THE n-TH RESIDUAL RELATIVE OPERATOR ENTROPY $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ AND THE n-TH OPERATOR VALUED DIVERGENCE

H. TOHYAMA*, E. KAMEI AND M. WATANABE

AbSTRACT. We introduced the n-th residual relative operator entropy $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ and showed its monotone property, for example, $\mathfrak{R}_{x, x}^{[n]}(A \mid B) \leq \mathfrak{R}_{x, y}^{[n]}(A \mid B) \leq \mathfrak{R}_{y, y}^{[n]}(A \mid B)$ and $\mathfrak{R}_{x, x}^{[n]}(A \mid B) \leq \mathfrak{R}_{y, x}^{[n]}(A \mid B) \leq$ $\mathfrak{R}_{y, y}^{[n]}(A \mid B)$ for $x \leq y$ if $A \leq B$ or n is odd. The n-th residual relative operator entropy $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ is not symmetric on x and y, that is, $\mathfrak{R}_{x, y}^{[n]}(A \mid B) \neq \mathfrak{R}_{y, x}^{[n]}(A \mid B)$ for $n \geq 2$ while $\mathfrak{R}_{x, y}^{[1]}(A \mid B)=\mathfrak{R}_{y, x}^{[1]}(A \mid B)$. In this paper we compare $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ with $\mathfrak{R}_{y, x}^{[n]}(A \mid B)$ and give the relations between $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ and the n-th operator divergence $\Delta_{i, x}^{[n]}(A \mid B)$. In this process, we find another operator divergence $\bar{\Delta}_{i, x}^{[n]}(A \mid B)$ which is similar to $\Delta_{i, x}^{[n]}(A \mid B)$ but not the same.

1. Introduction

Throughout this paper, the capital lettets A and B denote strictly positive operators on a Hilbert space and $A দ_{t} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} A^{\frac{1}{2}}(t \in \mathbb{R})$ is the path passing through A and B. For $t \in[0,1]$, it is an operator mean in the sense of Kubo and Ando [5] and is denoted by $A \sharp_{t} B$.

Fujii and Kamei [1] introduced the relative operator entropy as

$$
S(A \mid B) \equiv \lim _{t \rightarrow 0} \frac{A \mathfrak{h}_{t} B-A}{t}=A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} .
$$

[^0]Furuta [2] generalized it to the generalized relative operator entropy as

$$
\left.S_{x}(A \mid B) \equiv \frac{d}{d t} A দ_{t} B\right|_{t=x}=\left(A \natural_{x} B\right) A^{-1} S(A \mid B)
$$

Yanagi, Kuriyama and Furuichi [8] introduced the Tsallis relative operator entropy as

$$
T_{x}(A \mid B) \equiv \frac{A \natural_{x} B-A}{x}(x \in \mathbb{R} \backslash\{0\}), \quad T_{0}(A \mid B)=S(A \mid B)
$$

Among the above relative operator entropies we have inequalities as follows [3]:

$$
\begin{equation*}
S(A \mid B) \leq T_{x}(A \mid B) \leq S_{x}(A \mid B) \leq-T_{1-x}(B \mid A) \leq S_{1}(A \mid B) \quad(x \in(0,1)) \tag{1.1}
\end{equation*}
$$

As differences between terms in (1.1), we defined operator valued divergences as follows:

$$
\begin{array}{ll}
\Delta_{1, x}(A \mid B) \equiv T_{x}(A \mid B)-S(A \mid B), & \Delta_{2, x}(A \mid B) \equiv S_{x}(A \mid B)-T_{x}(A \mid B) \\
\Delta_{3, x}(A \mid B) \equiv-T_{1-x}(B \mid A)-S_{x}(A \mid B), & \Delta_{4, x}(A \mid B) \equiv S_{1}(A \mid B)+T_{1-x}(B \mid A)
\end{array}
$$

As a generalization of $S(A \mid B)$ and $T_{x}(A \mid B)$, we introduced in [4] the n-th relative operator entropy $S^{[n]}(A \mid B)$, the n-th generalized relative operator entropy $S_{x}^{[n]}(A \mid B)$ and the n-th Tsallis relative operator entropy $T_{x}^{[n]}(A \mid B)$ as follows:

$$
\begin{aligned}
& S^{[n]}(A \mid B) \equiv \frac{1}{n!} A\left(A^{-1} S(A \mid B)\right)^{n}, \quad S_{x}^{[n]}(A \mid B) \equiv\left(A \natural_{x} B\right) A^{-1} S^{[n]}(A \mid B), \\
& T_{x}^{[1]}(A \mid B) \equiv T_{x}(A \mid B) \text { and } \\
& T_{x}^{[n]}(A \mid B) \equiv \frac{T_{x}^{[n-1]}(A \mid B)-S^{[n-1]}(A \mid B)}{x}(x \neq 0), \quad T_{0}^{[n]}(A \mid B) \equiv S^{[n]}(A \mid B) \quad \text { for } n \geq 2 .
\end{aligned}
$$

Among them we have the following inequalities as (1.1) [4]: For $x \in[0,1]$

$$
\begin{align*}
& S^{[n]}(A \mid B) \leq T_{x}^{[n]}(A \mid B) \leq S_{x}^{[n]}(A \mid B) \leq T_{1-x}^{[n]}(B \mid A) \leq S_{1}^{[n]}(A \mid B) \text { for } n \text { is odd or } A \leq B \tag{1.2}\\
& S^{[n]}(A \mid B) \geq T_{x}^{[n]}(A \mid B) \geq S_{x}^{[n]}(A \mid B) \geq T_{1-x}^{[n]}(B \mid A) \geq S_{1}^{[n]}(A \mid B) \text { for } n \text { is even and } A \geq B .
\end{align*}
$$

Moreover we generalized $S^{[n]}(A \mid B), S_{x}^{[n]}(A \mid B)$ and $T_{x}^{[n]}(A \mid B)$ to the n-th residual relative operator entropy $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ in $[7]$ as follows:

$$
\mathfrak{R}_{x, y}^{[n]}(A \mid B) \equiv A^{\frac{1}{2}} \Psi^{[n]}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}, x, y\right) A^{\frac{1}{2}} \quad \text { for } x, y \in \mathbb{R},
$$

where

$$
\Psi^{[n]}(a, x, y) \equiv \frac{(\log a)^{n}}{(n-1)!} \int_{0}^{1}(1-t)^{n-1} a^{(1-t) y+t x} d t \quad(a>0)
$$

We remark that $\mathfrak{R}_{0,0}^{[n]}(A \mid B)=S^{[n]}(A \mid B), \mathfrak{R}_{x, x}^{[n]}(A \mid B)=S_{x}^{[n]}(A \mid B)$ and $\mathfrak{R}_{x, 0}^{[n]}(A \mid B)=T_{x}^{[n]}(A \mid B)$ and have the following theorems.

Theorem 1.1. ([7, Theorem 2.2]) Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$. Then
(a) $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ is monotone increasing for each x and y if n is odd or $A \leq B$,
(b) $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ is monotone decreasing for each x and y if n is even and $A \geq B$.

Theorem 1.2. ([7, Theorem 2.4]) Let A and B be strictly positive operators, $n \in \mathbb{N}$ and r, s, x, $y \in \mathbb{R}$. Then

$$
\mathfrak{R}_{x, y}^{[n]}\left(A \mathfrak{h}_{r} B \mid A \mathfrak{h}_{s} B\right)=(s-r)^{n} \mathfrak{R}_{(1-x) r+x s,(1-y) r+y s}^{[n]}(A \mid B) .
$$

Theorem 1.3. ([7, Theorem 2.8]) Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $t, x, y \in \mathbb{R}$. Then

$$
\left(A \mathfrak{h}_{t} B\right) A^{-1} \mathfrak{R}_{x, y}^{[n]}(A \mid B)=\mathfrak{R}_{t+x, t+y}^{[n]}(A \mid B)
$$

We know $\mathfrak{R}_{x, y}^{[1]}(A \mid B)=\mathfrak{R}_{y, x}^{[1]}(A \mid B)$ but $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ does not equal $\mathfrak{R}_{y, x}^{[n]}(A \mid B)$ for $n \geq 2$ in general, so we compare $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ with $\mathfrak{R}_{y, x}^{[n]}(A \mid B)$ and estimate the difference $\mathfrak{R}_{x, y}^{[n]}(A \mid B)-\mathfrak{R}_{y, x}^{[n]}(A \mid B)$ in some cases in Section 2. In Section 3 we show a relation between $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ and $\Delta_{i, x}^{[n]}(A \mid B)$ which is defined in [6]. We also introduce the new n-th operator valued divergences and compare them with $\Delta_{i, x}^{[n]}(A \mid B)$.

2. Relation between $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ and $\mathfrak{R}_{y, x}^{[n]}(A \mid B)$

In this section, we investigate relations between $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ and $\mathfrak{R}_{y, x}^{[n]}(A \mid B)$. We begin with the next lemma.

Lemma 2.1. Let $c, k>0, n \in \mathbb{N}$ and g be a continuous odd function. If $g(t) \leq 0$ for $t \geq 0$ then

$$
\int_{-k}^{k}(c-t)^{n} g(t) d t \geq 0
$$

If moreover $g(t)<0$ for some interval in $[0, k]$, then $\int_{-k}^{k}(c-t)^{n} g(t) d t>0$.
Proof. Since

$$
(c-t)^{n}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} c^{n-i} t^{i}=\sum_{i: \operatorname{even}}\binom{n}{i} c^{n-i} t^{i}-\sum_{i: \mathrm{Odd}}\binom{n}{i} c^{n-i} t^{i},
$$

we have

$$
\begin{aligned}
& \int_{-k}^{k}(c-t)^{n} g(t) d t=\sum_{i: \text { even }}\binom{n}{i} c^{n-i} \int_{-k}^{k} t^{i} g(t) d t-\sum_{i: \text { odd }}\binom{n}{i} c^{n-i} \int_{-k}^{k} t^{i} g(t) d t \\
& =-2 \sum_{i: \text { odd }}\binom{n}{i} c^{n-i} \int_{0}^{k} t^{i} g(t) d t \geq 0
\end{aligned}
$$

The second assertion is clear.
First we show the next result concerning the corresponding function $\Psi^{[n]}(a, x, y)$ to $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$.
Proposition 2.2. Let $a, x, y \in \mathbb{R}$ with $x \leq y$ and $n \in \mathbb{N}$.
(a) If $a \geq 1$ or n is odd, then $\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x) \geq 0$.
(b) If $0<a \leq 1$ and n is even, then $\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x) \leq 0$.

Proof. Since $\Psi^{[n]}(a, x, y)=\frac{(\log a)^{n}}{(n-1)!} \int_{0}^{1}(1-t)^{n-1} a^{(1-t) y+t x} d t$, we have

$$
\begin{aligned}
& \Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x)=\frac{(\log a)^{n}}{(n-1)!} \int_{0}^{1}(1-t)^{n-1}\left(a^{(1-t) y+t x}-a^{(1-t) x+t y}\right) d t \\
& \quad\left(\text { by putting } s=t-\frac{1}{2}\right) \\
&= \frac{(\log a)^{n}}{(n-1)!} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)^{n-1}\left(a^{\left(\frac{1}{2}-s\right) y+\left(\frac{1}{2}+s\right) x}-a^{\left(\frac{1}{2}-s\right) x+\left(\frac{1}{2}+s\right) y}\right) d s \\
&= \frac{(\log a)^{n} a^{\frac{1}{2}(x+y)}}{(n-1)!} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)^{n-1}\left(a^{(x-y) s}-a^{(y-x) s}\right) d s .
\end{aligned}
$$

Since $g(s)=a^{(x-y) s}-a^{(y-x) s}$ is a odd function and furthermore, $g(s) \leq 0$ if $a \geq 1$ and $g(s) \geq 0$ if $0<a \leq 1$, we have

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)^{n-1}\left(a^{(x-y) s}-a^{(y-x) s}\right) d s \geq 0 \quad \text { if } a \geq 1
$$

and

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)^{n-1}\left(a^{(x-y) s}-a^{(y-x) s}\right) d s \leq 0 \quad \text { if } 0<a \leq 1
$$

for $n \geq 2$ by Lemma 2.1, and therefore, we have

$$
\begin{array}{ll}
\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x) \geq 0 & \text { if } a \geq 1 \text { or } n \text { is odd, } \\
\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x) \leq 0 & \text { if } 0<a \leq 1 \text { and } n \text { is even. }
\end{array}
$$

It is clear that $\Psi^{[1]}(a, x, y)-\Psi^{[1]}(a, y, x)=0$.
We give a condition for $\mathfrak{R}_{x, y}^{[n]}(A \mid B)=\mathfrak{R}_{y, x}^{[n]}(A \mid B)$.
Theorem 2.3. Let A and B be strictly positive operators, $n \in \mathbb{N}$ with $n \geq 2$ and $x, y \in \mathbb{R}$ with $x \neq y$. Then the following hold:

$$
\mathfrak{R}_{x, y}^{[n]}(A \mid B)=\mathfrak{R}_{y, x}^{[n]}(A \mid B) \quad \text { iff } \quad A=B
$$

Proof. It suffices to show that $\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x)=0$ if and only if $a=1$. By the proof of Proposition 2.2, we have

$$
\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x)=\frac{(\log a)^{n} a^{\frac{1}{2}(x+y)}}{(n-1)!} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{1}{2}-s\right)^{n-1}\left(a^{(x-y) s}-a^{(y-x) s}\right) d s .
$$

If $a=1$ then the above difference equals 0 . On the contrary, assume $a \neq 1$. Then $a^{(x-y) s}-a^{(y-x) s}>0$ on $\left(-\frac{1}{2}, \frac{1}{2}\right)$ or $a^{(x-y) s}-a^{(y-x) s}<0$ on $\left(-\frac{1}{2}, \frac{1}{2}\right)$. By Lemma 2.1, we obtain $\Psi^{[n]}(a, x, y)-\Psi^{[n]}(a, y, x) \neq 0$ since $n-1 \geq 1$.

Proposition 2.2 implies the next theorem immediately.

Theorem 2.4. Let A and B be strictly positive operators, $x \leq y$ and $n \in \mathbb{N}$. Then the following inequalities hold:
(a) If $A \leq B$ or n is odd then

$$
0 \leq \mathfrak{R}_{x, y}^{[n]}(A \mid B)-\mathfrak{R}_{y, x}^{[n]}(A \mid B) .
$$

(b) If $A \geq B$ and n is even then

$$
0 \geq \mathfrak{R}_{x, y}^{[n]}(A \mid B)-\mathfrak{R}_{y, x}^{[n]}(A \mid B) .
$$

Remark 2.5. It holds that $\mathfrak{R}_{x, y}^{[1]}(A \mid B)=\mathfrak{R}_{y, x}^{[1]}(A \mid B)$.
The monotone property of $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ implies the next theorem which estimate the other side of the difference $\mathfrak{R}_{x, y}^{[n]}(A \mid B)-\mathfrak{R}_{y, x}^{[n]}(A \mid B)$.

Theorem 2.6. Let A and B be strictly positive operators, $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$ and $n \in \mathbb{N}$. Then the following inequalities hold for $x, y \in \mathbb{R}$ with $\alpha \leq x, y \leq \beta$:
(a) If $A \leq B$ or n is odd then

$$
\mathfrak{R}_{x, y}^{[n]}(A \mid B)-\mathfrak{R}_{y, x}^{[n]}(A \mid B) \leq \mathfrak{R}_{\beta, \beta}^{[n]}(A \mid B)-\mathfrak{R}_{\alpha, \alpha}^{[n]}(A \mid B) .
$$

(b) If $A \geq B$ and n is even then

$$
\mathfrak{R}_{x, y}^{[n]}(A \mid B)-\mathfrak{R}_{y, x}^{[n]}(A \mid B) \geq \mathfrak{R}_{\beta, \beta}^{[n]}(A \mid B)-\mathfrak{R}_{\alpha, \alpha}^{[n]}(A \mid B)
$$

3. Applications of $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ to the n-th operator divergences

We defined in [6] the n-th operator valued divergences $\Delta_{i, x}^{[n]}(A \mid B)$ for $i=1,2,3,4$ as follows:

$$
\begin{array}{rlrl}
\Delta_{1, x}^{[n]}(A \mid B) & \equiv\left(A \natural_{0} B\right) A^{-1} \mathscr{D}_{x}^{[n]}(A \mid B), & \Delta_{2, x}^{[n]}(A \mid B) \equiv-\left(A \natural_{x} B\right) A^{-1} \mathscr{D}_{-x}^{[n]}(A \mid B), \\
\Delta_{3, x}^{[n]}(A \mid B) \equiv\left(A \natural_{x} B\right) A^{-1} \mathscr{D}_{1-x}^{[n]}(A \mid B), & \Delta_{4, x}^{[n]}(A \mid B) \equiv-\left(A \natural_{1} B\right) A^{-1} \mathscr{D}_{x-1}^{[n]}(A \mid B),
\end{array}
$$

where $\mathscr{D}_{x}^{[n]}(A \mid B) \equiv T_{x}^{[n]}(A \mid B)-S^{[n]}(A \mid B)$. Among them $\Delta_{1, x}^{[n]}(A \mid B)$ and $\Delta_{4, x}^{[n]}(A \mid B)$ are the differences between the n-th relative operator entropies in (1.2), that is,

$$
\Delta_{1, x}^{[n]}(A \mid B)=T_{x}^{[n]}(A \mid B)-S^{[n]}(A \mid B) \text { and } \quad \Delta_{4, x}^{[n]}(A \mid B)=S_{1}^{[n]}(A \mid B)-(-1)^{n} T_{1-x}^{[n]}(B \mid A),
$$

however,

$$
\Delta_{2, x}^{[n]}(A \mid B) \neq S_{x}^{[n]}(A \mid B)-T_{x}^{[n]}(A \mid B) \quad \text { and } \quad \Delta_{3, x}^{[n]}(A \mid B) \neq(-1)^{n} T_{1-x}^{[n]}(B \mid A)-S_{x}^{[n]}(A \mid B) \text { for } n \geq 2
$$

while $\Delta_{2, x}^{[1]}(A \mid B)=S_{x}(A \mid B)-T_{x}(A \mid B)$ and $\Delta_{3, x}^{[1]}(A \mid B)=-T_{1-x}(B \mid A)-S_{x}(A \mid B)$.
First we show that all of $\Delta_{i, x}^{[n]}(A \mid B)$ are the differences between the n-th residual relative operator entropy $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$ which is a generalization of $S_{x}^{[n]}(A \mid B)$ and $T_{x}^{[n]}(A \mid B)$.

Theorem 3.1. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the following equalities hold:
(a) $\quad \Delta_{1, x}^{[n]}(A \mid B)=\mathfrak{R}_{x, 0}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)=T_{x}^{[n]}(A \mid B)-S^{[n]}(A \mid B)$.
(b) $\quad \Delta_{2, x}^{[n]}(A \mid B)=\mathfrak{R}_{x, x}^{[n]}(A \mid B)-\mathfrak{R}_{0, x}^{[n]}(A \mid B)$.
(c) $\Delta_{3, x}^{[n]}(A \mid B)=\mathfrak{R}_{1, x}^{[n]}(A \mid B)-\mathfrak{R}_{x, x}^{[n]}(A \mid B)$.
(d) $\Delta_{4, x}^{[n]}(A \mid B)=\mathfrak{R}_{1,1}^{[n]}(A \mid B)-\mathfrak{R}_{x, 1}^{[n]}(A \mid B)=S_{1}^{[n]}(A \mid B)-(-1)^{n} T_{1-x}^{[n]}(B \mid A)$.

Proof. (a) is trivial. We have (b) ~ (d) by Theorem 1.3 as follows:
(b) $\Delta_{2, x}^{[n]}(A \mid B)=-\left(A \natural_{x} B\right) A^{-1} \mathscr{D}_{-x}^{[n]}(A \mid B)=-\left(A \natural_{x} B\right) A^{-1}\left(\mathfrak{R}_{-x, 0}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)\right)$ $=-\mathfrak{R}_{0, x}^{[n]}(A \mid B)+\mathfrak{R}_{x, x}^{[n]}(A \mid B)$.
(c) $\Delta_{3, x}^{[n]}(A \mid B)=\left(A \natural_{x} B\right) A^{-1} \mathscr{D}_{1-x}^{[n]}(A \mid B)=\left(A \natural_{x} B\right) A^{-1}\left(\mathfrak{R}_{1-x, 0}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)\right)$ $=\mathfrak{R}_{1, x}^{[n]}(A \mid B)-\mathfrak{R}_{x, x}^{[n]}(A \mid B)$.
(d) $\Delta_{4, x}^{[n]}(A \mid B)=-\left(A \natural_{1} B\right) A^{-1} \mathscr{D}_{x-1}^{[n]}(A \mid B)=-\left(A \natural_{1} B\right) A^{-1}\left(\mathfrak{R}_{x-1,0}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)\right)$ $=-\mathfrak{R}_{x, 1}^{[n]}(A \mid B)+\mathfrak{R}_{1,1}^{[n]}(A \mid B)$.

We showed in [7] that for $\alpha \in[0,1]$,

$$
\begin{align*}
& \mathfrak{R}_{0,0}^{[n]}(A \mid B) \leq \mathfrak{R}_{\alpha, 0}^{[n]}(A \mid B) \leq \mathfrak{R}_{\alpha, \alpha}^{[n]}(A \mid B) \leq \mathfrak{R}_{\alpha, 1}^{[n]}(A \mid B) \leq \mathfrak{R}_{1,1}^{[n]}(A \mid B) \tag{a1}\\
& \mathfrak{R}_{0,0}^{[n]}(A \mid B) \leq \mathfrak{R}_{0, \alpha}^{[n]}(A \mid B) \leq \mathfrak{R}_{\alpha, \alpha}^{[n]}(A \mid B) \leq \mathfrak{R}_{1, \alpha}^{[n]}(A \mid B) \leq \mathfrak{R}_{1,1}^{[n]}(A \mid B) \tag{a2}
\end{align*}
$$

if n is odd or $A \leq B$ and

$$
\begin{align*}
& \mathfrak{R}_{0,0}^{[n]}(A \mid B) \geq \mathfrak{R}_{\alpha, 0}^{[n]}(A \mid B) \geq \mathfrak{R}_{\alpha, \alpha}^{[n]}(A \mid B) \geq \mathfrak{R}_{\alpha, 1}^{[n]}(A \mid B) \geq \mathfrak{R}_{1,1}^{[n]}(A \mid B) \tag{b1}\\
& \mathfrak{R}_{0,0}^{[n]}(A \mid B) \geq \mathfrak{R}_{0, \alpha}^{[n]}(A \mid B) \geq \mathfrak{R}_{\alpha, \alpha}^{[n]}(A \mid B) \geq \mathfrak{R}_{1, \alpha}^{[n]}(A \mid B) \geq \mathfrak{R}_{1,1}^{[n]}(A \mid B) \tag{b2}
\end{align*}
$$

if n is even and $A \geq B$.
There are eight differences of two terms next to each other in the above inequalities (a1) and (a2) (or (b1) and (b2)). The n-th operator valued divergences $\Delta_{i, x}^{[n]}(A \mid B)(i=1,2,3,4)$ are the four of them. We denote the rest of them by $\bar{\Delta}_{1, x}^{[n]}(A \mid B), \bar{\Delta}_{2, x}^{[n]}(A \mid B), \bar{\Delta}_{3, x}^{[n]}(A \mid B)$ and $\bar{\Delta}_{4, x}^{[n]}(A \mid B)$ as follows and compare them with $\Delta_{i, x}^{[n]}(A \mid B)$.

Definition 3.2. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$.
(a) $\bar{\Delta}_{1, x}^{[n]}(A \mid B) \equiv \mathfrak{R}_{0, x}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)$.
(b) $\bar{\Delta}_{2, x}^{[n]}(A \mid B) \equiv \mathfrak{R}_{x, x}^{[n]}(A \mid B)-\mathfrak{R}_{x, 0}^{[n]}(A \mid B)$.
(c) $\bar{\Delta}_{3, x}^{[n]}(A \mid B) \equiv \mathfrak{R}_{x, 1}^{[n]}(A \mid B)-\mathfrak{R}_{x, x}^{[n]}(A \mid B)$.
(d) $\bar{\Delta}_{4, x}^{[n]}(A \mid B) \equiv \mathfrak{R}_{1,1}^{[n]}(A \mid B)-\mathfrak{R}_{1, x}^{[n]}(A \mid B)$.

We know immediately that

$$
\Delta_{1, x}^{[n]}(A \mid B)-\bar{\Delta}_{1, x}^{[n]}(A \mid B)=\Delta_{2, x}^{[n]}(A \mid B)-\bar{\Delta}_{2, x}^{[n]}(A \mid B)
$$

and

$$
\Delta_{3, x}^{[n]}(A \mid B)-\bar{\Delta}_{3, x}^{[n]}(A \mid B)=\Delta_{4, x}^{[n]}(A \mid B)-\bar{\Delta}_{4, x}^{[n]}(A \mid B)
$$

By the results in Section 2 we obtain the orders between $\Delta_{i, x}^{[n]}(A \mid B)$ and $\bar{\Delta}_{i, x}^{[n]}(A \mid B)$.
Proposition 3.3. Let A and B be strictly positive operators and $n \in \mathbb{N}$. Then the following inequalities hold:
(a) If $A \leq B$ or n is odd then

$$
\begin{array}{ll}
\Delta_{1, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{1, x}^{[n]}(A \mid B) \text { for } x \leq 0, & \Delta_{1, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{1, x}^{[n]}(A \mid B) \text { for } x \geq 0 \\
\Delta_{2, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{2, x}^{[n]}(A \mid B) \text { for } x \leq 0, & \Delta_{2, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{2, x}^{[n]}(A \mid B) \text { for } x \geq 0 \\
\Delta_{3, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{3, x}^{[n]}(A \mid B) \text { for } x \leq 1, & \Delta_{3, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{3, x}^{[n]}(A \mid B) \text { for } x \geq 1 \\
\Delta_{4, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{4, x}^{[n]}(A \mid B) \text { for } x \leq 1, & \Delta_{4, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{4, x}^{[n]}(A \mid B) \text { for } x \geq 1
\end{array}
$$

(b) If $A \geq B$ and n is even then

$$
\begin{array}{ll}
\Delta_{1, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{1, x}^{[n]}(A \mid B) \text { for } x \leq 0, & \Delta_{1, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{1, x}^{[n]}(A \mid B) \text { for } x \geq 0 \\
\Delta_{2, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{2, x}^{[n]}(A \mid B) \text { for } x \leq 0, & \Delta_{2, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{2, x}^{[n]}(A \mid B) \text { for } x \geq 0 \\
\Delta_{3, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{3, x}^{[n]}(A \mid B) \text { for } x \leq 1, & \Delta_{3, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{3, x}^{[n]}(A \mid B) \text { for } x \geq 1 \\
\Delta_{4, x}^{[n]}(A \mid B) \geq \bar{\Delta}_{4, x}^{[n]}(A \mid B) \text { for } x \leq 1, & \Delta_{4, x}^{[n]}(A \mid B) \leq \bar{\Delta}_{4, x}^{[n]}(A \mid B) \text { for } x \geq 1
\end{array}
$$

We have relations similar to Theorem 3.5 in [6] concerning $\bar{\Delta}_{i, x}^{[n]}(A \mid B)$ we defined above.
Theorem 3.4. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $r, s, x \in \mathbb{R}$. Then the following hold:
(a) $\bar{\Delta}_{1, x}^{[n]}\left(A \vdash_{r} B \mid A দ_{s} B\right)=(s-r)^{n}\left(A \vdash_{r} B\right) A^{-1} \bar{\Delta}_{1,(s-r) x}^{[n]}(A \mid B)$.
(b) $\bar{\Delta}_{2, x}^{[n]}\left(A দ_{r} B \mid A দ_{s} B\right)=-(s-r)^{n}\left(A দ_{(1-x) r+x s} B\right) A^{-1} \bar{\Delta}_{1,-(s-r) x}^{[n]}(A \mid B)$.
(c) $\bar{\Delta}_{3, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)=(s-r)^{n}\left(A \natural_{(1-x) r+x s} B\right) A^{-1} \bar{\Delta}_{1,(s-r)(1-x)}^{[n]}(A \mid B)$.
(d) $\bar{\Delta}_{4, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)=-(s-r)^{n}\left(A \natural_{s} B\right) A^{-1} \bar{\Delta}_{1,(s-r)(x-1)}^{[n]}(A \mid B)$.

Proof. By Theorem 1.2 and Theorem 1.3, we have
(a) $\bar{\Delta}_{1, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)=\mathfrak{R}_{0, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)-\mathfrak{R}_{0,0}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)$

$$
\begin{aligned}
& =(s-r)^{n}\left(\mathfrak{R}_{r,(1-x) r+x s}^{[n]}(A \mid B)-\Re_{r, r}^{[n]}(A \mid B)\right) \\
& =(s-r)^{n}\left(A \natural_{r} B\right) A^{-1}\left(\mathfrak{R}_{0,(s-r) x}^{[n]}(A \mid B)-\Re_{0,0}^{[n]}(A \mid B)\right) \\
& =(s-r)^{n}\left(A \natural_{r} B\right) A^{-1} \bar{\Delta}_{1,(s-r) x}^{[n]}(A \mid B) .
\end{aligned}
$$

(b) $\bar{\Delta}_{2, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)=\mathfrak{R}_{x, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)-\mathfrak{R}_{x, 0}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)$
$=(s-r)^{n}\left(\mathfrak{R}_{(1-x) r+x s,(1-x) r+x s}^{[n]}(A \mid B)-\Re_{(1-x) r+x s, r}^{[n]}(A \mid B)\right)$
$=-(s-r)^{n}\left(A \mathfrak{h}_{(1-x) r+x s} B\right) A^{-1}\left(\mathfrak{R}_{0,-(s-r) x}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)\right)$
$=-(s-r)^{n}\left(A \natural_{(1-x) r+x s} B\right) A^{-1} \bar{\Delta}_{1,-(s-r) x}^{[n]}(A \mid B)$.
(c) $\bar{\Delta}_{3, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)=\mathfrak{R}_{x, 1}^{[n]}\left(A \vdash_{r} B \mid A দ_{s} B\right)-\mathfrak{R}_{x, x}^{[n]}\left(A \vdash_{r} B \mid A দ_{s} B\right)$
$=(s-r)^{n}\left(\mathfrak{R}_{(1-x) r+x s, s}^{[n]}(A \mid B)-\mathfrak{R}_{(1-x) r+x s,(1-x) r+x s}^{[n]}(A \mid B)\right)$
$=(s-r)^{n}\left(A \natural_{(1-x) r+x s} B\right) A^{-1}\left(\mathfrak{R}_{0,(s-r)(1-x)}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)\right)$
$=(s-r)^{n}\left(A দ_{(1-x) r+x s} B\right) A^{-1} \bar{\Delta}_{1,(s-r)(1-x)}^{[n]}(A \mid B)$.
(d) $\bar{\Delta}_{4, x}^{[n]}\left(A \natural_{r} B \mid A \natural_{s} B\right)=\mathfrak{R}_{1,1}^{[n]}\left(A \natural_{r} B \mid A দ_{s} B\right)-\mathfrak{R}_{1, x}^{[n]}\left(A \natural_{r} B \mid A দ_{s} B\right)$
$=(s-r)^{n}\left(\mathfrak{R}_{s, s}^{[n]}(A \mid B)-\mathfrak{R}_{s,(1-x) r+x s}^{[n]}(A \mid B)\right)$
$=-(s-r)^{n}\left(A \natural_{s} B\right) A^{-1}\left(\mathfrak{R}_{0,(s-r)(x-1)}^{[n]}(A \mid B)-\mathfrak{R}_{0,0}^{[n]}(A \mid B)\right)$
$=-(s-r)^{n}\left(A \bigsqcup_{s} B\right) A^{-1} \bar{\Delta}_{1,(s-r)(x-1)}^{[n]}(A \mid B)$.
Corollary 3.5. Let A and B be strictly positive operators, $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then the following relations hold:
(a) $\bar{\Delta}_{2, x}^{[n]}(A \mid B)=-\left(A \natural_{x} B\right) A^{-1} \bar{\Delta}_{1,-x}^{[n]}(A \mid B)$.
(b) $\bar{\Delta}_{3, x}^{[n]}(A \mid B)=\left(A \vdash_{x} B\right) A^{-1} \bar{\Delta}_{1,1-x}^{[n]}(A \mid B)$.
(c) $\bar{\Delta}_{4, x}^{[n]}(A \mid B)=-B A^{-1} \bar{\Delta}_{1, x-1}^{[n]}(A \mid B)$.

This corollary shows that $\bar{\Delta}_{i, x}^{[n]}(A \mid B)$ have similar formulations to the definition of $\Delta_{i, x}^{[n]}(A \mid B)$.

References

[1] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Jpn. 34 (1989), no. 3, 341-348.
[2] T. Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl. 381 (2004) 219-235. DOI:10.1016/j.1aa.2003.11.017
[3] H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Relative operator entropy, operator divergence and Shannon inequality. Sci. Math. Jpn. 75 (2012), no. 3, 289-298. DOI:10.32219/isms.75.3_289
[4] H. Isa, E. Kamei, H. Tohyama and M. Watanabe, The n-th relative operator entropies and operator divergences, Ann. Funct. Anal. 11 (2020), no. 2, 298-313. DOI:10.1007/s43034-019-00004-5
[5] F. Kubo and T. Ando, Means of positive linear operators, Math Ann. 246 (1979/80), no. 3, 205-224. D0I:10.1007/ BF01371042
[6] H. Tohyama, E. Kamei and M. Watanabe, The n-th operator valued divergences $\Delta_{i, x}^{[n]}(A \mid B)$, Sci. Math. Jpn. 84 (2021), no. 1, 51-60. DOI:10.32219/isms.84.1_51
[7] H. Tohyama, E. Kamei and M. Watanabe, The n-th residual relative operator entropy $\mathfrak{R}_{x, y}^{[n]}(A \mid B)$, Adv. in Oper. Theory (2021), no. 1, paper no. 18, 11 pages. DOI:10.1007/s43036-020-00120-3
[8] K. Yanagi, K. Kuriyama and S. Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, Linear Algebra Appl. 394 (2005) 109-118. DOI:10.1016/J.LAA.2004.06.025

Hiroaki Tohyama

Department of Life Science and Informatics, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma, 371-0816, Japan.
Email: tohyama@maebashi-it.ac.jp

Eizaburo Kamei

1-1-3, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, 639-0202, Japan.
Email: ekamei1947@yahoo.co.jp

Masayuki Watanabe

Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma, 371-0816, Japan.
Email: masayukiwatanabe@maebashi-it.ac.jp

[^0]: Communicated by Mohammad Sal Moslehian
 MSC(2020): Primary: 47A63; Secondary: 47A64, 94A17.
 Keywords: The n-th relative operator entropy; the n-th residual relative operator entropy; the n-th operator valued divergence.
 Received: 16 September 2021, Accepted: 31 January 2022.
 *Corresponding author

