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ON THE WATCHING NUMBER OF GRAPHS

S. AHMADI AND E. VATANDOOST∗

Abstract. Let G = (V,E) be a simple and undirected graph. A watcher ωi of G is a couple of
ωi = (vi, Zi), where vi ∈ V and Zi is a subset of the closed neighborhood of vi. If a vertex v ∈ Zi, we
say that v is covered by ωi. A set W = {ω1, ω2, . . . , ωk}, of watchers, is a watching system for G if
the sets LW (v) = {ωi : v ∈ Zi , 1 ≤ i ≤ k} are non-empty and distinct, for every v ∈ V . In this
paper, we study the watching systems of some graphs and consider the watching number of Mycielski’s
construction of some graphs.

1. Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will often use the
notation G = (V,E) to denote a graph with non-empty vertex set V = V (G) and edge set E = E(G).
An edge of G with end vertices u and v is denoted by uv. The order of a graph is the number of vertices
in the graph and the size of a graph is the number of edges. For every vertex x ∈ V (G), the open
neighborhood of the vertex x is denoted by NG(x) and defined as NG(x) = {y ∈ V (G) : xy ∈ E(G)}.
Also, the closed neighborhood of the vertex x ∈ V (G), NG[x], is NG[x] = NG(x) ∪ {x}. The degree of
a vertex x ∈ V (G) is degG(x) =

∣∣NG(x)
∣∣. The maximum degree of a graph G is denoted by ∆(G). A

vertex x ∈ V (G) is called a universal vertex, if NG[x] = V (G). A complete bipartite graph is a special
kind of bipartite graph, where every vertex of the first part is connected to every vertex of the second
part. The complete bipartite graph is denoted by Kr,s.
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A subset S of the vertices of a graph G is a dominating set of G, if every vertex in V (G) \ S is
adjacent to at least one vertex in S. The domination number of a graph G, denoted by γ(G), is the
cardinality of a minimum dominating set of G. A set C of vertices G is an identifying code of G, if
for every two vertices x and y the sets NG[x] ∩ C and NG[y] ∩ C are non-empty and different. The
smallest size of an identifying code of a graph G, is called the identifying code number of G and is
denoted by γID(G). For more details, we refer the reader to [5, 6, 9, 12].

For graph G = (V,E), let V
′
(G) = {v′

1, v
′
2, . . . , v

′
n} be a copy of V (G) = {v1, v2, . . . , vn} and w be a

new vertex. Mycielski’s construction of graph G, denoted by µ(G) and it is a graph with the vertex set
V (µ(G)) = V (G) ∪ V

′
(G) ∪ {w} and the edge set E(µ(G)) = E(G) ∪ {viv

′
j : vivj ∈ E(G), 1 ≤ i, j ≤

n}∪{wv′
i : 1 ≤ i ≤ n}. The Mycielski’s construction of a graph G was introduced by J. Mycielski to

construct triangle-free graphs with the arbitrarily large chromatic number [8]. In recent years, there
have been results reported on the Mycielski graph related to several domination parameters [4, 7].
Watching systems were introduced in [2], are generalization of identifying codes. A watcher ω of a
graph G is a couple of ω = (vi, Zi), where vi ∈ V (G) and Zi ⊆ NG[vi]. We will say that ω is located at
vi. A watching system for a graph G is a finite set W = {ω1, ω2, . . . , ωk}, such that for every v ∈ V (G),

LW (v) = {ωi : v ∈ Zi , 1 ≤ i ≤ k} are non-empty and distinct. The watching number of a graph G

is denoted by ω(G) is the minimum size of watching systems of G. Auger et al. in [3], gave an upper
bound on ω(G) for connected graphs of order n and characterized the trees attaining this bound. In
2014, Maimani et al. in [10], studied the watching systems of triangular graphs. They proved that
watching number of triangular graph T (n) is equal to

⌈
2n
3

⌉
. In 2017, Roozbayani et al. in [11], studied

identifying codes and watching systems in Kneser graphs.
In this paper, we study the watching number of some graphs. In Section 2, we give two bounds for

ω(G), which are sharp. We show that if G is a connected graph, ∆(G) = n− 2 and NG(a) = NG(b) =

G \ {a, b}, then ω(G) = ⌈log2(n+1)⌉. In Section 3, we give two bounds for ω(µ(G)), which are sharp.
We prove if G has a universal vertex, then ω(µ(G)) = ⌈log2(n + 1)⌉ + 2. Finally, we give an upper
bound for ω(µ(Cn)).

2. Some results on watching systems

In this Section, we give some results about watching systems.

Theorem 2.1. [2] Let G be a graph of order n. Then
i) If G is twin free graph, then γ(G) ≤ ω(G) ≤ γID(G),
ii) ⌈log2(n+ 1)⌉ ≤ ω(G) ≤ γ(G)⌈log2(∆(G) + 2)⌉ .

Example 2.2. For graphs G and H which are shown in Figure 1, we have ω(G) = 4 and ω(H) = 3.
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Theorem 2.3. Let G be a graph of order n with ∆(G) = n− 1. Then ω(G) = ⌈log2(n+ 1)⌉.

Proof. By Theorem 2.1, (ii), ⌈log2(n + 1)⌉ ≤ ω(G). Since G has a universal vertex, γ(G) = 1. By
Theorem 2.1, (ii), we have ω(G) ≤ ⌈log2(n− 1 + 2)⌉ = ⌈log2(n+ 1)⌉. So ω(G) = ⌈log2(n+ 1)⌉. □

Theorem 2.4. Let G be a connected graph and e ∈ E(G) such that G \ {e} = G1 ∪ G2. Then
ω(G1) + ω(G2)− 2 ≤ ω(G) ≤ ω(G1) + ω(G2).

Proof. Let a and b be two end vertices of e, a ∈ V (G1) and b ∈ V (G2). Let Wi be a watching
system for Gi with minimum cardinality, i ∈ {1, 2} and W12 = W1 ∪ W2. We claim that W12 is
a watching system of G. For every x ∈ V (G1) \ {a} and y ∈ V (G2) \ {b}, LW12(x) = LW1(x) and
LW12(y) = LW2(y). Also, LW12(a) ⊆ LW1(a) ∪ {(b, Zb)} and LW12(b) ⊆ LW2(b) ∪ {(a, Za)}, where
Za ⊆ NG[a] and Zb ⊂ NG[b]. Since W1 and W2 are watching systems for G1 and G2, respectively, so
LW12(vi) ̸= ∅ and LW12(vi) ̸= LW12(vj) for every vi and vj in V (G). Hence, W12 is a watching system
for G and so ω(G) ≤ |W12| = |W1|+ |W2| = ω(G1) + ω(G2).
Let W be a watching system for G with minimum cardinality. Then we have the following cases:
Case 1: Let (a, Za) /∈ W and (b, Zb) /∈ W , where Za ⊆ NG[a] and Zb ⊆ NG[b]. Also, let W1 =

{(v, Zv) ∈ W : v ∈ V (G1)} and W2 = {(u, Zu) ∈ W : u ∈ V (G2)}. Then W1 and W2 are watching
systems for G1 and G2, respectively, W1 ∪ W2 = W and W1 ∩ W2 = ∅. Thus ω(G1) + ω(G2) ≤
|W1|+ |W2| = |W | = ω(G). Hence ω(G1) + ω(G2)− 2 ≤ ω(G).
Case 2: Let (a, Za) ∈ W and (b, Zb) /∈ W , where Za ⊆ NG[a] and Zb ⊆ NG[b]. Then W1 =

{(v, Zv ∩ V (G1) : v ∈ V (G1), (v, Zv) ∈ W} and W2 = {(u, Zu) ∈ W : u ∈ V (G2)} ∪ {(b, {b})} are
watching systems for G1 and G2, respectively.
So ω(G1) + ω(G2) ≤ |W1|+ |W2| = |W |+ 1 = ω(G) + 1. Hence ω(G1) + ω(G2)− 2 ≤ ω(G).
Case 3: Let (a, Za) ∈ W and (b, Zb) ∈ W .
If (b, Zb) ∈ LW (a) and LW (a) \ {(b, Zb)} = LW (x) for some x ∈ V (G1), then

W1 = {(v, Zv ∩ V (G1)) : v ∈ V (G1), (v, Zv) ∈ W} ∪ {(a, {a})}
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is a watching system for G1.
If (b, Zb) ∈ LW (a) and LW (a) \ {(b, Zb)} ̸= LW (x) for every x ∈ V (G1) \ {a}, then

W1 = {(v, Zv ∩ V (G1)) : v ∈ V (G1), (v, Zv) ∈ W}

is a watching system for G1.
If (b, Zb) /∈ LW (a), then

W1 = {(v, Zv ∩ V (G1)) : v ∈ V (G1), (v, Zv) ∈ W}

is a watching system for G1.
Similarly, If (a, Za) ∈ LW (b) and LW (b) \ {(a, Za)} = LW (x) for some x ∈ V (G2), then

W2 = {(v, Zv ∩ V (G2)) : v ∈ V (G2), (v, Zv) ∈ W} ∪ {(b, {b})}

is a watching system for G2.
If (a, Za) ∈ LW (b) and LW (b) \ {(a, Za)} ̸= LW (x) for every x ∈ V (G2) \ {b}, then

W2 = {(v, Zv ∩ V (G2)) : v ∈ V (G2), (v, Zv) ∈ W}

is a watching system for G2.
If (a, Za) /∈ LW (b), then W2 = {(v, Zv ∩ V (G2)) : v ∈ V (G2), (v, Zv) ∈ W} is a watching system
for G2. Thus ω(G1) + ω(G2) ≤ |W1|+ |W2| or ω(G1) + ω(G2) ≤ |W1|+ |W2|+ 1 or ω(G1) + ω(G2) ≤
|W1|+|W2|+2. However, ω(G1)+ω(G2)−2 ≤ ω(G). By Example 2.2, these two bounds are sharp. □

Following Ashrafi et al. [1], a link of graphs G1 and G2 by vertices a ∈ V (G1) and b ∈ V (G2) is
defined as the graph (G1 ∼ G2)(a, b) obtained by joining a and b by an edge in the union of these
graphs.

Corollary 2.5. Let G ≃ (K1,r ∼ K1,s)(a, b), where a and b be the universal vertices of K1,r and K1,s,

respectively. Then ⌈log2( r+2
2 )⌉+ ⌈log2( s+2

2 )⌉ ≤ ω(G) ≤ ⌈log2(r + 2)⌉+ ⌈log2(s+ 2)⌉.

Proof. By Theorems 2.3 and 2.4, the proof is straightforward. □

Theorem 2.6. Let G be a connected graph of order n with ∆(G) = n − 2, and let a and b be two
distinct vertices in G such that NG(a) = NG(b) = G \ {a, b}. Then ω(G) = ⌈log2(n+ 1)⌉.

Proof. By Theorem 2.1, (ii), ⌈log2(n+1)⌉ ≤ ω(G). If n = 2k − 1, then k ≤ ω(G). Let x ∈ NG(a) and
NG(a) \ {x} = A∪B, where A∩B = ∅ and |A| = |B| = 2k−1− 2. Let induced subgraph on A∪{a} in
G be Aa. By Theorem 2.3, ω(Aa) = ⌈log2(2k−1−1+1)⌉ = k−1. Supoose W1 = {ωi = (a, Zi) : Zi ⊆
NAa [a], 1 ≤ i ≤ k − 1} be a watching system for Aa such that a ∈ Zi for every 1 ≤ i ≤ k − 1. Since
|A| = |B|, there exist a bijective function f : A −→ B.
Suppose that W2 = {ω2i = (a, Zi∪f(Zi)∪{x}) : (a, Zi) ∈ W1, 1 ≤ i ≤ k−1} and W = W2∪{(b, Zb)},
where Zb = B ∪ {x, b}. Then we have:

LW (a) = {ω2i ∈ W2 : ωi ∈ LW1(a)},

LW (b) = {ωb},
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LW (x) = {ωb} ∪W2,

LW (y) = {ω2i ∈ W2 : ωi ∈ LW1(y)}, LW (f(y)) = LW (y) ∪ {ωb}, if y ∈ A.

Hence LW (v) ̸= ∅ and LW (u) ̸= LW (v) for every u and v in V (G). Thus W is a watching system for
G. Hence, ω(G) ≤ |W | = k. Therefore, ω(G) = k = ⌈log2(n+ 1)⌉.
Let n ̸= 2k − 1. Then ⌈log2(n+ 1)⌉ = ⌈log2(n+ 2)⌉. By Theorem 2.1, (ii),

⌈log2(n+ 1)⌉ = ⌈log2(n+ 2)⌉ ≤ ω(G).

Let n be even, NG(a) = A ∪ B, A ∩ B = ∅ and |A| = |B| = n−2
2 . Since |A| = |B|, there exist a

bijective function f : A −→ B. By Theorem 2.3, ω(Aa) =
⌈
log2

n+2
2

⌉
. Let W1 = {ωi = (a, Zi) : Zi ⊆

NAa [a], 1 ≤ i ≤ t} be a watching system for Aa such that a ∈ Zi for every 1 ≤ i ≤ t and t =
⌈
log2

n+2
2

⌉
.

Suppose that W2 = {ω2i = (a, Zi ∪ f(Zi)) : (a, Zi) ∈ W1, 1 ≤ i ≤ t} and W = W2 ∪ {(b, Zb)}, where
Zb = B ∪ {b}. Then we have:

LW (a) = {ω2i ∈ W2 : ωi ∈ LW1(a)},

LW (b) = {ωb},

LW (y) = {ω2i ∈ W2 : ωi ∈ LW1(y)}, LW (f(y)) = LW (y) ∪ {ωb}, if y ∈ A.

Thus W is a watching system for G. Hence ω(G) ≤ |W | =
⌈
log2

n+2
2

⌉
+ 1 = ⌈log2(n+ 2)⌉. Therefore,

ω(G) = ⌈log2(n+ 2)⌉ = ⌈log2(n+ 1)⌉.
Let n be odd, x ∈ NG(a) and NG(a) \ {x} = A ∪ B, A ∩ B = ∅ and |A| = |B| = n−3

2 . Since
|A| = |B|, there exist a bijective function f : A −→ B. By Theorem 2.3, ω(Aa) =

⌈
log2

n+1
2

⌉
. Let

W1 = {ωi = (a, Zi) : Zi ⊆ NAa [a], 1 ≤ i ≤ t} be a watching system for Aa such that a ∈ Zi for every
1 ≤ i ≤ t and t =

⌈
log2

n+1
2

⌉
. Suppose that

W2 = {ω2i = (a, Zi ∪ f(Zi) ∪ {x}) : (a, Zi) ∈ W1, 1 ≤ i ≤ t} and W = W2 ∪ {(b, Zb)},

where Zb = B ∪ {b, x}. Then we have:

LW (a) = {ω2i ∈ W2 : ωi ∈ LW1(a)},

LW (b) = {ωb},

LW (x) = {ωb} ∪W2,

LW (y) = {ω2i ∈ W2 : ωi ∈ LW1(y)}, LW (f(y)) = LW (y) ∪ {ωb}, if y ∈ A.

Thus W is a watching system for G. Hence ω(G) ≤ |W | = ⌈log2(n+ 1)⌉. Therefore, ω(G) =

⌈log2(n+ 1)⌉. □

Corollary 2.7. Let G be an (n− 2)-regular graph of order n. Then ω(G) = ⌈log2(n+ 1)⌉.

Proof. By Theorem 2.6, the proof is straightforward. □
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3. Watching systems and Mycielski’s construction of graphs

In this Section, we consider the watching number of Mycielski’s construction of some graphs.

Theorem 3.1. [2] Let n ≥ 3 be a positive integer. Then

ω(Cn) =

3 if n = 4

⌈n2 ⌉ if n ̸= 4.

Theorem 3.2. Let G be a graph of order n. Then

⌈log2(n+ 1)⌉+ 1 ≤ ω(µ(G)) ≤ ω(G) + ⌈log2(n+ 2)⌉.

Furthermore, these bounds are sharp.

Proof. It is clear that |V (µ(G))| = 2n+ 1. By Theorem 2.1, (ii),

ω(µ(G)) ≥ ⌈log2(2n+ 1) + 1⌉ = ⌈log2(2n+ 2)⌉ = ⌈log2(n+ 1)⌉+ 1.

Now, let ω(G) = k and W1 = {ω1, ω2, . . . , ωk} be a watching system of G, where ωi = (ai, Zi), ai ∈
V (G) and Zi ⊆ NG[ai]. By definition of Mycilski’s construction, induced subgraph on V

′
(G)∪ {w} in

µ(G) is isomorphic to K1,n. By Theorem 2.3, ω(K1,n) = ⌈log2(n+ 2)⌉. For 1 ≤ i ≤ t = ⌈log2(n+ 2)⌉,
suppose that W2 = {ω1

′
, ω2

′
, . . . , ωt

′} be a watching system for induced subgraph on V
′
(G) ∪ {w} in

µ(G), where ω
′
i = (w, T

′
i ) and T

′
i ⊆ Nµ(G)[w]. Let W = W1 ∪ W2. Then for every x ∈ V (G) , we have

LW (x) = LW1(x), LW (x
′
) = LW2(x

′
) and LW (w) = LW2(w), where x

′ is the copy of x in µ(G). So
for every y ∈ V (µ(G)) the sets LW (y) are non-empty and distinct. Hence W is a watching system of
µ(G). Therefore, ω(µ(G)) ≤ |W | = |W1|+ |W2| = ω(G) + ⌈log2(n+ 2)⌉. Therefore,

⌈log2(n+ 1)⌉+ 1 ≤ ω(µ(G)) ≤ ω(G) + ⌈log2(n+ 2)⌉.

We know that µ(P2) = C5. By Theorem 3.1, ω(µ(P2)) = 3. On the other hand, we have ⌈log2(n +

1)⌉+1 = 3. This shows that the lower bound is sharp. If G ∼= Kn, then ω(µ(G)) = n+ ⌈log2(n+2)⌉.
This shows that the upper bound is sharp. □

Theorem 3.3. Let G be a graph of order n with ∆(G) = n− 1. Then

ω(µ(G)) = ⌈log2(n+ 1)⌉+ 2.

Proof. By Theorem 3.2, ⌈log2(n+ 1)⌉+ 1 ≤ ω(µ(G)). By Theorem 2.3, ω(G) = ⌈log2(n+ 1)⌉. Let a

be a universal vertex of G and W1 = {(a, Zi) : 1 ≤ i ≤ t, Zi ⊆ NG[a]} be a watching system of G,
where t = ⌈log2(n+ 1)⌉.
Let W2 = {ω2i = (a, Zi∪Z

′
i) : 1 ≤ i ≤ t, Zi ⊆ NG[a]}∪{(w,Nµ(G)[w]), (w, {w})}, where Z

′
i ⊆ V

′
(G)

is a copy of Zi in µ(G). Then we have:

LW2(a) = {ω2i ∈ W2 : ωi ∈ LW1(a)},

LW2(x) = {ω2i ∈ W2 : ωi ∈ LW1(x)}, for every x ∈ V (G) \ {a},
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LW2(x
′
) = LW2(x) ∪ {(w,Nµ(G)[w])}, for every x ∈ V (G) \ {a}, x

′ is the copy of x,

LW2(a
′
) = {(w,Nµ(G)[w])} ,

LW2(w) = {(w,Nµ(G)[w]), (w, {w})}.

Thus W2 is a watching system for G and so ω(µ(G)) ≤ |W2| = ⌈log2(n+ 1)⌉+ 2.
Now, let ω(µ(G)) = ⌈log2(n+1)⌉+1 and W be a watching system of µ(G) with minimum cardinality.
Then by Theorem 2.3, there are ⌈log2(n + 1)⌉ watchers located at vertex a. This watching system
must cover a

′ and w. So there exist a watcher ω1 is located at a
′ or w. If ω1 = (a

′
, Za′ ) and

{a′
, w} ⊆ Za′ ⊆ Nµ(G)[a

′
], then LW (a

′
) = {ω1} and LW (w) = {ω1} which is a contradiction. If

ω1 = (w,Zw) and {a′
, w} ⊆ Zw ⊆ Nµ(G)[w], then LW (a

′
) = {ω1} and LW (w) = {ω1}, which is

impossible. Hence, ω(µ(G)) ̸= ⌈log2(n+ 1)⌉+ 1. Therefore, ω(µ(G)) = ⌈log2(n+ 1)⌉+ 2. □

Theorem 3.4. Let s ≥ 2 and G ∼= K2,s. Then ω(G) = ⌈log2(s+ 3)⌉ and ω(µ(G)) = ω(G) + 2.

Proof. By Theorem 2.6, ω(G) = ⌈log2(s + 3)⌉. Suppose that the bipartition of G be X = {a, b} and
Y with |Y | = s.
Let t = ⌈log2(s+3)⌉ and W1 = {ω1 = (a, Z1), . . . , ωt−1 = (a, Zt−1), ωt = (b, Zb)} be a watching system
for G according to proof of Theorem 2.6. Also, let ω2i = (a, Zi∪Z

′
i) for 1 ≤ i ≤ t−1, ω2t = (b, Zb∪Z

′
b),

ωa′ = (a
′
, Nµ(G)[a

′
]), ωb′ = (b

′
, Nµ(G)[b

′
]) and W2 = {ω2i : 1 ≤ i ≤ t− 1} ∪

{
ωa′ , ωb′

}
, where Z

′
i , a

′

and b
′ are the copy of Zi, a and b, respectively, in µ(G) (See Figure 2). Then we have:

LW2(a) = {ω2j ∈ W2 : ωj ∈ LW1(a)},

LW2(b) = {ω2j ∈ W2 : ωj ∈ LW1(b)},

LW2(y) = {ω2j ∈ W2 : ωj ∈ LW1(y)} ∪ {ωa′ , ωb′}, for every y ∈ Y ,

LW2(y
′
) = {ω2j ∈ W2 : ωj ∈ LW1(y)}, for every y

′ ∈ Y
′
, y

′ is the copy of y,

LW2(a
′
) = {ωa′},

LW2(b
′
) = {ωb′},

LW2(w) = {ωa′ , ωb′}.

Thus W2 is a watching system for µ(G) and so ω(µ(G)) ≤ |W2| = ⌈log2(s+ 3)⌉+ 2.
Now, suppose that ω(µ(G)) ̸= ⌈log2(s+3)⌉+2 and W be a watching system for µ(G) with minimum
cardinality. Then by Theorem 2.6, ⌈log2(s+3)⌉ watchers must are located at two vertices a and b. Also,
another watcher must is located at a

′
, b

′ or w. Anyway, we will have, LW (a
′
) = LW (w) or LW (b

′
) =

LW (w). It is impossible. So ⌈log2(s+ 3)⌉+ 2 ≤ ω(µ(G)). Therefore, ω(µ(G)) = ⌈log2(s+ 3)⌉+ 2.

□

Theorem 3.5. Let n ≥ 5 be a positive integer. Then

1) If n is odd, ω(µ(Cn)) ≤ ⌈n2 ⌉+
⌈
log2(

n+1
2 )

⌉
.

2) If n is even, ω(µ(Cn)) ≤ n
2 +

⌈
log2(

n+4
2 )

⌉
.
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a• b•

a′• b′•

w

Y
′

Y

Figure 2. µ(K2,s)

Bold line: Every vertex of the set is adjacent to every vertex of the other set.

Proof. 1) Let n = 2k + 1, V (µ(Cn)) = {vi : 1 ≤ i ≤ n} ∪ {v′
i : 1 ≤ i ≤ n} ∪ {w}, (See

Figure 3), and H be induced subgraph on {v′
2i−1 : 2 ≤ i ≤ k} ∪ {w} in µ(Cn). By Theorem

2.3, ω(H) =
⌈
log2(

n+1
2 )

⌉
. Let W1 = {ωi = (w,Zi) : Zi ⊆ Nµ(Cn)[w] , 1 ≤ i ≤ t} be a

watching system for H, where t =
⌈
log2(

n+1
2 )

⌉
.

Also, let ω′
1 = (w,Z1∪{v′

1}∪{v′
2j : 1 ≤ j ≤ k}), ω′

t = (w,Zt∪{v′
n}), ω

′
i = ωi for 2 ≤ i ≤ t−1

and W
′
1 = {ω′

1, . . . , ω
′
t}.

We claim that if ω′′
1 = (v1, {v1, v2, v

′
2, v

′
n}) and ω

′′

⌈n
2
⌉ = (vn, {v

′
1, vn−1, vn}), then

W = W
′
1 ∪ {ω′′

1 , ω
′′

⌈n
2
⌉} ∪ {ω′′

j = (v2j−1, {v2j−2, v2j−1, v2j , v
′
2j}) : 2 ≤ j ≤ k},

is a watching system for µ(Cn). Because we have:

LW (v
′
2j−1) = {ω′

j : ωj ∈ LW1(v
′
2j−1)}, LW (v2j−1) = {ω′′

j }, 2 ≤ j ≤ k,

LW (v
′
2j) = {ω′

1, ω
′′
j }, 2 ≤ j ≤ k,

LW (w) = {ω′
j : ωj ∈ LW1(w)},

LW (v
′
1) = {ω′

1, ω
′′

⌈n
2
⌉}, LW (v

′
n) = {ω′

t, ω
′′
1},

LW (v
′
2) = {ω′

1, ω
′′
1}, LW (vn) = {ω′′

⌈n
2
⌉},

LW (v1) = {ω′′
1}, LW (v2k) = {ω′′

k , ω
′′

⌈n
2
⌉},

LW (v2j) = {ω′′
j , ω

′′
j+1}, 1 ≤ j ≤ k − 1.

Therefore, ω(µ(Cn)) ≤
⌈
n
2

⌉
+

⌈
log2(

n+1
2 )

⌉
.

2) Let n = 2k and H be induced subgraph on {v′
2i−1 : 1 ≤ i ≤ k} ∪ {w} in µ(Cn). By

Theorem 2.3, ω(H) =
⌈
log2(

n+4
2 )

⌉
. Let W1 =

{
ωi = (w,Zi) : Zi ⊆ Nµ(Cn)[w] , 1 ≤ i ≤ t

}
be

a watching system for H, where t =
⌈
log2(

n+4
2 )

⌉
.

Also, let ω
′
1 = (w,Z1 ∪ {v′

2, v
′
4, . . . , v

′
2k}), ω

′
i = ωi for 2 ≤ i ≤ t and W

′
1 = {ω′

1, . . . , ω
′
t}. We

claim that W = W
′
1 ∪ {ω′′

j = (v2j−1, NCn [v2j−1] ∪ {v′
2j}) : 1 ≤ j ≤ k} is a watching system

for µ(Cn). It is easy to see that:

LW (v
′
2j−1) = {ω′

j : ωj ∈ LW1(v
′
2j−1)}, LW (v2j−1) = {ω′′

i }, 1 ≤ j ≤ k,

LW (w) = {ω′
j : ωj ∈ LW1(w)},

LW (v
′
2j) = {ω′

1, ω
′′
j }, 1 ≤ j ≤ k,
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LW (v2j) = {ω′′
j , ω

′′
j+1}, 1 ≤ j ≤ k − 1,

LW (v2k) = {ω′′
1 , ω

′′
k}.

Therefore, ω(µ(Cn)) ≤ |W | = k +
⌈
log2(

n+4
2 )

⌉
.

...
...

...

v1

v2

v3

v4

vn−1

vn

v
′
1

v
′
2

v
′
3

v
′
4

v
′
n−1

v
′
n

w

Figure 3. µ(Cn)

□
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