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SANOV’S THEOREM ON LIE RELATORS IN GROUPS OF EXPONENT p

M. VAUGHAN-LEE

Abstract. I give a proof of Sanov’s theorem that the Lie relators of weight at most 2p− 2 in groups
of exponent p are consequences of the identity px = 0 and the (p − 1)-Engel identity. This implies
that the order of the class 2p − 2 quotient of the Burnside group B(m, p) is the same as the order of
the class 2p − 2 quotient of the free m generator (p − 1)-Engel Lie algebra over GF(p). To make the
proof self-contained I have also included a derivation of Hausdorff’s formulation of the Baker Campbell
Hausdorff formula.

1. Introduction

The theory of Lie relators in groups of prime-power exponent has been immensely useful in un-
derstanding these groups. Probably the first significant result in this direction is a theorem due to
Magnus [11], where he proves that the Lie relators of weight at most p − 1 in groups of exponent p

are all consequences of the identity px = 0. In this note I give a proof of Sanov’s theorem [15] that
the Lie relators of weight at most 2p− 2 in groups of exponent p are all consequences of the identity
px = 0 and the (p− 1)-Engel identity [x, y, y, . . . , y︸ ︷︷ ︸

p−1

] = 0. Perhaps a brief reminder of the definition of

Lie relators is appropriate here. Let B(m, p) be the free m generator Burnside group of exponent p,
and let

γ1 ≥ γ2 ≥ . . . ≥ γn ≥ . . .
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be the descending central series of B(m, p). For n = 1, 2, . . . we set Ln equal to the quotient group
γn/γn+1. So Ln is an abelian group, and we think of it as a Z-module and set

L(m, p) =

∞⊕
n=1

Ln.

We turn L(m, p) into a Lie ring (the associated Lie ring of B(m, p)) as follows. If a = gγi+1 ∈ Li and
b = hγj+1 ∈ Lj then we define the Lie product [a, b] to be [g, h]γi+j+1 ∈ Li+j , where [g, h] is the group
commutator g−1h−1gh. We extend this Lie product to the whole of L(m, p) by linearity, and this turns
L(m, p) into a Lie ring. Let g1, g2, . . . , gm be free generators of B(m, p) and let ai = giγ2 ∈ L1. Then
a1, a2, . . . , am generate L(m, p). Furthermore L(m, p) has a natural grading since [Li, Lj ] ≤ Li+j , and
Ln is the linear span of Lie products of weight n in the generators a1, a2, . . . , am. We say that an
element a ∈ L(m, p) is homogeneous of weight n if a ∈ Ln. Now let Λm be the free Lie ring with free
generators x1, x2, . . . , xm. Then Λm is also graded by weight:

Λm =

∞⊕
n=1

Λm,n,

where Λm,n is spanned by Lie products of weight n in the free generators. We let π : Λm → L(m, p) be
the homomorphism mapping xi to ai for i = 1, 2, . . . ,m, and we let I = kerπ. Note that Λm,nπ = Ln,
so that I is also graded and

I =

∞⊕
n=1

In,

with In ≤ Λm,n. Elements of I are called Lie relators of B(m, p), and if a ∈ In then a is called a
(homogeneous) Lie relator of weight n. As an abelian group, γn/γn+1 = Ln

∼= Λm,n/In. Furthermore
the lower central factors γn/γn+1 are finite, and so if we know the Lie relators of weight n then we
can compute the order of γn/γn+1. All this is discussed in some detail in my book [16], where it is
shown that as well as having characteristic p, the associated Lie rings of groups of exponent p satisfy
a sequence of multilinear identities Kn = 0, with one identity for each n ≥ p. It is also shown in [16]
that the (p − 1)-Engel identity is equivalent in characteristic p to the multilinear identity Kp = 0.
However Sanov’s theorem implies that the identities Kn = 0 for p < n ≤ 2p − 2 are all consequences
of the identity Kp = 0 in characteristic p.

So Magnus’s theorem implies that the class p − 1 quotient B(m, p)/γp has the same order as the
class p − 1 quotient of Λm/pΛm. Similarly Sanov’s theorem implies that the class 2p − 2 quotient
B(m, p)/γ2p−1 has the same order as the class 2p − 2 quotient of the free m generator Lie ring in
the variety of Lie rings defined by the identities px = 0 and [x, y, y, . . . , y︸ ︷︷ ︸

p−1

] = 0. Note that the free

m generator Lie ring in this variety can be identified with the free (p − 1)-Engel Lie algebra of rank
m over GF(p). Of course the close connection between a group and its associated Lie ring means
that much more information than just orders can be deduced from these theorems. There are various
reasons which have led me to writing up a proof of Sanov’s theorem. Firstly, I wanted to understand
the proof myself. But I found that Sanov’s original paper (written in Russian of course) has not been
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translated into English. Furthermore Sanov’s proof relies heavily on Hausdorff’s formulation of the
Baker-Campbell-Hausdorff formula given in his 1906 paper [5]. Hausdorff’s formulation gives much
more detailed information about the formula than can be obtained from more modern treatments
such as may be found in Jacobson’s book Lie Algebras [9], or in my book [16]. Hausdorff’s paper was
written in German, and appeared in a German physics journal which is no longer published. It has
not been reviewed in Mathematical Reviews, and I was unable to obtain a copy of the paper. A full
statement of Hausdorff’s theorem is given in Sanov’s paper, and a somewhat clearer statement can be
found in Kostrikin’s paper [10]. But neither of these papers give proofs. However I was able to find
a proof of the first part of Hausdorff’s theorem in a paper by Baker [4], and I was able to complete
the proof myself. In the light of all my difficulties in tracking down a self-contained proof of Sanov’s
theorem, I thought it would be worthwhile committing my researches to paper.

But my main reason for writing this note, and in fact the reason that I wanted to understand
the proof of Sanov’s theorem in the first place, is more complicated! Over a period of many years
Seymour Bachmuth circulated various drafts of a short paper in which he claimed to prove that the
two generator Burnside group B(2, q) is finite for all prime powers q. As well as running counter to
Adjan’s and Olschanskii’s negative solutions of the Burnside problem [1,14], the claims in Seymour’s
paper also run counter to computer calculations of the largest finite quotients, R(2, 5) and R(2, 7), of
the Burnside groups B(2, 5) and B(2, 7).

The original draft of Seymour’s paper was only about 10 pages long, but over the years it grew
slightly. In 2008 Seymour posted a 14 page version of his paper on the arXiv [2], and in 2016 he posted
a 22 page version on the arXiv [3]. In most versions of his paper he takes about 10 pages to construct a
certain two generator group F (S[t, t−1]) and to prove that it is solvable. All this is essentially correct,
though it is rather sloppily written and hence not all that easy to follow. In fact it takes less than
a page to define his group, which is generated by two elements M1 and M2T , and it takes less than
two pages to show that the normal closure of the generator M1 is nilpotent. Solvability of F (S[t, t−1])

follows immediately from this. In the case when q is prime the normal closure of M1 has class q − 1.
(In fact it was I who first pointed out to Seymour that his group F (S[t, t−1]) is solvable. Before that
he only claimed to have a new proof of the restricted Burnside problem.) For a short definition of
F (S[t, t−1]), and a short proof that it is solvable see http://users.ox.ac.uk/~vlee/bachmuth.pdf.

After constructing his group F (S[t, t−1]) he makes the claim that it is a preimage of the Burnside
group B(2, q), and he deduces that B(2, q) is finite. In early drafts he just stated that F (S[t, t−1]) is
a preimage of B(2, q) as a fact, without any attempt at justification. In later drafts he did make some
attempt to justify this claim, but these attempts all seemed to me to be meaningless gobbledygook. I
corresponded with Seymour over this point for a year or more, but I never managed to convince him
that there was a gap in his argument. Seymour kept saying that since his paper was so short and
straightforward and so obviously correct then Adjan’s and Olschanskii’s work, and all the computer
calculations must be wrong. Now of course I have a lot more faith in Adjan and Olschanskii and
in all their students than I do in Seymour. But I don’t understand their work at all. However I
do understand the computer calculations of R(2, 5) and R(2, 7) ( [6, 13]) in considerable detail. If
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Seymour’s claims were correct then the normal closure of one of the free generators of B(2, 5) would
have class at most 4. This would imply that both free generators of B(2, 5) have normal closures
of class at most 4, so that B(2, 5) (and hence also R(2, 5)) would have class at most 8. Similarly,
if Seymour’s claims were correct then R(2, 7) would have class at most 12. However the computer
calculations that the actual classes of these groups are 12 and 28 are not all that easy to justify. Most
of the calculations involve the p-quotient algorithm, and as far as I know all the implementations
of that algorithm in use today are based on George Havas’s original program [7] consisting of 7000
lines of Fortran. There are a good number of reputable mathematicians around the world who can
vouch for the correctness of the p-quotient algorithm, but only a handful who understand George’s
implementation. I do understand his implementation in considerable detail and I am convinced that
his approach is valid. But I certainly could not prove that there is no bug in his 7000 lines of code.
Seymour said that he just didn’t believe that the p-quotient algorithm was producing correct results,
and that he would need to see a permutation representation or a matrix representation of R(2, 5) before
he would believe the claim that it has class 12 and order 534. Now R(2, 5) has a core free subgroup of
index 59, so it is actually quite easy to obtain a faithful permutation representation of degree 59. But
I didn’t think that Seymour would think much of that. So I looked for a matrix representation, and
I was able to find two 66× 66 upper unitriangular matrices over GF(5) which generate R(2, 5). (The
matrices can be found on my website http://users.ox.ac.uk/~vlee/selected.htm.) Of course you
can’t multiply these matrices by hand, but you can look at them! And as long as you believe that
computers know how to multiply matrices, you can subject the two matrices to any tests you like to
verify that they generate a group of exponent 5 which has order 534 and class 12. Seymour, of course,
wouldn’t have it, and just said that he was unable to verify that the group has exponent 5. (This does
take a minimal amount of theory due to Higman [8], who showed that to prove that a group which is
nilpotent of class c has exponent n it is only necessary to check that gn = 1 for every element g in the
group which can be written as a product of length at most c in the generators.) It was some while
after I stopped corresponding with Seymour that I realized that Sanov’s theorem together with a few
lines of hand calculation imply that there are non-trivial commutators of weight 8 in R(2, 5) which
have weight 5 in one generator, and weight 3 in the other generator. This runs against Seymour’s
claim that the normal closure of a generator in B(2, p) (and hence in R(2, p)) has class p−1. Similarly
a few lines of hand calculation show that if p > 5 then there are non-trivial commutators of weight
p + 2 in R(2, p) which have weight p in one generator, and weight 2 in the other. These calculations
are given at the end of this note. It was this observation which led me on my quest to understand
Sanov’s theorem, and to give a self-contained proof of the theorem.

2. The Baker Campbell Hausdorff formula

In this section we derive Hausdorff’s version of the Baker Campbell Hausdorff formula. The setting
is as follows. We let A be the free associative algebra over the rationals Q, freely generated by
x1, x2, . . .. The algebra A has a natural grading by weight: if we set An equal to the vector space over
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Q spanned by the products of weight n in the generators then

A = A1 ⊕A2 ⊕ . . .⊕An ⊕ . . . ,

and AmAn = Am+n.
We turn A into a Lie algebra over Q by defining a Lie product [, ] on A setting [a, b] = ab− ba. We

let L be the Lie subalgebra of A generated by x1, x2, . . .. Then L is a free Lie algebra over Q, freely
generated by x1, x2, . . .. (See [12].) We identify the free Lie ring Λ of countably infinite rank with the
Lie subring of A generated by x1, x2, . . ..

We let P be the ring of formal power series

a0 + a1 + . . .+ an + . . . ,

with a0 ∈ Q and an ∈ An for n = 1, 2, . . .. If a = a0 + a1 + . . .+ an + . . . ∈ P , and if a0 = a1 = . . . =

an−1 = 0, but an 6= 0 then we say that an is the leading term of a, and we say that the leading term
of a has weight n. More generally we call am the homogeneous component of a of weight m. If a ∈ P ,
and if the leading term of a has weight at least 1, then we set

ea = 1 + a+
a2

2!
+

a3

3!
+ . . . .

A key observation is that the elements ex1 , ex2 , ex3 , … are free generators of a free group. (See, for
example, pages 41 and 42 of [16].) Note that the group inverse of exi is e−xi . Note also that since the
generators of A do not commute the familiar formula

exey = ex+y

no longer holds true. The Baker Campbell Hausdorff formula is what replaces this formula. If a ∈ P

has leading term 1 then we can write a = 1 + u where u has leading term with weight at least 1, and
we define

log a = u− u2

2
+

u3

3
− . . . .

If x and y have leading terms with weight at least 1 then exey = ez where z = log(exey). The main
content of the Baker Campbell Hausdorff formula is the remarkable (even amazing) fact that if x and
y are free generators of A then the homogeneous components of z are Lie elements of A (i.e. elements
of L). More generally, if we let F be the free group generated by ex1 , ex2 , …, and if ez ∈ F then the
homogenous components of z are Lie elements of A. In addition the leading term of z is a Z-linear
combination of Lie products of the free generators of A, in other words an element of Λ.

A key idea exploited by Hausdorff in his proof of this result is the notion of Hausdorff differentiation.
This is defined as follows. Let a ∈ A, and let x be one of the free generators of A. We let t be an
indeterminate scalar in Q and let π : A → A be the homomorphism which maps x 7→ x + ta, and
which maps every other free generator of A to itself. Then if b ∈ A we can express

πb = b+ tb1 + t2b2 + . . .+ tkbk

for some b1, b2, . . . , bk ∈ A. We define the operator a ∂
∂x : A → A by setting a ∂

∂x(b) = b1. Perhaps a
more intuitive way of defining a ∂

∂x is the following. Suppose b is a product of the free generators of
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A with k entries in the product equal to x. Then a ∂
∂x(b) is a sum of k distinct products where these

k products are obtained from b by successively replacing each of the k occurrences of x by a. For
example if x, y, z are free generators of A, and if b = xxyxzxy then

a
∂

∂x
(b) = axyxzxy + xayxzxy + xxyazxy + xxyxzay.

We then extend a ∂
∂x to the whole of A by linearity. (If b ∈ Q then we set a ∂

∂x(b) = 0.) We can of
course extend this operation to P , allowing a to be an element of P .

Lemma 2.1. If a ∈ P and if x is a free generator of A, then

a
∂

∂x
(xm)

= axm−1 + xaxm−2 + x2axm−3 + . . .+ xm−1a

= [a, x, . . . , x︸ ︷︷ ︸
m−1

] +mx[a, x, . . . , x︸ ︷︷ ︸
m−2

] +

(
m

2

)
x2[a, x, . . . , x︸ ︷︷ ︸

m−3

] + . . .+

(
m

m− 1

)
xm−1a.

Proof. The proof is by induction on m, the cases m = 1, 2 being easy to check. So suppose the result
is true for m. Then

a
∂

∂x
(xm+1)

= a
∂

∂x
(xm)x+ xma

= [a, x, . . . , x︸ ︷︷ ︸
m−1

]x+mx[a, x, . . . , x︸ ︷︷ ︸
m−2

]x+ . . .+

(
m

m− 1

)
xm−1ax+ xma.

Now
[a, x, . . . , x︸ ︷︷ ︸

r

]x = x[a, x, . . . , x︸ ︷︷ ︸
r

] + [a, x, . . . , x︸ ︷︷ ︸
r+1

]

for any r ≥ 0, and so a ∂
∂x(x

m+1) equals

[a, x, . . . , x︸ ︷︷ ︸
m

] + . . .+

((
m

r

)
+

(
m

r + 1

))
xr+1[a, x, . . . , x︸ ︷︷ ︸

m−r−1

] + . . .+ (m+ 1)xma.

The lemma follows immediately, since(
m

r

)
+

(
m

r + 1

)
=

(
m+ 1

r + 1

)
.

□

Corollary 2.2. a ∂
∂x(e

x) = ex(a+ 1
2! [a, x] +

1
3! [a, x, x] + . . .+ 1

n! [a, x, . . . , x︸ ︷︷ ︸
n−1

] + . . .).

Proof. If we set X = xm then Lemma 2.1 can be expressed in the form

a
∂

∂x
(X) = X ′a+

X ′′

2!
[a, x] +

X ′′′

3!
[a, x, x] + . . .+

X(n)

n!
[a, x, x, . . . , x︸ ︷︷ ︸

n−1

] + . . . .

We obtain the corollary by substituting ex for X in this expression. □
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We now consider the inverse of the power series 1 + x
2! +

x2

3! + . . .+ xn

(n+1)! + . . ..

(1 +
x

2!
+

x2

3!
+ . . .+

xn

(n+ 1)!
+ . . .)−1 = 1− x

2
+

x2

12
− x4

720
+

x6

30 240
+ · · · .

The Bernoulli numbers B0, B1, B2, . . . are defined in terms of this inverse by setting

(1 +
x

2!
+

x2

3!
+ . . .+

xn

(n+ 1)!
+ . . .)−1 =

∞∑
n=0

Bn
xn

n!
.

Thus B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 . In fact it is known that
B2n+1 = 0 for all n > 0, but we do not need to use this fact.

Corollary 2.3. If a ∂
∂x(e

x) = b ∂
∂x(e

x) then a = b.

Proof. Let the linear map X : P → P be defined by aX = [a, x], and let

Z = 1 +
X

2!
+

X2

3!
+ . . .+

Xn

(n+ 1)!
+ . . . .

Note that Z is invertible, with inverse
∞∑
n=0

Bn
Xn

n!
.

Then Corollary 2.2 implies that ex(aZ) = ex(bZ) and so a = b. □

Lemma 2.4. If x and y are free generators of A, and if we set

a = y − 1

2
[y, x] +

B2

2!
[y, x, x] + . . .+

Bn

n!
[y, x, x, . . . , x︸ ︷︷ ︸

n

] + . . .

then a ∂
∂x(e

x) = exy.

Proof. Note that a = yZ−1, where Z is as defined in the proof of Corollary 2.3. Corollary 2.2 implies
that a ∂

∂x(e
x) = ex(aZ) and so a ∂

∂x(e
x) = exy. □

Now let a be as defined in Lemma 2.4, set a1 = a, and inductively define an+1 = a ∂
∂x(an) for n ≥ 1.

Note that a1 is an infinite sum of Lie elements which are homogeneous of degree 1 in y. For each
n ≥ 1, an is an infinite sum of Lie elements which are homogeneous of degree n in y. We are at last
in a position to state Hausdorff’s theorem.

Theorem 2.5 (Hausdorff [5]). exey = ez where z = x+ a1 +
a2
2! + . . .+ an

n! + . . ..

Proof. We express z in the form z = x+ b1+
b2
2! + . . .+ bn

n! + . . . where, for each n, bn is an infinite sum
of terms each of which is homogeneous of degree n in y. We show by induction on n that bn = an for
all n.

First consider the case n = 1. If we pick out the terms of degree 1 in y from

ez = 1 + (x+ b1 +
b2
2!

+ . . .) +
1

2!
(x+ b1 +

b2
2!

+ . . .)2 + . . .

then we obtain b1
∂
∂x(e

x). On the other hand, if we pick out the terms of degree 1 in y from exey then
we obtain exy. But by Lemma 2.4, exy = a ∂

∂x(e
x), and so by Corollary 2.3 b1 = a = a1.

DOI: https://dx.doi.org/10.30504/jims.2020.110856

https://dx.doi.org/10.30504/jims.2020.110856


8 J. Iranian Math. Soc. Vol. 2 No. 1 (2021) 1-16 M. Vaughan-Lee

So let n > 1 and assume by induction bk = ak for all k < n. If we pick out the terms of degree n in
y from zm then we obtain a sum of all possible products of the form

(2.1) x . . . x
bi
i!
x . . .

bj
j!

. . .
bk
k!

. . . x,

with m terms from the set {x, b1, b22! ,
b3
3! , . . .} in each product, and with i+ j + . . .+ k = n. Note that

the sum of the products of this form involving bn is bn
n!

∂
∂x(x

m). On the other hand, if we pick out the
terms of degree n in y from exey then we obtain ex yn

n! and by repeated application of Lemma 2.4 we
see that ex yn

n! =
1
n!

(
a ∂
∂x

)n
(ex). Now

1

n!

(
a
∂

∂x

)n

(ex) =

∞∑
m=0

1

m!n!

(
a
∂

∂x

)n

(xm),

and we prove that bn = an by comparing 1
n!

(
a ∂
∂x

)n
(xm) with the sum of the terms

x . . . x
bi
i!
x . . .

bj
j!

. . .
bk
k!

. . . x

of degree n in y from the expansion of zm.
It may help to compute

(
a ∂
∂x

)n
(xm) in full detail in the case when m = n = 3. Using the fact that

a = a1 we have

a
∂

∂x
(x3) = a1xx+ xa1x+ xxa1,

(
a
∂

∂x

)2

(x3)

= a2xx+ a1a1x+ a1xa1 + a1a1x+ xa2x+ xa1a1 + a1xa1 + xa1a1 + xxa2

= a2
∂

∂x
(x3) + 2a1a1x+ 2a1xa1 + 2xa1a1.

(
a
∂

∂x

)3

(x3)

= a3
∂

∂x
(x3) + a2a1x+ a2xa1 + a1a2x+ xa2a1 + a1xa2 + xa1a2

+ 2a2a1x+ 2a1a2x+ 2a1a1a1 + 2a2xa1 + 2a1a1a1 + 2a1xa2

+ 2a1a1a1 + 2xa2a1 + 2xa1a2

= a3
∂

∂x
(x3) + 3a2a1x+ 3a2xa1 + 3a1a2x+ 3xa2a1 + 3a1xa2 + 3xa1a2

+ 6a1a1a1.

Now consider 1
n!

(
a ∂
∂x

)n
(xm) for general m and n. We can express this as a sum of terms of the

form
1

n!
x . . . xaix . . . aj . . . ak . . . x,
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where i + j + . . . + k = n. (Compare this expression with (2.1).) We claim that each term
1
n!x . . . xaix . . . aj . . . ak . . . x appears exactly n!

i!j!...k! times. Accepting this claim for the moment we see
that 1

n!

(
a ∂
∂x

)n
(xm) is the sum of all possible distinct products of the form

(2.2) x . . . x
ai
i!
x . . .

aj
j!

. . .
ak
k!

. . . x,

with i+ j + . . .+ k = n. Comparing (2.1) with (2.2), and using our inductive hypothesis that bk = ak

for k < n, we see that the terms in (2.1) which do not involve bn exactly match the terms from (2.2)
which do not involve an. The terms from (2.1) which involve bn sum to bn

n!
∂
∂x(x

m), and the terms from
(2.2) which involve an sum to an

n!
∂
∂x(x

m). So comparing the terms of degree n in y from the expansion
of ez with the expansion of 1

n!

(
a ∂
∂x

)n
(ex), and using our inductive hypothesis, we see that

bn
n!

∂

∂x
(ex) = an

n!

∂

∂x
(ex),

so that Corollary 2.3 implies bn = an as claimed.
It remains to justify our claim that the term

1

n!
x . . . xaix . . . aj . . . ak . . . x

appears n!
i!j!...k! times in the expansion of 1

n!

(
a ∂
∂x

)n
(xm). Let us return to our expansion of

(
a ∂
∂x

)3
(x3).

On the first application of the operator the product xxx is split into a sum of three products. On the
second application, each of these three products is split into a sum of another three products, and so
on. After three applications of the operator we have 27 products in the sum. We assign “pedigrees”
to each of the products which appear in this process as follows. The first application of the operator
maps xxx to a1xx + xa1x + xxa1 and we assign pedigrees (1), (2), (3) to the three products in this
sum, so that the pedigree of a1xx is (1) , the pedigree of xa1x is (2) and the pedigree of xxa1 is (3).
If we apply the operator to a1xx then we obtain a2xx+ a1a1x+ a1xa1 and we assign pedigrees (1,1),
(1,2), (1,3) to the three products in this sum in the order in which they appear in the sum. Similarly,
if we apply the operator to xa1x then we obtain a1a1x+ xa2x+ xa1a1 and we assign pedigrees (2,1),
(2,2), (2,3) to the three products in this sum. If we take xa2x for example, with pedigree (2,2), and we
apply the operator once more then we obtain a1a2x + xa3x + xa2a1 and we assign pedigrees (2,2,1),
(2,2,2), (2,2,3) to the three products in this sum. So there are 27 possible pedigrees (r, s, t) with
1 ≤ r, s, t ≤ 3 for the 27 products in the final sum. A product a2a1x, for example, must have pedigree
(r, s, t) where two of r, s, t are equal to 1 and one of r, s, t is equal to 2. There are three such pedigrees:
(1,1,2), (1,2,1) and (2,1,1) and so the product a2a1x occurs three times in the final sum.

Now return to the expansion of
(
a ∂
∂x

)n
(xm). This will be a sum of mn products with pedigrees

(r1, r2, . . . , rn) with 1 ≤ ri ≤ m for i = 1, 2, . . . , n. Consider a particular product x . . . xaix . . . aj . . . ak
. . . x from this sum with ai in the rth position in the product, aj in the sth position, …, and with
ak in the tth position. Then the pedigree of the product must be a sequence (r1, r2, . . . , rn) where i

of the integers r1, r2, . . . , rn are equal to r , j of the integers r1, r2, . . . , rn are equal to s, …, and k

of the integers r1, r2, . . . , rn are equal to t. The total number of pedigrees of this form is n!
i!j!...k! , as

claimed. □
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3. Some properties of the BCH formula

We want to study the terms of degree at most 2p − 2 which appear in Hausdorff’s formula z =

x + a1 + a2
2! + . . . + an

n! + . . . in some detail. As an illustration, take p = 5 and then consider the
expression for a = a1 up to weight 8.

a = y − 1

2
[y, x] +

1

12
[y, x, x]− 1

720
[y, x, x, x, x] +

1

30240
[y, x, x, x, x, x, x] + . . . .

The denominators of the coefficients of the terms with weight less than 5 in the expression for a

are coprime to 5. The denominators of the coefficients of the terms with weight between 5 and
8 are divisible by 5, but not by 52. The next term in the expression for a has weight 9, and is
− 1

1209600 [y, x, x, x, x, x, x, x, x]. The denominator of the coefficient of this term is divisible by 52. The
same pattern applies to a general prime p. The definition of a in terms of the inverse of the power series
1+
∑∞

n=1
xn

(n+1)! makes it clear that the coefficients of the terms of weight at most p−1 in the expression
for a have denominators which are coprime to p. However the coefficient of the term [y, x, x, . . . , x︸ ︷︷ ︸

p−1

] has

denominator which is divisible by p. It seems that the denominators of the coefficients of the terms
[y, x, x, . . . , x︸ ︷︷ ︸

r

] with p − 1 < r < 2p − 2 are also divisible by p, though this is not that obvious to me.

This need not concern us however — what is obvious is that the denominators of the coefficients of
these terms are not divisible by p2. The coefficient of [y, x, x, . . . , x︸ ︷︷ ︸

2p−2

] does have a denominator divisible

by p2. This is because the coefficient of x2p−2 in(
1 +

∞∑
n=1

xn

(n+ 1)!

)−1

= 1−
∞∑
n=1

xn

(n+ 1)!
+

( ∞∑
n=1

xn

(n+ 1)!

)2

−

( ∞∑
n=1

xn

(n+ 1)!

)3

+ . . .

contains a contribution of 1
p!2

from the expansion of
(∑∞

n=1
xn

(n+1)!

)2
. To summarize, if we look at

the coefficients of the terms of weight up to p− 1 in the expression for a then their denominators are
coprime to p. The coefficient of the term of weight p from the expression for a has denominator which
is divisible by p, and the terms of weight p, p+1, …, 2p− 2 have coefficients with denominators which
are not divisible by p2. Note also that the terms with weight at least p all lie in the Lie ideal generated
the (p− 1)-Engel word [y, x, x, . . . , x︸ ︷︷ ︸

p−1

].

Since we are concerned with the power of p dividing the denominators of the coefficients in the
formula for z, we introduce the ring R of rational numbers of the form m

n where n is coprime to p.
Then A is a Lie algebra over R, and we let LR be the Lie subalgebra of A over R generated by x

and y. We let Ep−1 be the Lie ideal of LR generated by elements [b, c, c, . . . , c︸ ︷︷ ︸
p−1

] with b, c ∈ LR. So we

have shown that the terms of weight less than p in the expression for a lie in LR and that the terms
with weight between p and 2p − 2 lie in 1

pEp−1. Putting this together we see that the homogeneous
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components of a of weight at most 2p− 2 all lie in LR + 1
pEp−1. We want to establish this same result

for all the homogeneous components of z of weight at most 2p− 2, but before we can do this we need
to introduce a little more machinery.

It is well known that the (p − 1)-Engel identity is equivalent in characteristic p to the multilinear
identity Kp(x1, x2, . . . , xp) = 0 where

Kp(x1, x2, . . . , xp) =
∑

σ∈ Sym(p−1)

[xp, x1σ, x2σ, . . . , x(p−1)σ].

To see that the identity [y, x, x, . . . , x︸ ︷︷ ︸
p−1

] = 0 implies Kp = 0, set y = xp and set x = x1+x2+ . . .+xp−1

in [y, x, x, . . . , x︸ ︷︷ ︸
p−1

]. If we expand and pick out the terms which are multilinear in x1, x2, . . . , xp then we

obtain Kp. So the (p− 1)-Engel identity implies Kp = 0 (in any characteristic). Conversely, if we set
xp = y and set x1 = x2 = . . . = xp−1 = x in the expression for Kp, then we obtain (p−1)![y, x, x, . . . , x︸ ︷︷ ︸

p−1

].

So the Lie ideal Ep−1 of LR is generated by elements Kp(b1, b2, . . . , bp) with b1, b2, . . . , bp ∈ LR. In
fact Ep−1 is spanned by these elements, since the Jacobi identity implies that

[Kp(b1, b2, . . . , bp), c] =

p∑
i=1

Kp(b1, . . . , [bi, c], . . . , bp).

As mentioned above, we want to show that all the homogeneous components of z of weight at most
2p− 2 lie in LR + 1

pEp−1. So consider the homogeneous components of a2 = a ∂
∂x(a). We write

a = b+
1

p
c+ terms of weight at least 2p− 1,

where b ∈ LR and c ∈ Ep−1, so that the homogeneous components of a2 of weight at most 2p− 2 are
identical to the homogeneous components of weight at most 2p − 2 from d ∂

∂x(d), where d = b + 1
pc.

Now

d
∂

∂x
(d) = b

∂

∂x
(b) +

1

p
c
∂

∂x
(b) +

1

p
b
∂

∂x
(c) +

1

p2
c
∂

∂x
(c).

It is clear that b ∂
∂x(b) ∈ LR and that 1

pc
∂
∂x(b) ∈ 1

pEp−1. It is also clear that all the homogeneous
components of 1

p2
c ∂
∂x(c) have weight at least 2p − 1. So it remains to show that 1

pb
∂
∂x(c) ∈ 1

pEp−1.
This follows from the fact that c is an R-linear combination of elements of the form Kp(b1, b2, . . . , bp)

with b1, b2, . . . , bp ∈ LR and the fact that

b
∂

∂x
(Kp(b1, b2, . . . , bp)) =

p∑
i=1

Kp(b1, . . . , b
∂

∂x
bi, . . . , bp).

So the homogeneous components of a2 of weight at most 2p − 2 lie in LR + 1
pEp−1, as claimed. A

similar argument shows that this also applies to an for all n. We have proved the following theorem.

Theorem 3.1. If exey = ez then the homogeneous components of z of weight at most 2p − 2 lie in
LR + 1

pEp−1.
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In the proofs of Theorem 2.5 and Theorem 3.1 we assumed that x and y were elements from the free
generating set for A, but this was mainly to ensure that Hausdorff differentiation was well defined.
Since Theorem 3.1 holds true when x and y are free generators of A, it holds true when x and y are
arbitrary elements of the power series ring P , provided their constant terms are zero. Note however
that “homogeneous component” in Theorem 3.1 refers to homogeneity in terms of x and y. If x and
y are not homogeneous as elements of P , then the homogeneous components in Theorem 3.1 will not
be homogeneous as elements of P .

We want to extend Theorem 3.1 to arbitrary products of the generators ex1 , ex2 , … for F . We let LX
R

be the Lie subalgebra of A over R generated by x1, x2, . . ., and we let EX
p−1 be the (p− 1)-Engel ideal

of LX
R . As we showed above, EX

p−1 is spanned by elements Kp(b1, b2, . . . , bp) with b1, b2, . . . , bp ∈ LX
R .

Theorem 3.2. Let ez be an arbitrary element of F . Then the homogeneous components of z of weight
at most 2p− 2 lie in LX

R + 1
pE

X
p−1.

Proof. The proof is by induction on the length of ez as a product of the generators of F and their
inverses. The result is trivial for products of length 1, and Theorem 3.1 covers products of length
2. Assume by induction that the result is true for products of length at most k, and let ex, ey be
elements of F which have length at most k as products of the generators of F and their inverses. Let
exey = ez. To complete our proof we need to show that the homogeneous components of z of weight
at most 2p− 2 lie in LX

R + 1
pE

X
p−1.

It makes the exposition easier, and clearer, if we assume that every product in A of length 2p − 1

is trivial. Formally, we replace A by A/I where I is the ideal of A generated by A2p−1. Our inductive
hypothesis then implies that x, y ∈ LX

R + 1
pE

X
p−1, and we need to show that this implies that z ∈

LX
R + 1

pE
X
p−1. We apply Theorem 3.1. Our assumption that products of length 2p − 1 in A are

trivial implies that products of length 2p − 1 in x and y are trivial. So Theorem 3.1 implies that
z ∈ LR+ 1

pEp−1, where LR is the Lie subalgebra of A over R generated by x and y, and where Ep−1 is
the ideal of LR spanned over R by elements Kp(b1, b2, . . . , bp) with b1, b2, . . . , bp ∈ LR. It is easy to see
that the fact that x, y ∈ LX

R + 1
pE

X
p−1 implies that LR ≤ LX

R + 1
pE

X
p−1, and our proof will be complete

if we can show that Ep−1 ≤ EX
p−1. So consider a spanning element Kp(b1, b2, . . . , bp) for Ep−1 with

b1, b2, . . . , bp ∈ LR. Write bi = ci + di for i = 1, 2, . . . , p with ci ∈ LX
R and di ∈ 1

pE
X
p−1. Then

Kp(b1, . . . , bp) = Kp(c1 + d1, . . . , cp + dp) = Kp(c1, . . . , cp) ∈ EX
p−1.

□

Corollary 3.3. If ez is a product of pth powers in F then the homogeneous components of z of weight
at most 2p− 2 lie in pLX

R + EX
p−1.

Proof. As in the proof of Theorem 3.2 we assume that products of length 2p− 1 in A are trivial. The
proof is by induction of the length of ez as a product of pth powers. The result for products of length
1 follows immediately from Theorem 3.2 since (ez)p = epz. Assume that the result is true for products
of pth powers of length at most k, and let ex, ey be products of at most k pth powers. To complete our
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proof we need to show that if exey = ez then z ∈ pLX
R + EX

p−1. Our inductive hypothesis implies that
x, y ∈ pLX

R +EX
p−1, and Theorem 3.1 implies that z ∈ LR+ 1

pEp−1, where LR is the Lie subalgebra of A
over R generated by x and y, and where Ep−1 is the ideal of LR spanned by elements Kp(b1, b2, . . . , bp)

with b1, b2, . . . , bp ∈ LR. The fact that z ∈ pLX
R + Ex

p−1 follows easily from this, using an argument
similar to the argument used in the proof of Theorem 3.2. □

4. Sanov’s Theorem

Theorem 4.1 (Sanov [15]). Let r be a Lie relator in groups of exponent p, and suppose that r is
homogeneous of weight n for some n ≤ 2p−2. Then the relation r = 0 is a consequence of the identical
relations px = 0 and [x, y, y, . . . , y︸ ︷︷ ︸

p−1

] = 0.

Proof. We write r as an element of the free Lie ring Λ generated by the free generators x1, x2, . . . for
A, with Lie product defined by [x, y] = xy − yx:

r =

k∑
i=1

ni[xi1 , xi2 , . . . , xin ],

with ni ∈ Z for i = 1, 2, . . . , k. Let the free generators of A which appear in this expression for r

lie in the set {x1, x2, . . . , xm}. We let B(m, p) be the free m generator group of exponent p freely
generated by g1, g2, . . . , gm, and we construct the associated Lie ring L(m, p) of B(m, p) as described
in Section 1. As we showed in Section 1, L(m, p) is generated by a1, a2, . . . , am where ai = giγ2 for
i = 1, 2, . . . ,m. Since r is a Lie relator in groups of exponent p we see that

(4.1)
k∑

i=1

ni[ai1 , ai2 , . . . , ain ] = 0.

Now
k∑

i=1

ni[ai1 , ai2 , . . . , ain ] =
k∏

i=1

[gi1 , gi2 , . . . , gin ]
niγn+1,

and so equation 4.1 implies that
k∏

i=1

[gi1 , gi2 , . . . , gin ]
ni ∈ γn+1.

This in turn implies that in the free group F generated by ex1 , ex2 , …
k∏

i=1

[exi1 , exi2 , . . . , exin ]ni ∈ F pγn+1(F ).

Now it is well known (and easy to show) that the group commutator

[ex, ey] = e[x,y]+ higher terms,

and this implies that if we let

ez =
k∏

i=1

[exi1 , exi2 , . . . , exin ]ni ,
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then z = r+higher terms. It also implies that if eu ∈ γn+1(F ), then the leading term of u has weight
at least n+ 1. We write

k∏
i=1

[exi1 , exi2 , . . . , exin ]ni = eteu,

where et ∈ F p and eu ∈ γn+1(F ). This gives eze−u = et. The remarks above imply that r is the leading
term of eze−u, and Corollary 3.3 implies that r ∈ pLX

R + EX
p−1.

We want to show that r ∈ pΛ + Ep−1(Λ), where Λ is the free Lie ring generated inside A by
x1, x2, . . . and Ep−1(Λ) is the ideal of Λ generated by elements [x, y, y, . . . , y︸ ︷︷ ︸

p−1

] with x, y ∈ Λ. However

the expression for r as an element of pLX
R +EX

p−1 may involve rational coefficients with denominators
coprime to p. Nevertheless there will be some integer k coprime to p such that kr ∈ pΛ + Ep−1(Λ).
Since pr, kr are in pΛ + Ep−1(Λ) and p and k are coprime, it follows that r ∈ pΛ + Ep−1(Λ). □

5. An application of Sanov’s Theorem

As we mentioned in Section 1, Sanov’s Theorem implies that if we let L(2, p) be the associated Lie
ring of the Burnside group B(2, p), then the class 2p− 2 quotient of L(2, p) is isomorphic to the class
2p − 2 quotient of the free 2 generator (p − 1)-Engel Lie algebra over GF(p). We show that if p = 5

this implies that L(2, p) has non-trivial Lie products of multiweight (5, 3) in its generators a1, a2, and
if p > 5 then L(2, p) has non-trivial Lie products of multiweight (p, 2) in its generators a1, a2. (The
generators of L(2, p) are defined in Section 1.) This in turn implies that if g1, g2 are the free generators
of B(2, p) then B(2, 5) has non-trivial commutators of multiweight (5, 3) in g1, g2, and if p > 5 then
B(2, p) has non-trivial commutators of multiweight (p, 2) in g1, g2.

To see this we proceed as follows. Let Λ2 be the free Lie algebra over GF(p) of rank 2, with free
generators x1, x2. Then Λ2 is graded by multiweight. If m,n are non-negative integers we let Wm,n

be the GF(p)-span in Λ2 of all Lie products with multiweight (m,n) in x1, x2. We have

Λ2 =
⊕

m+n>0

Wm,n,

and

[Wm,n,Wr,s] ≤ Wm+r,n+s

for all m,n, r, s ≥ 0. As we have shown, the (p−1)-Engel ideal Ep−1(Λ2) of Λ2 is spanned by elements
Kp(b1, b2, . . . , bp) with bi ∈ Λ2. By linearity we can take the entries bi in these spanning elements to
be basic Lie products in x1, x2. (See page 6 of [16] for the definition of basic Lie products. They are
defined in analogy with basic commutators in groups.) Since Kp is symmetric in its entries modulo p

(we give a proof of this fact at the end of this section), we can assume that b1 ≤ b2 ≤ . . . ≤ bp in the
ordering on basic Lie products. We can also assume that b1 6= bp, as if all the entries in Kp are equal
then Kp evaluates to zero. These spanning elements are known as Kostrikin elements, and they are
multihomogeneous in x1, x2. (In other words, each of these spanning elements lies in Wm,n for some
m,n.) This implies that the free (p−1)-Engel Lie algebra Λ2/Ep−1(Λ2) is also graded by multiweight.
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It also implies that if we let Um,n be the multihomogeneous component of Λ2/Ep−1(Λ2) of multiweight
(m,n) then

dimUm,n ≥ dimWm,n − k,

where k is the number of Kostrikin elements with multiweight (m,n).
The dimension of W (m,n) is the number of basic Lie products with multiweight (m,n), so it is

easy to compute dimWm,n. For example, the basic Lie products of multiweight (p, 2) in x and y are

[y, x, . . . , x︸ ︷︷ ︸
p

, y], [y, x, . . . , x︸ ︷︷ ︸
p−1

, [y, x]], . . . , [y, x, . . . , x︸ ︷︷ ︸
p−r

, [y, x, . . . , x︸ ︷︷ ︸
r

]], . . .

with p− r > r, and so dimWp,2 =
p+1
2 . The Kostrikin elements with multiweight (p, 2) are

Kp(x, x, . . . , x, [y, x], [y, x]), Kp(x, x, . . . , x, y, [y, x, x]), Kp(x, x, . . . , x, [y, x, y]),

and so dimUp,2 ≥ p+1
2 − 3, which is positive for p > 5. So Sanov’s Theorem implies that if p > 5 then

L(2, p) contains nontrivial Lie products of multiweight (p, 2) in a1, a2.
When p = 5, U5,2 = {0}, and we need to look at U5,3. The basic Lie products of multiweight (5, 3)

are

[y, x, x, x, x, x, y, y], [y, x, x, x, x, y, [y, x]], [y, x, x, x, y, [y, x, x]],

[y, x, x, x, x, [y, x, y]], [y, x, x, y, [y, x, x, x]], [y, x, x, x, [y, x], [y, x]],

[y, x, x, [y, x], [y, x, x]],

and so dimW5,3 = 7. The Kostrikin elements of multiweight (5, 3) are

K5(x, x, y, y, [y, x, x, x]), K5(x, x, x, y, [y, x, x, y]),

K5(x, x, x, x, [y, x, y, y]), K5(x, x, x, [y, x], [y, x, y]),

K5(x, x, y, [y, x], [y, x, x]), K5(x, x, [y, x], [y, x], [y, x]),

and so dimU5,3 ≥ 1. (In fact the dimension is 1.) This shows that L(2, 5) has non-trivial Lie products
of multiweight (5, 3) in a1, a2.

Finally we give a short proof of our claim above that Kp is symmetric in its entries modulo p.

Lemma 5.1. If σ ∈Sym(p) then Kp(x1, x2, . . . , xp) = Kp(x1σ, x2σ, . . . , xpσ) modulo p.

Proof. We let x and y be free generators of the associative algebra A and we let n be a positive integer.
An easy induction shows that if we expand the Lie element [y, x, x, . . . , x︸ ︷︷ ︸

n

] as a sum of associative

products in A we obtain
n∑

r=0

(−1)r
(
n

r

)
xryxn−r.

Taking n = p− 1 we obtain

[y, x, x, . . . , x︸ ︷︷ ︸
p−1

] =

p−1∑
r=0

xryxp−1−r modulo p.
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We substitute x1 + x2 + . . .+ xp−1 for x and substitute xp for y in this equation, expand, and pick
out the terms on both sides which are multilinear in x1, x2, . . . , xp. This gives

Kp(x1, x2, . . . , xp) =
∑

σ∈ Sym(p)

x1σx2σ . . . xpσ modulo p,

which proves the lemma. □
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