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COUNTING SUBRINGS OF Zn OF NON-ZERO CO-RANK

S. CHIMNI, G. CHINTA AND R. TAKLOO-BIGHASH

Abstract. In this paper we study subrings of Zn+k of co-rank k . We relate the number of such
subrings R with torsion subgroup (Zn+k/R)tor of size r to the number of full rank subrings of Zn

of index r . We also present a number field analogue of the main result.

1. Introduction

Let Zn be the set of n -tuples (x1, . . . , xn) of integers. This set comes with a natural addition and
multiplication given by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

and
(x1, . . . , xn) · (y1, . . . , yn) = (x1 · y1, . . . , xn · yn).

Under these operations Zn is a ring with multiplicative identity (1, . . . , 1) . A subring is defined to be
a subset R of Zn that is closed under both operations and contains (1, . . . , 1) . As is well known the
ring Zn has a simple additive group structure, but when it comes to its multiplicative structure there
are some very easy-to-state basic questions that we do not know how to answer. For example, let fn(r)

be the number of subrings R of Zn with identity of index r . Necessarily then, R is a free Z -module
of rank n . The counting function fn(r) and associated generating series Fn(s) :=

∑∞
r=1 fn(r)r

−s

are basic objects of interest.
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The general theory developed by Grunewald, Segal and Smith [5] shows that Fn(s) can be expressed
as an Euler product of rational functions of p−s over all primes p , but only for n ≤ 4 has this rational
function been computed explicitly. For n = 2 this expression is immediate. It is originally due to
Datskovksy and Wright [4] for n = 3 and Nakagawa [9] for n = 4. In fact, these authors studied the
more general problem understanding the distribution of orders in cubic or quartic algebras, a particular
case of which was the computation of the generating series F3(s) in [4] and F4(s) in [9]. Liu [8] proved
a number of interesting theorems about fn(r) , including the computation of Fn(s) :=

∑∞
r=1 fn(r)r

−s

for n ≤ 4 by an alternative method.
For n > 4 the situation is considerably more complicated. Kaplan, Marcinek, and Takloo-Bighash

[7], by using the methods of p -adic integration, obtained results for the location and order of the
rightmost pole of F5(s) without explicitly computing the series. They also obtained estimates for
the location of the rightmost pole of Fn(s) for n > 5 . One of the reasons to study the analytic
properties of the generating series Fn(s) is to find asymptotic formulae for Nn(B) =

∑
r≤B fn(r) .

The theory of p -adic integration [5] shows that Nn(B) grows like a non-zero constant Cn multiplied
by Bα(n)(logB)b(n)−1 for α(n) ∈ Q and b(n) ∈ N . Combining the results of [4, 7, 9] we know the
following about the behavior of Nn(B) :

Theorem 1.1. If n ≤ 5 there is a constant Cn such that

Nn(B) ∼ CnB(logB)(
n
2)−1

as B → ∞ . If n ≥ 6 , for any ϵ > 0 we have

B(logB)(
n
2)−1 � Nn(B) �ϵ B

n
2
− 7

6
+ϵ.

In fact, results of Brakenhoff [3], Atanasov-Kaplan-Krakoff-Menzel [1], and [6] give better bounds
for n ≥ 6 .

As mentioned above fn(r) counts full rank Z -submodules of Zn that are of index r . A natural
question to ask is whether one can quantify the distribution of subrings of Zn which as Z -submodules
are not of rank n . Let us make this precise. Let ϕn(r) be the number of full-rank sublattices of Zn

which are closed under the multiplication of Zn . It is a well-known fact (e.g., Proposition 2.3 of [8])
that for each n ≥ 2, r ≥ 1 we have fn(r) = ϕn−1(r) . It turns out that for many purposes the function
ϕn(r) is a more convenient function to work with—and in fact the theory developed in [5] deals with
the function ϕn(r) .

We now define an analogue of the function ϕn(r) for lattices of non-zero co-rank. For 0 ≤ k ≤ n ,
define ϕn,k(r) be the number of sublattices L of Zn which have the following properties:

• The lattice L is closed under multiplication;
• as a Z -submodule, L is of co-rank k in Zn ;
• the size of the torsion subgroup of Zn/L is equal to r .

Clearly, ϕn,0(r) = ϕn(r) . It turns out that the function ϕn,k(r) and ϕn(r) have a simple relationship.
The following theorem is our main result.
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Theorem 1.2. For all n, k, r we have

ϕn+k,k(r) =

{
n+ k + 1

n+ 1

}
· ϕn(r).

Here, for natural numbers u, v ,
{
u
v

}
is the Stirling number of second kind defined as the number of

partitions of a set with u elements into v non-empty subsets.

The main step in the proof of this theorem is a rigidity result (Theorem 2.4) which determines
exactly what types of lattices contribute to the counting function ϕn+k,k(r) . The rest of the proof
consists of a combinatorial argument counting these lattices. For information on Stirling numbers of
the second kind, see [2], especially Chapter 2, Section 3.

The rigidity result mentioned above is the statement that matrices corresponding to multiplicative
sublattices will be of very special shape. The upshot of this result is that multiplicative sublattices of
non-zero co-rank in Zn are all obtained from full rank multiplicative sublattices in various Zm ’s for
m < n in very specific ways. Let us illustrate the results we are about to prove using co-rank two
multiplicative sublattices in Z4 .

Define four maps Z2 → Z4 by the following formulae:

f1(x, y) = (x, y, 0, 0),

f2(x, y) = (x, y, y, 0),

f3(x, y) = (x, y, y, y),

f4(x, y) = (x, x, y, y).

We can make more maps Z2 → Z4 by considering maps of the form τ ◦ fj ◦σ for σ ∈ S2, τ ∈ S4 —
we call these maps acceptable. For example, the map that sends (x, y) to (y, x, 0, x) is acceptable. A
consequence of our rigidity result is that if L is a multiplicative sublattice of co-rank two in Z4 , then
there is a multiplicative sublattice L′ of full rank in Z2 such that L = f(L′) for some acceptable
map f . Furthermore, the size of the torsion subgroup of Z4/L is equal to the index of L′ in Z2 .
We will see that the scenario described here is completely general.

One can also consider a variation of Theorem 1.2 for number fields. Let L be a number field of
degree n and fix a positive integer k ≤ n . We are interested in understanding RL(r; k) which we
define to be the set of subrings R with identity of Z -co-rank k in OL such that #(OL/R)tor = r .

Then we have the following theorem:

Theorem 1.3. If (n− k) ∤ n , RL(r; k) = ∅ . If (n− k) | n ,

RL(r; k) =
⊔
K

RK(r; 0)

where the disjoint union is over subfields K of L of degree n− k .
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Note that if K/Q is a degree n− k extension, RK(r; 0) is the finite set of full rank orders R in
K such that #(OK/R) = r . We set NL(r; k) = #RL(r; k) . If k = 0 , we write NL(r) instead of
NL(r; 0) . Then the theorem implies

NL(r; k) =
∑
K

NK(r),

where the sum is over subfields K of L of degree n− k .

For example, if we let n2 be the number of quadratic subfields of L , then for all r ∈ N , there are
precisely n2 rank 2 subrings R with identity in L such that #(OL/R)tor = r . In particular,∑

R

1

#(OL/R)stor
= n2 · ζ(s),

where the summation is over all Z -rank 2 subrings with identity in L .

Theorem 1.2 was discovered thanks to the Online Encyclopedia of Integer Sequences (OEIS). We
computed a few values of the function

{
n
k

}
by hand and then a search through OEIS revealed the

connection to the Stirling Numbers of the Second Kind. These numbers appear under sequence
A008277 in the Encyclopedia [11].

This paper is organized as follows. In Section 2 we review basic definitions and prove the rigidity
theorem. We prove the main theorem in Section 3. The last section includes the proof of Theorem
1.3.

2. Rigidity Theorem

A lattice is a Z -submodule of some Zn . When referring to a specific Zn we usually speak of a
sublattice. We call a sublattice L of Zn a multiplicative sublattice if for every u, v ∈ L we have
u · v ∈ L . A multiplicative sublattice L is a subring if it contains the identity element (1, . . . , 1) . We
refer the reader to Liu [8] for basic properties of multiplicative lattices of full rank in Zn .

Let L be a lattice of rank m in Zn . We define the co-rank of L to be the integer n −m . The
following lemma is an easy consequence of row operations.

Lemma 2.1. Given a lattice L in Zn of co-rank k there is an (n−k)×n integral matrix M = (xij)

such that xij = 0 whenever j − i > k , and with the property that the rows of M generate L .

Note that the matrix M as in the lemma is not unique. In fact, if A is any (n − k) × (n − k)

lower triangular integral matrix with determinant 1 , then AM is another matrix that satisfies the
conditions of the lemma.

Let M be a matrix corresponding to the lattice L of co-rank k as in Lemma 2.1. Then L is
multiplicative if and only if for every two rows v, w of M , v · w ∈ L .
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Proposition 2.2. Let L be a multiplicative sublattice of Zn of co-rank 1. Then L has a basis which
forms the rows of a (n − 1) × n matrix M such that Mij = 0 if i < j − 1 and M has a column of
zeros or two columns of M are identical.

Proof. We prove this using induction on n . If n = 1 then there is no sublattice of co-rank 1 so the
result is vacuously true. So we consider the case n = 2 . Any multiplicative sublattice L of co-rank
1 has rank 1 and therefore is generated by a non-zero row vector of length 2 ,

M =
[
x11 x12

]
.

As L is multiplicative, M ·M should be a scalar multiple of M . Hence we get the following equations:

x211 = λx11(2.1a)

x212 = λx12(2.1b)

where λ ∈ Z . Note that both x11 and x12 can’t simultaneously be zero. If either of them are zero
we get a zero column as desired and if both are non-zero we get that x11 = λ = x12 and in that case
both columns are identical.

Now we assume that the result holds for n = k and show that it is true for n = k + 1 Let L

be a multiplicative sublattice of Zk+1 of co-rank 1 . Then L has a basis which forms the rows of a
matrix M = (xij) such that xij = 0 for i < j − 1 . Now M can be written as

M =

[
M ′ 0

v xk,k+1

]
.

Let Ri denote the ith row of M . If xk,k+1 = 0 then we have a column of zeros and we have noth-
ing to prove. So from here on we assume that xk,k+1 6= 0 . Clearly M ′ represents a multiplicative
sublattice of Zk . By the induction hypothesis M ′ has a column of zeros or a pair of identical columns.

Case 1 : M ′ has a column of zeros.

Suppose the jth column of M ′ is 0. If xk,j = 0 we are done. So we assume that xk,j 6= 0 .
Consider the product of the bottom row Rk of M with itself. Write

R2
k =

k∑
m=1

λmRm.

So we have the following equations.

x2k,k+1 = λkxk,k+1(2.2a)

x2k,j = λkxk,j(2.2b)

As xi,j = 0 for i 6= k . Since both xk,k+1 and xk,j are non-zero we have xk,j = λk = xk,k+1 which
implies that the jth and (k + 1)st columns are identical as all other entries are 0 .
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Case 2 : M ′ has a pair of identical columns.

Let the ith and jth columns of M ′ be equal. We can assume that these are non-zero columns as
the first case already deals with zero columns. Therefore there is l < k such that xl,i = xl,j 6= 0 .
Now

Rl ·Rk =
k∑

m=1

γmRm

So we have

xk,ixl,i =

k∑
m=1

γmxm,i(2.3a)

xk,jxl,j =

k∑
m=1

γmxm,j(2.3b)

0 = γkxk,k+1(2.3c)

γk = 0 as xk,k+1 6= 0 . This and the fact that xm,i = xm,j for m < k gives us that each term in the
summations in (3a) and (3b) are equal which implies that the sums are equal. Therefore we have that
in fact xk,ixl,i = xk,jxl,j . Since xl,i = xl,j 6= 0 we have xk,i = xk,j . So that the ith and jth columns
of M are identical.

□

Corollary 2.3. Any basis of a multiplicative lattice L of co-rank 1 will form the rows of an (n−1)×n

matrix M with n− 1 distinct non-zero columns.

Proof. The property of having a column of zeros or two identical columns is invariant under elementary
row operations. This means that any matrix whose rows are the basis of a multiplicative sublattice of
co-rank 1 of Zn will have this property. □

Theorem 2.4 (Rigidity). Let L be a multiplicative sublattice of Zn of co-rank k, then every basis of
L forms the rows of a (n− k)× n matrix M with exactly n− k distinct non-zero columns.

Proof. The matrix M has column rank n − k . Let’s say the first n − k columns are linearly inde-
pendent, and hence, distinct and nonzero. Let M (i) be the (n− k)× (n− k+1) -dimensional matrix
obtained by appending the ith column of M to the first n− k columns of M . Since the rows M (i)

generate a multiplicative sublattice of Zn−k+1 of corank 1, the previous corollary implies that M (i)

has exactly n− k distinct nonzero columns. Hence the ith column of M must be equal to one of the
first n− k columns or 0. Since this is true for all i, n− k < i ≤ n , we conclude that the full matrix
has exactly n− k distinct nonzero columns. □

3. Proof of Theorem 1.2

We begin with a definition.
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Definition 3.1. An injective map

g : Zn → Zn+k

of the form g(x1, . . . , xn) = (y1, y2, . . . , yn+k) with each yj either equal to some xi or 0 is called
acceptable.

Theorem 2.4 can be formulated as follows:

Theorem 3.2. Any multiplicative sublattice of co-rank k in Zn+k is of the form g(L) where g :

Zn → Zn+k is an acceptable map and L is a multiplicative sublattice of full rank in Zn .

The next observation is simple but essential for what follows. In the proof we refer to the Smith
Normal Form (SNF) of the lattice L to be the diagonal matrix corresponding to the SNF of any
matrix M whose rows generate L .

Lemma 3.3. For any acceptable map g and any sublattice L in Zn of rank n , we have

#(Zn+k/g(L))tor = [Zn : L].

Proof. Let the Smith Normal form of the lattice L be D . Then [Zn : L] = Det(D) .It follows from
the definition of an acceptable map that the Smith Normal Form of g(L) is[

D 0

0 0

]

So that #(Zn+k/g(L))tor = [Zn : L] . □

Two acceptable maps g1, g2 : Zn → Zn+k are called equivalent if there is a permutation τ ∈ Sn

such that g1 = g2 ◦ τ . We next describe a complete set of representatives for this equivalence relation.
Let g : Zn → Zn+k be an acceptable map and {fi} the standard basis for Zn+k . By definition of

acceptable we can write

g(x1, . . . , xn) =
n∑

i=1

xi

∑
j∈Ag

i

fj

 .

for a collection of subsets {Ag
1, . . . , A

g
n} of {1, . . . , n + k} . In fact, if we define Ag

0 = {0, . . . , n +

k} \
∪n

i=1A
g
i , then since each acceptable map is injective, Ag

i is non empty for each i and Pg :=

{Ag
0, . . . , A

g
n} is a partition of {0, . . . , n + k} . We will call an acceptable function g ordered if

minAg
i < minAg

j whenever i < j . Given an arbitrary acceptable map g there exists exactly one
permutation τ ∈ Sn for which g ◦ τ is ordered. That is,

Lemma 3.4. The set of ordered acceptable maps is a set of representatives for the equivalence classes
of acceptable maps Zn → Zn+k under the action of Sn .

Going in the other direction, to a set partition P of {0, . . . , n + k} into n + 1 parts, we may
associate an ordered acceptable map gP as follows. Begin by ordering P = {A0, A1, ..., An} in the
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following way: if i < j then min(Ai) < min(Aj) . In particular, 0 ∈ A0 . Define

gP(x1, . . . , xn) =
n∑

i=1

xi

∑
j∈Ai

fj

 .

For example {{0, 3, 4}, {1, 5}, {2, 7, 8}, {6}} corresponds to the map from Z3 to Z8 which sends

(a, b, c) 7→ (a, b, 0, 0, a, c, b, b),

i.e., 0 is in the 3 and 4 spot, ‘ a ’ in the 1 and 5 entries, ‘ b ’ in the 2 , 7 and 8 entries and ‘ c ’ in
the 6 th entry.

It is clear that the maps g 7→ Pg and P 7→ gP are inverse to one another and provide a bijection
between ordered acceptable maps Zn → Zn+k and set partitions of {0, . . . , n+ k} into n+ 1 parts.
This and the definition of Stirling numbers of the second kind lead to the next corollary:

Corollary 3.5. The number of equivalence classes of acceptable maps Zn → Zn+k is equal to{
n+k+1
n+1

}
.

The final step in the proof of Theorem 1.2 is a refinement of Theorem 3.2.

Proposition 3.6. Any multiplicative sublattice of co-rank k in Zn+k is of the form g(L) where
g : Zn → Zn+k is an ordered acceptable map and L is a multiplicative sublattice of full rank in Zn .
Moreover, such g and L are uniquely determined.

Proof. A consequence of Theorem 2.4 is that any multiplicative sublattice L′ of co-rank k in Zn+k

will correspond to some partition P of {0, 1, ...n + k} into n + 1 parts. This partition is obtained
by the same method that associated a partition to an acceptable map. The partition P corresponds
to a unique ordered acceptable map fP . The lattice L′ is clearly in the range of fP so fP

−1(L′) is
the unique lattice L in Zn which maps to L′ under fP . □

Proof of Theorem 1.2. Combine Proposition 3.6 with Corollary 3.5. □

4. Proof of Theorem 1.3

Recall the notation from the introduction. Let L be a number field of degree n and we fix a
positive integer k ≤ n . We define RL(r; k) to be the set of subrings R with identity of Z -co-rank
k in OL such that #(OL/R)tor = r .

Suppose RL(r; k) 6= ∅ , and let R ∈ RL(r; k) . Let K = Q(R) be the subfield of L generated by
R . By [10, Section 2.1, Theorem 1 ], R ⊂ OK .

Lemma 4.1. We have [K : Q] = n− k .

Proof. Let α1, . . . , αn−k be a Z -basis of R . It is easy to see that α1, . . . , αn−k are Q -linearly
independent. We will show that K is equal to Q -subspace of L spanned by α1, . . . , αn−k , denote
this latter vector space by QR . It is clear that QR is closed under addition and multiplication. We
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just need to show that it is closed under inversion. Let z ∈ QR . Then there is an integer m such
that x = mz ∈ R . It is sufficient to show that x−1 ∈ QR . Since x is algebraic over Q , there are
rational numbers c0, . . . , cl such that x−1 = c0 + c1x+ · · ·+ clx

l , but this latter expression is in QR

because 1, x, . . . , xl ∈ R . □

As a result, since Q ⊂ K ⊂ L , (n− k) | n . In particular, if (n− k) ∤ n , then RL(r; k) = ∅ . This
means that R is a Z -module of full rank in OK , and by the classification theorem of finitely generated
modules over a PID, OK/R is finite. Our next goal is to prove that #(OL/R)tor = #(OK/R) . We
need a lemma:

Lemma 4.2. Let 0 → A → B → C → 0 be an exact sequence of S -modules, with S some
commutative ring with identity. Assume Ctor = 0 . Then Ator ' Btor .

Proof. Let f : A → B and g : B → C be the relevant maps. Clearly, since f injective, f injects
Ator into Btor . We need to show f maps Ator onto Btor . Let x ∈ Btor . Then g(x) ∈ Ctor = {0} .
So x ∈ ker g = imf . Hence there is y ∈ A such that x = f(y) . Since x ∈ Btor , there is a non-zero
s ∈ S such that sx = 0 . Consequently, 0 = sx = sf(y) = f(sy) . Since f is injective and f(sy) = 0 ,
we conclude that sy = 0 and as a result y ∈ Ator . □

We apply this lemma in the following fashion: We have an exact sequence

0 → OK/R → OL/R → OL/OK → 0.

We claim (OL/OK)tor considered as a Z -module is trivial. Let z ∈ OL represent a torsion element
in (OL/OK)tor . This means there is a non-zero m ∈ Z such that mz ∈ OK . This means z ∈ K ,
but z ∈ OL , so z ∈ K ∩ OL = OK . The lemma implies

#(OL/R)tor = #(OK/R)tor = #(OK/R).

The theorem is now immediate.
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