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CHARACTERIZATION OF THE STRUCTURED PSEUDOSPECTRUM IN
NON-ARCHIMEDEAN BANACH SPACES

J. ETTAYB

Abstract. In this paper, we demonstrate some results on the pseudospectrum of linear operator pen-
cils on non-Archimedean Banach spaces. In particular, we give a relationship between the Fredholm
spectrum of a bounded operator pencil (A,B) and the Fredholm spectrum of the pencil (A−1, B−1).

Also, we characterize the essential spectrum of operator pencils on non-Archimedean Banach spaces.
Furthermore, we introduce and study the structured pseudospectrum of linear operators on non-
Archimedean Banach spaces. We prove that the structured pseudospectra associated with various
ε are nested sets, and the intersection of all the structured pseudospectra is the spectrum. We charac-
terize the structured pseudospectrum of bounded linear operators on non-Archimedean Banach spaces.
Finally, we characterize the structured essential pseudospectrum of bounded linear operator pencils on
non-Archimedean Banach spaces and we give an illustrative example.

1. Introduction

In the classical setting, spectral theory has witnessed an explosive development by many researchers
who have presented a survey of results concerning various types of essential spectrum and pseudospec-
trum [7, 15, 19]. Recently, Davies [7] introduced the concept of structured pseudospectrum of linear
operators on a complex Banach space. Moreover, Abdmouleh, Ammar,and Jeribi [1] gave a charac-
terization of the S-essential spectrum and defined the S-Riesz projection. On the other hand, they
investigated the S-Browder resolvent and studied the S-essential spectrum of the sum of two bounded
linear operators acting on a complex Banach space.
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The non-Archimedean Banach spaces were studied by Monna [16] which played a central role in
non-Archimedean functional analysis. There are many differences between non-Archimedean Banach
spaces and classical cases, see [3, 6, 14,16,17]. One of the main purposes of non-Archimedean Banach
spaces is to study the non-Archimedean operator theory and spectral theory.

In non-Archimedean operator theory, Ammar, Bouchekoua and Jeribi [2] introduced and stud-
ied the pseudospectrum and the essential pseudospectrum of linear operators on a non-Archimedean
Banach space and the non-Archimedean Hilbert space Eω, respectively. In particular, they char-
acterized these pseudospectrum. Furthermore, inspired by Diagana and Ramaroson [6], they es-
tablished a relationship between the essential pseudospectrum of a closed linear operator and the
essential pseudospectrum of this closed linear operator perturbed by completely continuous opera-
tors on the non-Archimedean Hilbert space Eω. Moreover, Ettayb [10] introduced and studied the
bounded linear operator pencils, the pseudospectrum, and the essential pseudospectrum of bounded
linear operator pencils on non-Archimedean Banach spaces. Furthermore, Blali, El Amrani, and
Ettayb [5] gave a characterization of the essential spectrum of the operator pencil (A,B), where A

is a closed linear operator and B is a bounded linear operator through the Fredholm operators on a
Banach space of countable type over Qp. In [4], Blali, El Amrani, and Ettayb defined and studied
the trace pseudospectrum, the ε-determinant spectrum, and the ε-trace of bounded linear operator
pencils on non-Archimedean Banach spaces. Recently, Ettayb [11] defined and established some re-
sults on the C-trace pseudospectrum, the M -determinant pseudospectrum and the pseudospectrum
of non-Archimedean matrix pencils. This work is motivated by many studies related to the topic of
eigenvalue problems in non-Archimedean operator theory and perturbation theory, see [2, 3, 5, 13,17].

The purpose of this work is to prove more results on the non-Archimedean pseudospectrum of
operator pencils. We initiate the study of non-Archimedean structured pseudospectrum of linear
operators.

Throughout this paper, X and Y are non-Archimedean Banach spaces over a complete non-
Archimedean valued field K with a non-trivial valuation | · |, L(X,Y ) denotes the set of all bounded
linear operators from X into Y and X∗ = L(X,K) is the dual space of X. When X = Y , we set
L(X,Y ) = L(X). Let A ∈ L(X), N(A) and R(A) denote the kernel and range of A respectively. For
additional details, we refer to [6,18]. The space X is said to be spherically complete if the intersection
of every decreasing sequence of balls in X is nonempty. Recall that, an unbounded linear operator
A : D(A) ⊆ X → Y is said to be closed if for all (xn)n∈N ⊂ D(A) such that ‖xn − x‖ → 0 and
‖Axn−y‖ → 0 as n → ∞, for some x ∈ X and y ∈ Y, then x ∈ D(A) and y = Ax. The collection of all
closed linear operators from X into Y is denoted by C(X,Y ). When X = Y, we put C(X,X) = C(X).

Note that, if A ∈ L(X) and B is an unbounded linear operator, then A+B is closed if and only if B
is closed [6]. We refer to [3, 6, 18] for more details on non-Archimedean operator theory. There are
many interesting works on pseudospectrum in the classical Banach spaces, see [15,19].
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2. Preliminaries

In the next definition, X and Y are two vector spaces over K.

Definition 2.1 ( [17]). We say that A ∈ L(X,Y ) has an index, when both α(A) = dimN(A) and
β(A) = dim

(
Y/R(A)

)
are finite. In this case, the index of the linear operator A is defined as

ind(A) = α(A)− β(A).

Definition 2.2 ( [17]). Let A ∈ L(X,Y ), A is said to be upper semi-Fredholm operator, if α(A) is
finite and R(A) is closed. The set of all upper semi-Fredholm operators from X into Y is denoted by
Φ+(X,Y ).

Definition 2.3 ( [17]). Let A ∈ L(X,Y ), A is said to be lower semi-Fredholm operator, if β(A) is
finite. The set of all lower semi-Fredholm operators from X into Y is denoted by Φ−(X,Y ).

The set of all Fredholm operators from X into Y is defined by

Φ(X,Y ) = Φ+(X,Y ) ∩ Φ−(X,Y ).

Let X be a non-Archimedean Banach space over K. A subset A of X is said to be compactoid, if for
every ε > 0, there is a finite subset B of X such that A ⊂ Bε(0) + C0(B), where Bε(0) = {x ∈ X :

‖x‖ ≤ ε} and C0(B) is the absolutely convex hull of X, i.e.,

C0(B) = {λ1x1 + · · ·+ λnxn : n ∈ N, λ1, · · · , λn ∈ BK, x1, · · · , xn ∈ B}.

For additional details, see [18]. Now, we recall the notions of compact operators, operators of finite
rank and completely continuous operators.

Definition 2.4 ([18]). Let A ∈ L(X,Y ). A is said to be compact, if A(BX) is compactoid in Y, where
BX = {x ∈ X : ‖x‖ ≤ 1}.

We denote by K(X,Y ), the set of all compact operators from X into Y.

Definition 2.5 ([18]). Let A ∈ L(X,Y ). A is called an operator of finite rank, if dimR(A) is finite.
The set of all operators of finite rank is denoted by F0(X,Y ).

Definition 2.6 ([6]). Let X be a non-Archimedean Banach space over K and let A ∈ L(X). A is said
to be completely continuous, if there exists a sequence (An)n in F0(X) such that ‖An − A‖ → 0 as
n → ∞. The collection of completely continuous linear operators on X is denoted by Cc(X).

Now, we give a characterization of compact operators as follows.

Theorem 2.7 ( [18]). Let A ∈ L(X,Y ). Then A is compact if, and only if, for every ε > 0, there
exists an operator S ∈ L(X,Y ) such that R(S) is finite-dimensional and ‖A− S‖ < ε.

Remark 2.8 ([18]).
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(i) In a non-Archimedean Banach space X, we do not have the relationship between Cc(X) and K(X)

as a classical case. Serre has proved that those concepts coincide, when K is locally compact.
(ii) If K is locally compact. Then all completely continuous linear operators on X are compact.
(iii) If K is locally compact. Then A is compact if, and only if, A(BX) has compact closure.

The following theorem showed that the set of all Fredholm operators is invariant under preservation
by compact operators.

Theorem 2.9 ( [17]). Suppose that K is spherically complete. Then, for each A ∈ Φ(X,Y ) and
K ∈ K(X,Y ), A+K ∈ Φ(X,Y ) and ind(A+K) = ind(A).

Lemma 2.10 ( [13]). Suppose that K is spherically complete. If x∗1, · · · , x∗n are linearly independent
vectors in X∗, then there are vectors x1, · · · , xn in X such that

(2.1) x∗j (xk) = δj,k =

1, if j = k;

0, if j 6= k.
1 ≤ j, k ≤ n.

Moreover, if x1, · · · , xn are linearly independent vectors in X, then there are vectors x∗1, · · · , x∗n in X∗

such that (2.1) holds.

Theorem 2.11 ( [14]). Assume that X, Y are non-Archimedean Banach spaces over K. Let A :

D(A) ⊆ X → Y be a surjective closed linear operator. Then A is an open map.

When the domain of A is dense in X, the adjoint operator A∗ of A is defined as usual. Specifically,
the operator A∗ : D(A∗) ⊆ Y ∗ → X∗ satisfies

〈Ax, y∗〉 = 〈x, A∗y∗〉

for all x ∈ D(A), y∗ ∈ D(A∗).

Theorem 2.12 ([18]). Suppose that K is spherically complete. Let X be a non-Archimedean Banach
space over K. For any x ∈ X\{0}, there exists x∗ ∈ X∗ such that x∗(x) = 1 and ‖x∗‖ = ‖x‖−1.

Remark 2.13 ([18]). Qp is spherically complete and locally compact.

In the next theorem, Φ0(X,Y ) denotes the set of all bounded linear Fredholm operators of index
zero.

Theorem 2.14 ( [13]). Let K be spherically complete. Let X,Y be non-Archimedean Banach spaces
over K. Every operator in Φ0(X,Y ) is a sum of an invertible operator and an operator of finite rank.

Corollary 2.15 ([13]). If X,Y are non-Archimedean Banach spaces over Qp and B ∈ L(X,Y ) where
B is invertible and K is compact, then ind(B +K) = 0.

Theorem 2.16 ( [13]). Let X be a non-Archimedean Banach space over a spherically complete field
K. If A,B ∈ Φ(X), then BA ∈ Φ(X).
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Theorem 2.17 ( [10]). Let X be a non-Archimedean Banach space over a spherically complete field
K such that ‖X‖ ⊆ |K|, and let A,B ∈ L(X) and ε > 0. Then,

σε(A,B) =
⋃

C∈L(X):∥C∥<ε

σ(A+ C,B).

3. Main Results

From Theorem 2.14, we conclude the following lemma.

Lemma 3.1. Let X,Y be non-Archimedean Banach spaces over Qp. Every operator in Φ0(X,Y ) is a
sum of an invertible operator and compact operator.

We have the following proposition.

Proposition 3.2. Let X,Y be non-Archimedean Banach spaces over Qp. Then A ∈ Φ0(X,Y ) if and
only if A = B +K where B is invertible and K is compact.

Proof. Let A ∈ Φ0(X,Y ). By Theorem 2.14, A = B + K where B is invertible and K is of finite
rank. Since K = Qp, by Theorem 2.7, K is a compact operator. The converse follows from Corollary
2.15. □

As the classical setting, we have the following lemma.

Lemma 3.3. Let X be a non-Archimedean Banach space over Qp. Suppose that A ∈ L(X) and there
are B0, B1 ∈ L(X) such that B0A and AB1 are in Φ(X). Then A ∈ Φ(X).

Definition 3.4. Let X be a non-Archimedean Banach space over K, let A,B ∈ L(X). The Fredholm
spectrum σF (A,B) of the operator pencil (A,B) of the form A− λB is given by

σF (A,B) = {λ ∈ K : A− λB 6∈ Φ(X)}.

The Fredholm resolvent of (A,B) is ρF (A,B) = K\σF (A,B).

The following theorem gives a relationship between the Fredholm spectrum of a bounded operator
pencil (A,B) and the Fredholm spectrum of the operator pencil (A−1, B−1).

Theorem 3.5. Let X be non-Archimedean Banach space over a spherically complete field K, and
let A,B ∈ L(X) such that AB = BA and 0 ∈ ρ(A) ∩ ρ(B). Then λ ∈ σF (A,B) if and only if
1
λ ∈ σF (A

−1, B−1).

Proof. We have

(3.1) A− λB = −λB(A−1 − λ−1B−1)A.

Let 1
λ ∈ K\σF (A−1, B−1), then A−1 − λ−1B−1 ∈ Φ(X). Since 0 ∈ ρ(A) ∩ ρ(B), A,B ∈ Φ(X) and

ind(A) = ind(B) = 0. We can conclude that A − λB ∈ Φ(X). Thus λ ∈ K\σF (A,B). On the other
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hand, from (3.1), we have

ind(A− λB) = ind(−λB(A−1 − λ−1B−1)A)

= ind(B) + ind(A) + ind(A−1 − λ−1B−1)

= ind(A−1 − λ−1B−1).

Conversely, let 0 6= λ ∈ K\σF (A,B), hence (A−λB) ∈ Φ(X), then by (3.1), B(A−1 −λ−1B−1)A ∈
Φ(X). Since A,B ∈ Φ(X), A−1 − λ−1B−1 ∈ Φ(X), thus 1

λ 6∈ σF (A
−1, B−1). □

From [9, Definition 2.3], we have the following:

Definition 3.6. Let A ∈ C(X), B ∈ L(X) and ε > 0. The pseudospectrum σε(A,B) of a operator
pencil (A,B) of the form A− λB on X is defined by

σε(A,B) = σ(A,B) ∪ {λ ∈ K : ‖(A− λB)−1‖ > ε−1}.

The pseudoresolvent ρε(A,B) of a operator pencil (A,B) of the form A− λB is defined by

ρε(A,B) = ρ(A,B) ∩ {λ ∈ K : ‖(A− λB)−1‖ ≤ ε−1},

by convention ‖(A− λB)−1‖ = ∞, ifλ ∈ σ(A,B).

Now, we give a characterization of the essential spectrum of non-Archimedean operator pencils as
follows.

Proposition 3.7. Let X be a non-Archimedean Banach space over Qp, let A,B ∈ L(X). Then⋂
K∈K(X)

σ(A+K,B) = {λ ∈ Qp : A− λB 6∈ Φ(X)} ∪ {λ ∈ Qp : ind(A− λB) 6= 0}.

Proof. Let λ 6∈ {λ ∈ Qp : A − λB 6∈ Φ(X)} ∪ {λ ∈ Qp : ind(A − λB) 6= 0}. Then A − λB ∈ Φ(X),
and ind(A − λB) = 0. By Lemma 3.1, there is K ∈ K(X) such that λ ∈ ρ(A + K,B). Thus λ 6∈⋂
K∈K(X)

σ(A+K,B). Hence

⋂
K∈K(X)

σ(A+K,B) ⊆ {λ ∈ Qp : A− λB 6∈ Φ(X)} ∪ {λ ∈ Qp : ind(A− λB) 6= 0}.

Let λ 6∈
⋂

K∈K(X)

σ(A+K,B), then A+K − λB ∈ Φ(X), and ind(A+K − λB) = 0. Hence A− λB =

A − λB + K − K. By Theorem 2.9, A − λB ∈ Φ(X) and ind(A + K − λB) = ind(A − λB) = 0.

Consequently,
λ 6∈ {λ ∈ Qp : A− λB 6∈ Φ(X)} ∪ {λ ∈ Qp : ind(A− λB) 6= 0}.

This completes the proof. □

From the definition of the pseudospectrum of operator pencils, we deduce the following theorem.

Theorem 3.8. Let X be a non-Archimedean Banach space over K. Let A ∈ C(X), B ∈ L(X) and
ε > 0. Then

σε(A,B) = σ(A,B) ∪ {λ ∈ K : ∃ x ∈ D(A), ‖(A− λB)x‖ < ε‖x‖}.

DOI: https://dx.doi.org/10.30504/JIMS.2024.446376.1163

https://dx.doi.org/10.30504/JIMS.2024.446376.1163


J. Iran. Math. Soc. 5 (2024), no. 2, 79-93 J. Ettayb 85

Proof. Let λ ∈ σε(A,B), then λ ∈ σ(A,B) or ‖(A − λB)−1‖ > 1
ε . If λ ∈ σε(A,B), and λ 6∈ σ(A,B),

then there exists y ∈ X\{0} such that

(3.2) ‖(A− λB)−1y‖
‖y‖

>
1

ε
.

Set x = (A− λB)−1y with x ∈ D(A). By (3.2),
‖x‖

‖(A− λB)x‖
>

1

ε
.

Thus there exists x ∈ D(A) such that ‖(A − λB)x‖ < ε‖x‖. Conversely, let λ ∈ K such that there
exists x ∈ D(A) and

(3.3) ‖(A− λB)x‖ < ε‖x‖

or λ ∈ σ(A,B). If λ 6∈ σ(A,B) and put y = (A− λB)x, then x = (A− λB)−1y. Hence by (3.3),

‖y‖ < ε‖(A− λB)−1y‖.

Since y 6= 0, it follows that
1

ε
< ‖(A− λB)−1‖,

then λ ∈ σε(A,B). □

As the classical setting, we have the following theorem.

Theorem 3.9. Let X be a non-Archimedean Banach space over K such that ‖X‖ ⊆ |K|, and let
A ∈ C(X), B ∈ L(X), and ε > 0. Then

σε(A,B) = σ(A,B) ∪ {λ ∈ K : ∃ xn ∈ D(A), ‖xn‖ = 1 and lim
n→∞

‖(A− λB)xn‖ < ε}.

The next corollary is essential in the proof of Proposition 3.11.

Corollary 3.10. For all λ ∈ σ(A,B) and µ ∈ K, we have λ+ µ ∈ σ(A+ µB,B).

Proof. If λ + µ ∈ ρ(A + µB,B), then (A + µB − (λ + µ)B)−1 ∈ L(X), hence (A − λB)−1 ∈ L(X)

which is a contradiction. □

In the following proposition, we collect some properties of non-Archimedean pseudospectrum of
operator pencils.

Proposition 3.11. Let X be a non-Archimedean Banach space over a spherically complete field K
such that ‖X‖ ⊆ |K|. Let A ∈ C(X), B ∈ L(X), such that ‖B‖ ≤ 1, and ε, δ > 0 .Then

(i) σ(A,B) +B(0, ε) ⊆ σε(A,B), where B(0, ε) is the open disk centered at zero with radius ε;
(ii) σε(A,B) +B(0, δ) ⊆ σε+δ(A,B).

Proof.
(i) Let λ ∈ σ(A,B)+B(0, ε), then there is λ1 ∈ σ(A,B) and λ2 ∈ B(0, ε) such that λ = λ1+λ2. Since
λ1 ∈ σ(A,B), from Corollary 3.10, λ1 + λ2 ∈ σ(A + λ2B,B). Also |λ2|‖B‖ < ε. Set D = λ2B. Then
D ∈ L(X), ‖D‖ < ε and λ ∈ σ(A+D,B). By Theorem 2.17, λ ∈ σε(A,B).
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(ii) Let λ ∈ σε(A,B) + B(0, δ), then there is λ1 ∈ σε(A,B) and λ2 ∈ B(0, δ) such that λ = λ1 + λ2.

Since λ1 ∈ σε(A,B), by Theorem 2.17, there is C ∈ L(X) such that ‖C‖ < ε and λ1 ∈ σ(A + C,B).

By Corollary 3.10, λ = λ1 + λ2 ∈ σ(A+ C + λ2B,B). Also, we have C + λ2B ∈ L(X) with

‖C + λ2B‖ ≤ max{‖C‖, |λ2|‖B‖} < max{ε, δ} < ε+ δ.

From Theorem 2.17, we conclude that λ ∈ σε+δ(A,B). □

The next proposition gives a relationship between the spectrum of AB and the spectrum of BA.

Proposition 3.12. Let X be a non-Archimedean Banach space over K, and let A ∈ L(X), then
1 6∈ σ(AB) if and only if 1 6∈ σ(BA).

Proof. Let 1 6∈ σ(AB), then (I −AB)−1 is invertible, hence there is C ∈ L(X) such that

C(I −AB) = (I −AB)C = I.

Thus C = I + CAB = I +ABC, then ABC = CAB. Moreover,

(I +BCA)(I −BA) = I −BA+BCA−BCABA

= I −BA+BC(I −AB)A

= I −BA+BA

= I,

and

(I −BA)(I +BCA) = I −BA+BCA−BABCA

= I −BA+BCA−BCABA since ABC = CAB

= I −BA+BC(I −AB)A

= I −BA+BA

= I.

Hence I + BCA is the inverse of I − BA. Consequently, 1 6∈ σ(BA). Similarly, we obtain that if
1 6∈ σ(BA), then 1 6∈ σ(AB). □

We introduce the following definition.

Definition 3.13. Let X be a non-Archimedean Banach space over K, such that ‖X‖ ⊆ |K|. Let
A ∈ C(X), B,C ∈ L(X) and ε > 0. The structured pseudospectrum σε(A,B,C) of A is defined by

σε(A,B,C) =
⋃

D∈L(X):∥D∥<ε

σ(A+ CDB).

Remark 3.14. Let A ∈ C(X), B, C ∈ L(X) and ε > 0. If C = B = I, then σε(A, I, I) = σε(A) is the
pseudospectrum of A.
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The following theorem gives a characterization of the structured pseudospectrum of operator pencils
on non-Archimedean Banach spaces.

Theorem 3.15. Let X be a non-Archimedean Banach space over a spherically complete field K such
that ‖X‖ ⊆ |K|. Let A ∈ C(X), B,C ∈ L(X) such that 0 ∈ ρ(B) ∩ ρ(C) and ε > 0. Then,

σε(A,B,C) = σ(A) ∪ {λ ∈ K : ‖B(A− λI)−1C‖ >
1

ε
}.

Proof. If D = 0, we have
σ(A) ⊆ σε(A,B,C).

If D 6= 0, let λ 6∈ σ(A). If ‖B(A − λI)−1C‖ ≤ ε−1. Then for all D ∈ L(X) : ‖D‖ < ε. Hence
‖DB(A − λI)−1C‖ < 1. Therefore, I − DB(A − λI)−1C is invertible. By Proposition 3.12, for all
D ∈ L(X) : ‖D‖ < ε, 1 6∈ σ(DB(A− λI)−1C) if and only if 1 6∈ σ(CDB(A− λI)−1). Thus

A+ CDB − λI = (I + CDB(A− λI)−1)(A− λI).

Consequently,
λ 6∈

⋃
D∈L(X):∥D∥<ε

σ(A+ CDB).

For the converse inclusion, if λ 6∈ σ(A), then ‖B(A− λI)−1C‖ > ε−1. Hence

sup
x∈X\{0}

‖B(A− λI)−1Cx‖
‖x‖

>
1

ε
.

Thus there exists x ∈ X\{0} such that

(3.4) ‖B(A− λI)−1Cx‖ >
‖x‖
ε

.

Set y = B(A− λI)−1Cx, thus C−1(A− λI)B−1y = x. From (3.4),

(3.5) ‖C−1(A− λI)B−1y‖ < ε‖y‖.

Since ‖X‖ ⊆ |K|, there is c ∈ K\{0} such that ‖y‖ = |c|, set z = c−1y hence ‖z‖ = 1. From (3.5),
‖C−1(A−λI)B−1z‖ < ε. By Theorem 2.12, there is ϕ ∈ X∗ such that ϕ(z) = 1 and ‖ϕ‖ = ‖z‖−1 = 1.

Put for all x ∈ X,Dx = ϕ(x)C−1(λI −A)B−1z. Hence

‖Dx‖ = |ϕ(x)|‖C−1(A− λI)B−1z‖

≤ ‖ϕ‖‖x‖‖C−1(A− λI)B−1z‖

< ε‖x‖.

So D ∈ L(X) with ‖D‖ < ε. Moreover for z 6= 0, we have (A+CDB− λI)z = 0, thus A+CDB− λI

is not injective, then A+ CDB − λI is not invertible. Using Definition 3.13, λ ∈ σε(A,B,C). □

Now, we collect some properties of non-Archimedean structured pseudospectrum of operators pen-
cils.

Theorem 3.16. Let X be a non-Archimedean Banach space over a spherically complete field K such
that ‖X‖ ⊆ |K|. Let A ∈ C(X), B,C ∈ L(X) such that 0 ∈ ρ(B) ∩ ρ(C) and ε > 0. Then,
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(i) For all ε1, ε2 such that ε1 ≤ ε2, we have σε1(A,B,C) ⊆ σε2(A,B,C);
(ii) σ(A) =

⋂
ε>0

σε(A,B,C).

Proof.
(i) Let λ ∈ σε1(A,B,C), then by Theorem 3.15, ‖B(A−λI)−1C‖ > ε−1

1 ≥ ε−1
2 . Thus λ ∈ σε2(A,B,C).

(ii) Since for all ε > 0, σ(A) ⊆ σε(A,B,C), we have σ(A) ⊆
⋂
ε>0

σε(A,B,C).

Conversely, if λ ∈
⋂
ε>0

σε(A,B,C), then for all ε > 0, λ ∈ σε(A,B,C). If λ 6∈ σ(A), then λ ∈

{λ ∈ K : ‖B(A − λI)−1C‖ > ε−1}, taking limits as ε → 0+, we get ‖B(A − λI)−1C‖ = ∞. Thus
λ ∈ σ(A). □

Theorem 3.17. Let X be a non-Archimedean Banach space over a spherically complete field K such
that ‖X‖ ⊆ |K|. Let A ∈ C(X), B, C ∈ L(X) such that 0 ∈ ρ(B) ∩ ρ(C), B(D(A)) = D(A) and ε > 0.

Then,
σε(A,B,C) = σ(A) ∪ {λ ∈ K : ∃ x ∈ D(A), ‖x‖ = 1, ‖C−1(A− λI)B−1x‖ < ε}.

Proof. From Theorem 3.15,

σε(A,B,C) = σ(A) ∪ {λ ∈ K : ‖B(A− λI)−1C‖ >
1

ε
}.

Let λ ∈ σε(A,B,C)\σ(A), then ‖B(A− λI)−1C‖ > ε−1. Thus there exists x ∈ X\{0} such that

(3.6) ‖B(A− λI)−1Cx‖ >
‖x‖
ε

.

Set y = B(A− λI)−1Cx with y ∈ D(A), thus C−1(A− λI)B−1y = x. From (3.6),

(3.7) ‖C−1(A− λI)B−1y‖ < ε‖y‖.

Since ‖X‖ ⊆ |K|, there is c ∈ K\{0} such that ‖y‖ = |c|, set z = c−1y, hence ‖z‖ = 1. By
(3.7), ‖C−1(A − λI)B−1y‖ < ε. Conversely, assume that there is z ∈ D(A) such that ‖z‖ = 1 and
‖C−1(A−λI)B−1y‖ < ε. By Theorem 2.12, there is ϕ ∈ X∗ such that ϕ(z) = 1 and ‖ϕ‖ = ‖z‖−1 = 1.

Set for any x ∈ X,Dx = ϕ(x)C−1(λI −A)B−1z. Hence for each x ∈ X,

‖Dx‖ = |ϕ(x)|‖C−1(A− λI)B−1z‖

≤ ‖ϕ‖‖x‖‖C−1(A− λI)B−1z‖

< ε‖x‖.

Then D ∈ L(X) : ‖D‖ < ε. Moreover for z 6= 0, we have (A+ CDB − λI)z = 0, thus A+ CDB − λI

is not injective, then A+ CDB − λI is not invertible. By Definition 3.13, λ ∈ σε(A,B,C). □

We have the following definition.

Definition 3.18. Let X be a non-Archimedean Banach space over Qp such that ‖X‖ ⊆ |Qp|. Let
A ∈ C(X), B, C ∈ L(X) and ε > 0. The structured Fredholm pseudospectrum σF,ε(A,B,C) of A is
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given by
σF,ε(A,B,C) =

⋃
D∈L(X):∥D∥<ε

σF (A+ CDB).

Remark 3.19. Let X be a non-Archimedean Banach space over K. Let A ∈ C(X), B,C,D ∈ L(X).

Then,

(3.8) (λI −A)(λI − CDB) = ACDB + λ(λI −A− CDB)

and

(3.9) (λI − CDB)(λI −A) = CDBA+ λ(λI −A− CDB).

We obtain the following theorem.

Theorem 3.20. Let X be a non-Archimedean Banach space over Qp such that ‖X‖ ⊆ |Qp|. Let
A ∈ C(X), B, C ∈ L(X) and ε > 0. If for all D ∈ L(X) such that ‖D‖ < ε, ACDB is a Fredholm
operator, then

σF,ε(A,B,C)\{0} ⊂
[
σF (A) ∪

⋃
D∈L(X):∥D∥<ε

σF (CDB)
]
\{0}.

Moreover, if for all D ∈ L(X) : ‖D‖ < ε, CDBA and ACDB are Fredholm operators, then

σF,ε(A,B,C)\{0} =
[
σF (A) ∪

⋃
D∈L(X):∥D∥<ε

σF (CDB)
]
\{0}.

Proof. If λ 6∈
[
σF (A) ∪

⋃
D∈L(X):∥D∥<ε

σF (CDB)
]
\{0} or λ = 0. If λ 6= 0, then λI − A ∈ Φ(X) and for

all D ∈ L(X) such that ‖D‖ < ε, λI − CDB ∈ Φ(X). From Theorem 2.16, for all D ∈ L(X) such
that ‖D‖ < ε, (λI − A)(λI − CDB) ∈ Φ(X). Since ACDB is Fredholm, using (3.8), we get for all
D ∈ L(X) : ‖D‖ < ε, λI −A−CDB ∈ Φ(X). Consequently, λ 6∈ σF,ε(A,B,C)\{0}. For the converse
inclusion, let λ 6∈ σF,ε(A,B,C)\{0}, then for all D ∈ L(X) such that ‖D‖ < ε, λ 6∈ σF (A + CDB)

or λ = 0. If λ 6= 0, then for all D ∈ L(X) such that ‖D‖ < ε, λI − A − CDB ∈ Φ(X). Since
for all D ∈ L(X) such that ‖D‖ < ε, ACDB and CDBA are Fredholm. Thus for each ‖D‖ < ε,

(λI −A)(λI −CDB) ∈ Φ(X) and (λI −CDB)(λI −A) ∈ Φ(X). By Lemma 3.3, λI −A ∈ Φ(X) and
for all D ∈ L(X) such that ‖D‖ < ε, λ− CDB ∈ Φ(X). Hence

λ 6∈
[
σF (A) ∪

⋃
D∈L(X):∥D∥<ε

σF (CDB)
]
\{0}.

□

Definition 3.21. Let X be a non-Archimedean Banach space over Qp, and let A ∈ C(X), B,C ∈ L(X)

and ε > 0. The structured essential pseudospectrum σe,ε(A,B,C) of the linear operator A is given by

σe,ε(A,B,C) =
⋃

D∈L(X):∥D∥<ε

σe(A+ CDB)

where σe(M) = {λ ∈ Qp : M − λI is not Fredholm of index 0} for M ∈ L(X).
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Now, we characterize the structured essential pseudospectrum of non-Archimedean bounded linear
operator pencils as follows.

Theorem 3.22. Let X be a non-Archimedean Banach space over Qp such that ‖X‖ ⊆ |Qp|. Let
A ∈ L(X), B, C,D ∈ L(X), λ ∈ Qp and ε > 0 such that A∗, B∗, C∗, D∗ exist and
N
(
(A + CDB − λI)∗

)
= R(A + CDB − λI)⊥. Then λ 6∈ σe,ε(A,B,C), if and only if

λ 6∈
⋂

K∈K(X)

σε(A+K,B,C).

Proof. Let λ 6∈ σe,ε(A,B,C), then for all D ∈ L(X) such that ‖D‖ < ε, we have A+CDB−λI ∈ Φ(X)

and ind(A+CDB−λI) = 0. Put α(A+CDB−λI) = β(A+CDB−λI) = n. Let {x1, · · · , xn} being
the basis for N(A+CDB−λI) and {y∗1, · · · , y∗n} being the basis for R(A+CDB−λI)⊥. By Lemma
2.10, there are functionals x∗1, · · · , x∗n in X∗ (

X∗ is the dual space of X
)

and elements y1, · · · , yn in
X such that

x∗j (xk) = δj,k and y∗j (yk) = δj,k, 1 ≤ j, k ≤ n,

where δj,k = 0 if j 6= k and δj,k = 1 if j = k. Consider the operator K defined on X by

K : X → X

x 7→
n∑

i=1

x∗i (x)yi.

It is easy to see that K is linear operator and D(K) = X. In fact, for all x ∈ X,

‖Kx‖ = ‖
n∑

i=1

x∗i (x)yi‖

≤ max
1≤i≤n

‖x∗i (x)yi‖

≤ max
1≤i≤n

(‖x∗i ‖‖yi‖)‖x‖.

Moreover, R(K) is contained in a finite-dimensional subspace of X. So, K is a finite rank operator,
then K is completely continuous. Since K = Qp, from Remark 2.8, K is a compact operator. We show
that for all D ∈ L(X) such that ‖D‖ < ε, we have

(3.10) N(A+ CDB − λI) ∩N(K) = {0}

and

(3.11) R(A+ CDB − λI) ∩R(K) = {0}.

Let x ∈ N(A+CDB−λI)∩N(K), then x ∈ N(A+CDB−λI) and x ∈ N(K). If x ∈ N(A+CDB−λI),

then

x =

n∑
i=1

αixi with α1, · · · , αn ∈ Qp.
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Then for all 1 ≤ j ≤ n, x∗j (x) =

n∑
i=1

αiδi,j = αj . On the other hand, if x ∈ N(K), then Kx = 0, so

n∑
j=1

x∗j (x)yj = 0.

Therefore, we have for all 1 ≤ j ≤ n, x∗j (x) = 0. Hence x = 0. Consequently, for all D ∈ L(X) such
that ‖D‖ < ε,

N(A+ CDB − λI) ∩N(K) = {0}.

Let y ∈ R(A + CDB − λI) ∩ R(K), then y ∈ R(A + CDB − λI) and y ∈ R(K). Let y ∈ R(K), we
have

y =

n∑
i=1

αiyi with α1, · · · , αn ∈ Qp.

Then for all 1 ≤ j ≤ n, y∗j (y) =

n∑
i=1

αiδi,j = αj . On the other hand, if y ∈ R(A + CDB − λI), hence

for all 1 ≤ j ≤ n, y∗j (y) = 0. Thus y = 0. Therefore,

R(A+ CDB − λI) ∩R(K) = {0}.

On the other hand, K is a compact operator. By Theorem 2.9, for all D ∈ L(X) such that ‖D‖ <

ε, A+ CDB +K − λI ∈ Φ(X) and ind(A+ CDB +K − λI) = 0. Thus for all D ∈ L(X) such that
‖D‖ < ε,

(3.12) α(A+ CDB +K − λI) = β(A+ CDB +K − λI).

If x ∈ N(A+CDB+K−λI), then (A+CDB−λI)x = −Kx in R(A+CDB−λI)∩R(K). It follows
from (3.11) that (A+CDB−λI)x = −Kx = 0, hence x ∈ N(A+CDB−λI)∩N(K) and from (3.10),
x = 0. Thus α(A + K + CDB − λI) = 0, it follows from (3.12) that R(A + CDB + K − λI) = X.

Consequently, A+K + CDB − λI is invertible and by Definition 3.13, λ 6∈
⋂

K∈K(X)

σε(A+K,B,C).

Let λ 6∈
⋂

K∈K(X)

σε(A + K,B,C), then there is K ∈ K(X) such that λ ∈ ρε(A + K,B,C), from

Definition 3.13, there is K ∈ K(X) such that for all D ∈ L(X) with ‖D‖ < ε, we have

A+ CDB +K − λI ∈ Φ(X)

and
ind(A+ CDB +K − λI) = 0.

By Theorem 2.9, for each D ∈ L(X) satisfying ‖D‖ < ε, we have

A+ CDB − λI ∈ Φ(X)

and
ind(A+ CDB − λI) = ind(A+ CDB +K − λI) = 0.

Consequently, λ 6∈ σe,ε(A,B,C). □
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We finish with the following example.

Example 3.23. Let X be a free Banach space over Qp such that ‖X‖ ⊆ |Qp|. Let A,B,C ∈ L(X) be
diagonal operators such that 0 ∈ ρ(B) ∩ ρ(C) and for all i ∈ N, Aei = aiei, Bei = biei and Cei = ciei

with (ai)i∈N, (bi)i∈N, (ci)i∈N ⊂ Qp : sup
i∈N

|ai|p, sup
i∈N

|bi|p, sup
i∈N

|ci|p are finite. From [6, Proposition 3.55 ],

σ(A) = {λ ∈ Qp : inf
i∈N

|ai − λ| = 0} = {ai : i ∈ N},

and for all λ ∈ ρ(A), we have

‖B(A− λI)−1C‖ = sup
i∈N

‖B(A− λI)−1Cei‖
‖ei‖

= sup
i∈N

∣∣∣∣ bici
ai − λ

∣∣∣∣.
Consequently,

σε(A,B,C) = {ai : i ∈ N} ∪
{
λ ∈ Qp : sup

i∈N

∣∣∣∣ bici
ai − λ

∣∣∣∣ > 1

ε

}
.

For more examples of non-Archimedean structured pseudospectrum of matrices, we refer the readers
to [12].
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