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ON A HILBERT-TYPE INTEGRAL INEQUALITY IN THE WHOLE PLANE

M.TH. RASSIAS*, B. YANG, G.C. MELETIOU

ABSTRACT. Using weight functions and techniques of real analysis, a new Hilbert-type integral in-
equality in the whole plane with nonhomogeneous kernel and a best possible constant factor is proved.

Equivalent forms, several particular inequalities and operator expressions are considered.

1. Introduction

then the following well known Hilbert integral inequality (cf. [1]) is satisfied:

(1.1) /Ooo /OOO dedy < </Ooo f2(z)dx /Ooo g2(y)dy> ,

where the constant factor 7 is the best possible.

N

Recently, by the use of weight functions and introducing multi-parameters, several extensions of

(1.1) were presented in Yang’s books (cf. [2], [3]). Some Hilbert-type inequalities with homogenous
kernels of degree 0 and non-homogenous kernels were established in [1]- [7]. Some other kinds of
Hilbert-type inequalities were obtained in [8]- [18]. Many of these inequalities are constructed in the

quarter plane of the first quadrant.
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Using weight functions, Yang in 2007 [19] proved the following Hilbert-type integral inequality in

/—O; /_Z dedy
(1.2) < B </2\ ;) </_Z e £2 ()i /_Z e—Aygg(y)dy)é |

where the constant factor B(3, 3)(\ > 0) is the best possible, and B(u,v) stands for the beta function

the whole plane:

(cf. [20]). He et al. [21]- [36] proved some new Hilbert-type inequalities in the whole plane with the
best possible constant factors. The methods in these papers are demanding and interesting.

In the present paper, still by means of weight functions, by introducing a nonhomogeneous kernel,
a new Hilbert-type integral inequality in the whole plane with multi-parameters and a best possible
constant factor is proved. Equivalent forms, some particular inequalities and operator expressions are

also considered. The lemmas and theorems provide an extensive account of this type of inequalities.

2. Some lemmas

In the sequel, we assume that

1
0<ag Sag<7r,u,a>07,u—|—az)\,5€{—1,1}77€{a;a:m,Qk—l(kJEN:{l,Q,--'})}.

Definition 2.1. We define two weight functions as follows:

For z,y € R = (—00,0),

00 o001
(2.1) w(o,y) ::/ max yl%le]

d
_ oo i€{1,2} [max{|zdy|" + (29y)7 cos a;, 1}]M s

o0 2|97 |y|o 1
2.2 X) = h
(2.2) @(o,2) /_oo ie1:2) [max{[20y]" + (29)7 cos az, 17

Lemma 2.2. We have the following expressions:

(2.3) w(o,y) = w(o,z) = K(0) (y,2 € R\{0}),
1 9 | 20 aq | 20 A
(2.4) K(o):= 2—%[(566 7) 7+ (csc ?) & ]E € Ry = (0,00).

Proof. For y € R\{0}, setting u = 2%y in (2.1), we derive that

1 -1 1

= . 1_q
T=1y us, dx—gyéué du
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and
) = 5] 1 7 a
w = - max u U
7Y 8" J_ooie{1,2} (max{|u|" + u? cos a;, 1})M7
(2.5) = Kl(U) + KQ(U),
0
1
K D= —u)’"d
(o) / Zg%zlnzc} [max{(—u)7(1 —cosai),l}]A/V( v o
Ky(o) : = max ! u’du.

o ie{1,2} [max{u”(1 + cos ), 1}]M7
Setting v = u”(1 4 cos ;) in the integral of K»(o), we obtain that

1 1 d 1 ,,1d
U= ——-"vr, du= v
(1 + cos a;)1/7 (1 + cos ai)l/V

and

Kalo) = d
21) 0 zg{lflﬁé} v(1 + cos a;)?/7 (max{v, 1})* YR

-1
7 Tdv

1 e 1
B ’y(l—i—cosag)"/“//o (max{v,l})A/VU

1 /1 a1 +/°° 1 a1
= vy dv ——v7 v
(1 + cosaz)?/7 \ Jo . MY

1 A 1 Qa9 | 20 A
= — = — —) " — e R,
(14 cosag)?/7 po 29/7 (sec 2 )7 po +
Setting v = —u in the integral of K (o), we similarly obtain that
Kq(o) / ! 714
o) = max v v
! ie{l, 2} {max{v7[L + cos(r — )], L} M7
A 1 Q| 29 A

— 2o (ese T L eRy,
1 +Cos(7r — )]/ po 20/ (s 2 ) po -

namely, we have w(o,y) = K(0) € R.
In the same way, for z € R\{0}, setting u = 2%y in (2.2), we get

Yy = 2%, dy = 2 %y

and

oo 1 .
= g d — K .
@(o,2) /Oo zgﬁﬁ;} (max{|u|Y 4+ u" cos o, 1})M7 ful “ (0)

Hence, (2.3) follows.

This completes the proof of the lemma.

41

g

Remark 2.3. If we replace max;c ¢y 9y by min;c(; oy in (2.1) and (2.2), then (2.4) is valid by exchanging

a1 and ag.
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Lemma 2.4. Suppose thatp > 1, %—F% =1, K(o) is defined by (2.4), f(x) is a non-negative measurable
function in R. We have the following inequality:

00 oo ’
J :/ yPot {/ ‘max /(@) By dx} dy
oo —o0 €412} [max{|ady|7 4 (2%y)7 cos ay, 1}]7

(2.6) < Ko) [ el e,

Proof. In the following, for simplicity, we set

1

2.7 H® = €R).
( ) (x7y) Zél%i);} [max{’x(jy‘v + (w(sy),y COSCK,“ 1}]>\/’Y (x7y )
By Holder’s inequality (cf. [37]), we obtain that

P
( (e} )
o) |z|(1=09)/a ly|1—o)/p b
= H aj y)[ ‘ | 1 0- /p f(x)][|x‘(1—60')/q]dx
(1=d0)(p—1)
< / 1O T e

(2.8) U‘H xym|1% ]

|$’1 do)(p— 1)
Mwl / HOz,y) oyt f(@)de

Then by (2.3) and Fubini’s theorem (cf. [38]), we have
(1=d0)(p—1)
J < KP7Y / [/ H(‘S) (z,y) |x] e —fP (:L’)dx] dy

- Ko >/ (0, 2)| 2P0 () d

Still by (2.3), we obtain inequality (2.6).
This completes the proof of the lemma. O

3. Main results and some corollaries
Theorem 3.1. Ifp > 1, %4— % =1, K(o) is defined by (2.4), f(x),g(y) >0,
0< / |l2[PA=99) =1 P (1) de < 0o and 0 < / |ly|71=2) = g4 (y)dy < oo,
then we have the following equivalent inequalities:

I_/ / i f(x)g(y) _dudy

oo (€412} (max{|xdy|7 + (2%y)7 cos ay, 1})7
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(3.1) < K(o) [/Oo |x|p<1—50>—1fp<w>d:cﬂ/°° o= ga <>dy] ,
o f(@) ’
J o= po-1 drp d
L {/oo ) a1+ (a%y)" cosa, 117 x} '
(3.2) < K0) [ Pt wdn,

where the constant factors K (o) and KP(o) are the best possible.
In particular, for a1 = as =a € (0,7), vy =11in (3.1) and (3.2), setting
(3.3) k(o) := —[(sec =)

we deduce (3.3) and (3.4) to the following equivalent inequalities:

/Z /Z (max{|z%y| +1x<sy cosa, TP f(z)g(y)dzdy
(3.4) < k(o) [/_Z ’x‘l’(l—éa)—lfp(w)dx];’ [/_Z Iy\q(l_”)_lgq(y)dy} i |

[ e [ | ! f(a:)d:vrdy
> oo (max{|zdy| + 2%y cos a, 1})*
(3.5) < k(o) /OO |2[PA=2) =L P (1) .

—00

Proof. 1f (2.8) takes the form of equality for a y # 0, then there exist constants A and B, satisfying

A2 4+ B? >0, and
|| (1=0e)(p=1) . |y| =) a=1)

y[i-e fo(x) =B |07
(cf. [37]). We have A # 0 (otherwise, B = A = 0), and it follows that

a.e. inR

B
|ac]p (1-d0) 1fp (x) = ]y\q A|5’5’ a.e.in R,
which contradicts the fact that

0< / |2 |PA=00)=1 ¢P (1) da < oo,

Hence, (2.8) takes the form of strict inequality. So does (2.6), namely, (3.2) follows.

In view of Holder’s inequality (cf. [37]), we also obtain that

re [ (e [T a0 s (ot
7 [ ()dy]

Then by (3.2), we derive (3.1). On the other hand, assuming that (3.1) is valid, we set

g(y) = [yl" </_Z HO z/)J‘(ﬂc)ci:E)p_1 (y €R).
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Then it follows that

J=/ y[10=) 1 gl (y)dy.

—00

In view of (2.7), we have J < co. If J = 0, then (3.2) is trivially valid; if 0 < J < oo, then in view of
(3.1), we derive that

/ 10 ga (y)dy = J = T

(3.7) < K(o) [ I |x|p<1-60>—1fp<x>dx} dl I |y|q<1—”>-1gq<y>dy] .
(3.8) Jh = [ | |y|q<1-0>—lgq<y>dy} " k()| I |x|p<1—5”>—1fp<m>dx] 3

namely, (3.2) follows, which is equivalent to (3.1).
We set Fs := {z € R;|z|° > 1}, and

E; =EsNRy ={z eR ;20 > 1}.

For any & > 0, we define f(x),§(y) as follows:

) o7 e By
0, reR\E;

g(y) _ 07 ) ) € (7007 *1) U (17 OO)
|y’0+7_17 € [_17 1]

The we obtain that

1 00 1
Eo= | a0 g
—00

—00

% 1 ,11 1
- 9 / x—255—1dx </ y2£—ldy> - =
Ef 0 €

We have
2e
h(z): = /1 max ly”" : dy
_pie{1,2} max{|zdy|Y + (z%y)7 cos a;, 1}
B 1 . ‘Y‘a+’f]—5—1 v
_1i€{1,2} [max{| — 29V |7 + (—=2°Y)7 cos a;, 1}]M7
= h(-x),
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namely h(z) is an even function. Since
I = [ | #9wi@ady

= / |:1:|6(0_2;)_1h(x)dm:2/ :cé(a_%)_lh(x)dm
Es

Ef
- ful
= 2/ 201 / max du| dz,
Jors o ie{1,2} (max{|u|Y 4+ u? cos o, 1})M7
setting v = 2 in the above integral, by Fubini’s theorem (cf. [35]), we obtain that

~ 0 v ‘u’tf—&-%s—l
I = 2/ p2l max du| dv
1 _pie{1,2} (max{|u|" + uY cos o, 1})M7

[oe) v 1

— 2 —2e—1

/1 v { 0 [zg%%(} (max{u? (1 + cos a;), 1})M7
1

o+2-1
du ¢ d
+ ig{li}g} (max{qﬂ(l — cos ), 1})>\/7]U q u} v

=2 /100 v {/ov[(max{u”/(l —|—1cos ) 11

+ ! ]u‘”%*ldu dv
(max{uY(1 — cosay), 1})M7
[ele] [oa 2i—1
= 2/ 21 /1[ u” "
1 o (max{uY(1+ cosag), 1})M7

2e
uUJrq 1

+ (max{uY(1 — cosay), 1}))‘/7]du} w

[e%e] v ot+2-1
+2/ vt / [ u
1 1 (max{uY(1 + cosag), 1})M7

2e
uo‘+q 1

T et (1 — cos ), 1})A/v]du} dv

1 /1 { w e
= = X
€Jo | [max{u”(1+ cos az),1}]~

25_1

+ o }du + 2/00 </00 vQEldv>
A
[max{u?(1 —cosay), 1}]7 1 u

ua+@—1 ua+§—1

q q

8 { [max{u”(1+ cosag), L}]M7 - [max{u(1 — cosay), 1}]*7 } du

M| =

1 o4+2-1 o+2-1
/ v v’ du
{ 0 [(max{u(l + cos ap) /7, 1) * (max{u(1 — cosay)1/7, 1}))‘]
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o0 uO’—?—l uo’ 2; 1
+/ + du p .
1| (max{u(l + cosag)/7,1})*  (max{u(l — cosa1)¥/7,1})*
If the constant factor K (o) in (3.1) is not the best possible, then there exists a positive constant

k < K(0), such that (3.1) is valid, when replacing K (o) by k. In particular, we have eI < kL, and

1 U+25_1 a+2£—1
/ + du
o | [max{u(l + cosag)/7,1}]*  [max{u(1l — cos ai)¥/7, 1}

N /oo uafgfl N ua'fgfl i
1 [max{u(1+ cos az)/7,1}]*  [max{u(1 — cosay)L/7, 1}]A "
(3.9) = el <ekL =k.

By (2.5) and Levi’s theorem (cf. [38]), we deduce that
e 1
K = K. K = afld
() 2(0) + Ku(o) 0 12211)2(} [max{uY(1 + cos ), 1} "
1

+/0 ié%i}zi} [max{u(1 — cos a;), 1}

u’ Ldu

B /oo o 1du +/oo o=1du
0 [max{u(l—%cosag)% 1} Jo [max{u(l—cosal)%,l}]/\

1 chrz‘E 1 o+l
= 1. d
/0 gi%i{[max{m I+ cosaa) /7 1P [max{u(l—cosm)l/M}P} '

o0 o—=—1 o—2£_1
u p u P
li d
+/1 0+ { [max{u(1 + cos az)/7, 1}]A * [max{u(1 — cosay)/7, 1}]>‘} B

1 o+2-1 o+2-1
= I d
0t {/0 [(max{u(l + cosag)/7, 1})A * (max{u(1 — cos ay)/, 1}))‘] "
2e _2e_

00 o—=-1 o—=-1
u’p u’
d
+/1 [(max{u(l—i—cosag)l/V,l})/\ * (max{u(l—cosal)l/V,l}))‘] u}
< k.

Hence, the constant factor k = K (o) in (3.1) is the best possible.

The constant factor in (3.2) is still the best possible. Otherwise, we would reach a contradiction by
(3.6), that the constant factor in (3.1) is not the best possible.

This completes the proof of the theorem. O

Corollary 3.2. For § = 1 in (3.1) and (3.2), we obtain the following equivalent inequalities with

non-homogeneous kernel:

/ / i f(z)g(y) —dudy

L2 (max{|zy|Y + (xy)? cos a, 1})

(3.10) < K@) | [P0t o)) : [t ay a
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0o oo g
/ ly[P7 {/ ‘max 1) X dm} dy
oo —o0 1€{L2} (max{|zy|Y + (zy)Y cosa;, 1}]7

(3.11) < K%(0) / T P01 ()

where the constant factors K (o) and KP(o) are the best possible. In particular, for ap = ag = o €

(0,7), v =1 14n (3.10) and (3.11), we have the following equivalent inequalities:

[0 f(x)g(y)
/_oo /_oo (max{Jzy] + oy coser, 1N

(3.12) < ko) | [T 1al o s : [ a) 3
| V: (mac{]zy] e 1}>Ad4pdy
(3.13) < (o) /_ Z|x|p<1—ff>—1fp(x)d:c,

where k(o) is defined by (3.3).
Corollary 3.3. For § = —1 in (3.1) and (3.2), replacing |z|*f(z) by f(x), we obtain

0< / |z[PA=H =1 £P(2)dx < oo,

—00

and the following equivalent inequalities with homogeneous kernel:

Y f(@)g(y)
max dxdy
o0 J oo i€{1.2} (max{|y|" + sgn(z)y? cos ai, |x|7})M7

(3.14) < K@ | [ Pt i) : [t a) a

—0o0

0o po—1 00 f($) d :|p d
/_OO |yl [/_ooig{li};} (max{|y|" + sgn(z)y cos ay, |z[7}) 7 T| ay
(3.15) < Kp(o—)/ |x|p(1—ﬂ)—1fp(x)dl',

where the constant factors K (o) and KP(o) are the best possible. In particular, for oy = g = o €

(0,7), v =114n (3.14) and (3.15), we obtain the following equivalent inequalities:

[ee] o0 1
/—oo /_oo (max{|y| + sgn(x)y cos a, |x|}) f(z)g(y)dzdy

(3.16) < ko) | [T 1al 0 s : [ a] 3

—00 —0o0

o) po1 o] 1 e p
[ Uoo (ma{ly] + sgn(@)y cos @, [ )d} W
(3.17) < (o) / P01 () d,
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where k(o) is defined by (3.3).

4. Operator expressions

Suppose that p > 1, % + % = 1. We set the following functions:
p(x) = [P0 (y) = [y g = [P 2,y € R),

wherefrom, ¥!7P(y) = |y[P? . Define the following real normed linear space:

b= ([ so<x>|f<x>|f’dx)’l’ < oo} |

Lyis(R) = {h: [l s = ( I wl—p<y>|h<y>|pdy>’” < oo}7

Ly(R) = {g:||g|\p,¢=(/qu(xng(x)wdx)’l’<oo}.

(a) In view of Theorem 1, for f € L, ,(R), setting

Lp,so(R) L= {fﬁ I f

Hi(y) == / max /(@) xdr (y € R),
oo 1€{1,2} [max{|x0y[" 4 (2%y)7 cos a;, 1}]7

by (3.2), we have

(4.1) [ ( N w1p<y>Hf<y>dy) " < K(0)|fllpg < oo

Definition 4.1. We define a Hilbert-type integral operator T : L, (R) — L, 41-»(R) with non-
homogeneous kernel in the whole plane as follows: For any f € L, ,(R), there exists a unique repre-
sentation T f = Hy € L, 41-»(R), satisfying T1 f(y) = Hi(y), for any y € R.

In view of (4.1), it follows that

T lppr-v = [|H1

pat-r < K(0)[|fllpes
and then the operator T} is bounded satisfying

T _
= sp bt )

r0)er, ,®)  fllpe
Since the constant factor K (o) in (4.1) is the best possible, we have ||T1|| = K (o).

If we define the formal inner product of 77 f and g as follows:

Tifg) : = / Z < / Z H“)(x,y)f(x)dx) o)y
- /Z / Z H (2, y) f(x)g(y)dzdy,

then we can rewrite (3.1) and (3.2) as follows:

(T1fs9) < Tl - WA llpellgllg 1T1fHpar—r < (T3]l - |1 f]p,e-
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(b) In view of Corollary 2, for f € L, 4(R), setting

o= [ /()] dr(y € R),

wielt2) (max{[y]" + sgn(x)y" cos ay, [£[1})V/7

by (3.15), we have

(42) HHmmpwz<[§¢kaHﬁw@>p<KQNHM¢<%-

Definition 4.2. Define a Hilbert-type integral operator 75 : L, ¢(R) — L, 41-»(R) with homogeneous
kernel in the whole plane as follows: For any f € L, ,(R), there exists a unique representation

Tof = Hy € L, y1-»(R), satisfying Tz f(y) = Ha(y), for any y € R.

In view of (4.2), it follows that

T fllp,pr—r = [[H2 < K(0)||flp.e:
and then the operator T5 is bounded satisfying
T _
= sp Pl g

f(F#0)eLlyp o(R)
Since the constant factor K (o) in (4.2) is the best possible, we have ||Tz|| = K (o).
If we define the formal inner product of T f and g as

(T>f.g) / / e f(@)g(y) : drdy,

€412} (max{|y|" + sgn(z)y" cos az, |z[7})

then we can rewrite (3.14) and (3.15) as follows:

(Taf,9) < ||T2[ - - 11 flp.0-
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