1}$. Also it is clear that b^{-1} and $a^{2 n-1} b$ are forced by 1 and a, respectively. Hence, X is a zero forcing set of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$. Therefore, $Z\left(\operatorname{Cay}\left(\left(T_{4 n}, \Omega\right)\right) \leqslant 3 n\right.$.
Now let Z be a zero forcing set of $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$ with cardinality at most $3 n-1$. Since $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$ is a vertex transitive graph, we may assume that $1 \in Z$ is a first forcing vertex. Thus there is $C \subseteq\left(V_{1} \cup\left\{b, b^{-1}\right\}\right) \cap Z$ such that $|C|=n+1$. Without loss of generality, let $C=V_{1} \cup\{b\}$. Let t_{i} and t_{i}^{\prime} be the number of white vertices in V_{i} and $V_{i} b$, respectively for $i \in\{1,2\}$. Then $t_{2}+t_{1}^{\prime}+t_{2}^{\prime}=n+1$. If $t_{1}^{\prime}>\frac{n}{2}$, then there is $0 \leqslant k \leqslant \frac{n}{2}-1$ such that $a^{2 k+1} b$ and $a^{n+2 k+1} b$ are white vertices. Since $N\left(a^{2 k+1} b\right) \cap V_{1}=N\left(a^{n+2 k+1} b\right) \cap V_{1}=\left\{a^{2 n-2 k-1}, a^{n-2 k-1}\right\}, a^{n+2 k+1}$ and $a^{2 k+1} b$ are not forced by any vertices of V_{1}. Also every vertex in $V_{2} b$ has at least two white vertices $a^{2 k+1} b$ and $a^{n+2 k+1} b$. Thus $a^{n+2 k+1} b$ and $a^{2 k+1} b$ are not forced by any vertices, which is a contradiction. Hence, $t_{1}^{\prime} \leqslant \frac{n}{2}$. The same argument shows $t_{2} \leqslant \frac{n}{2}$ and $t_{2}^{\prime} \leqslant \frac{n}{2}$. If $t_{2}=t_{1}^{\prime}=2$, then every vertex in $V_{1} \cup V_{2} b$ has at least two white neighbor vertices and so the zero forcing process is stopped. Hence, $\left(t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right) \in\left\{\left(1, \frac{n}{2}, \frac{n}{2}\right),\left(\frac{n}{2}, 1, \frac{n}{2}\right)\right\}$. Let $\left(t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)=\left(1, \frac{n}{2}, \frac{n}{2}\right)$ and $a^{2 j}$ be the only white vertex in V_{2} for some $1 \leqslant j \leqslant n-1$. Since $V_{1} b \subset N\left(V_{2} b\right)$ and $t_{2}^{\prime}=\frac{n}{2}, a^{2 j}$ is forced by a vertex in V_{1}, which we denote $a^{2 i+1}$. Thus, $a^{2 n-2 i-1} b$ and $a^{n-2 i-1} b$ are black vertices. Also all of vertices in $V_{1} b$ are forced by V_{1}. Since $N\left(a^{2 k+1}\right) \cap V_{1} b=$
$\left\{a^{2 n-2 k-1} b, a^{n-2 k-1} b\right\}$, for every $0 \leqslant k \leqslant n-1, a^{2 n-2 k-1} b \in Z$ or $a^{n-2 k-1} b \in Z$. We have $t_{1}^{\prime}=\frac{n}{2}$, so for every $0 \leqslant k \leqslant n-1$ if $a^{2 n-2 k-1} \in Z$, then $a^{n-2 k-1} \notin Z$ (or if $a^{n-2 k-1} \in Z$, then $a^{2 n-2 k-1} \notin Z$). This is contradiction by this fact that $a^{2 n-2 i-1} \in Z$ and $a^{n-2 i-1} \in Z$.
Let $\left(t_{2}, t_{1}^{\prime}, t_{2}^{\prime}\right)=\left(\frac{n}{2}, 1, \frac{n}{2}\right)$. The same argument runs as before. Therefore, $Z($ Cay $\left.\left(T_{4 n}, \Omega\right)\right)=3 n$.
Let $B=V_{1} \cup V_{2} \cup\left\{a^{2 k} b, a^{2 k+1} b \left\lvert\, 0 \leqslant k \leqslant \frac{n}{2}-1\right.\right\}$ be the set of initial black vertices in $\operatorname{Cay}\left(T_{4 n}, \Omega\right)$. In one stage the vertices of V_{1} force $\left\{a^{2 k+1} b \left\lvert\, \frac{n}{2} \leqslant k \leqslant n-1\right.\right\}$ and the vertices of V_{2} force $\left\{a^{2 k} b \left\lvert\, \frac{n}{2} \leqslant k \leqslant n-1\right.\right\}$. Thus $B^{(1)}=\left\{a^{2 k} b, a^{2 k+1} b \left\lvert\, \frac{n}{2} \leqslant k \leqslant n-1\right.\right\}$. Hence $T_{4 n}=B^{(0)} \cup B^{(1)}$ and so $\operatorname{Pt}\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right), B\right)=1$. Therefore, $\operatorname{Pt}\left(\operatorname{Cay}\left(T_{4 n}, \Omega\right)\right)=1$.

FIGURE 4
Bold line: Every vertex of the set is adjacent to every vertices of the other set.
Dashed line: Every vertex of the set is adjacent to exactly two vertices of the other set.

Acknowledgments

The authors are very grateful to the referee for his/her useful comments.

References

[1] A.Abdollahi, E. Vatandoost, Which Cayley graphs are integral? Electron. J. Combin. 16 (2009), no. 1, 1-17.
[2] AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008), no. 7, 1628-1648.
[3] J.S.Alameda, E.Curl, A. Grez, L. Hogben , A.Schulte, D.Young and M.Young, Families of graphs with maximum nullity equal to zero forcing number, Spec. Matrices 6 (2018) 56-67.
[4] A. Berman,S. Friedland,L. Hogben,U.G. Rothblum and B.Shader, An upper bound for the minimum rank of a graph, Linear Algebra Appl. 429 (2008), no. 7, 1629-1638.
[5] D. Burgarth, and V. Giovannetti, Full control by locally induced relaxation, Physical Review Letters 99 (2007), no. 10, p100501.
[6] C.J. Edholm, L. Hogben, M. Huynh, J. LaGrange and D.D. Row, Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph, Linear Algebra Appl. 436 (2012), no. 12, 4352-4372.
[7] L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 6, 731-747.
[8] L. Hogben, M.Huynh, N. Kingsley, S.Meyer S. Walker and M. Young, Propagation time for zero forcing on a graph, Discrete Appl. Math. 160 (2012), no. 13, 1994-2005.
[9] F.Ramezani, E. and Vatandoost, Domination and Signed Domination Number of Cayley Graphs, Iran. J. Math. Sci. Inform. 14 (2019), no. 1, 35-42.
[10] S.Severini, Nondiscriminatory propagation on trees, J. Phys. A 41 (2008), no. 48, p.482002.
[11] E. Vatandoost and Y. Golkhandy Pour, On the zero forcing number of some Cayley graphs, Algebraic Structures and Their Applications 4 (2017), no. 2, 15-25.
[12] E.Vatandoost, F. Ramezani and S. Alikhani, On the zero forcing number of generalized Sierpinski graphs, Trans. Comb. 6 (2019), no. 1, 41-50.

Zahra Rameh

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: z.rameh@edu.ikiu.ac.ir

Ebrahim Vatandoost

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.

Email: vatandoost@sci.ikiu.ac.ir

[^0]: Communicated by Alireza Abdollahi
 MSC(2020):Primary: 05C76.
 Keywords: Cayley graph; zero forcing number; propagation time.
 Received: 11 December 2021, Accepted: 19 April 2022.
 *Corresponding author

