ON THE WATCHING NUMBER OF GRAPHS

S. AHMADI AND E. VATANDOOST*

Abstract

Let $G=(V, E)$ be a simple and undirected graph. A watcher ω_{i} of G is a couple of $\omega_{i}=\left(v_{i}, Z_{i}\right)$, where $v_{i} \in V$ and Z_{i} is a subset of the closed neighborhood of v_{i}. If a vertex $v \in Z_{i}$, we say that v is covered by ω_{i}. A set $W=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\}$, of watchers, is a watching system for G if the sets $L_{W}(v)=\left\{\omega_{i}: v \in Z_{i}, 1 \leq i \leq k\right\}$ are non-empty and distinct, for every $v \in V$. In this paper, we study the watching systems of some graphs and consider the watching number of Mycielski's construction of some graphs.

1. Introduction

In this paper, all graphs are assumed to be finite, simple and undirected. We will often use the notation $G=(V, E)$ to denote a graph with non-empty vertex set $V=V(G)$ and edge set $E=E(G)$. An edge of G with end vertices u and v is denoted by $u v$. The order of a graph is the number of vertices in the graph and the size of a graph is the number of edges. For every vertex $x \in V(G)$, the open neighborhood of the vertex x is denoted by $N_{G}(x)$ and defined as $N_{G}(x)=\{y \in V(G): x y \in E(G)\}$. Also, the closed neighborhood of the vertex $x \in V(G), N_{G}[x]$, is $N_{G}[x]=N_{G}(x) \cup\{x\}$. The degree of a vertex $x \in V(G)$ is $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$. The maximum degree of a graph G is denoted by $\Delta(G)$. A vertex $x \in V(G)$ is called a universal vertex, if $N_{G}[x]=V(G)$. A complete bipartite graph is a special kind of bipartite graph, where every vertex of the first part is connected to every vertex of the second part. The complete bipartite graph is denoted by $K_{r, s}$.

[^0]DOI: https://dx.doi.org/10.30504/JIMS.2023.388523.1097

A subset S of the vertices of a graph G is a dominating set of G, if every vertex in $V(G) \backslash S$ is adjacent to at least one vertex in S. The domination number of a graph G, denoted by $\gamma(G)$, is the cardinality of a minimum dominating set of G. A set C of vertices G is an identifying code of G, if for every two vertices x and y the sets $N_{G}[x] \cap C$ and $N_{G}[y] \cap C$ are non-empty and different. The smallest size of an identifying code of a graph G, is called the identifying code number of G and is denoted by $\gamma^{I D}(G)$. For more details, we refer the reader to $[5,6,9,12]$.

For graph $G=(V, E)$, let $V^{\prime}(G)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ be a copy of $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and w be a new vertex. Mycielski's construction of graph G, denoted by $\mu(G)$ and it is a graph with the vertex set $V(\mu(G))=V(G) \cup V^{\prime}(G) \cup\{w\}$ and the edge set $E(\mu(G))=E(G) \cup\left\{v_{i} v_{j}^{\prime}: v_{i} v_{j} \in E(G), 1 \leq i, j \leq\right.$ $n\} \cup\left\{w v_{i}^{\prime}: 1 \leq i \leq n\right\}$. The Mycielski's construction of a graph G was introduced by J. Mycielski to construct triangle-free graphs with the arbitrarily large chromatic number [8]. In recent years, there have been results reported on the Mycielski graph related to several domination parameters [4, 7].
Watching systems were introduced in [2], are generalization of identifying codes. A watcher ω of a graph G is a couple of $\omega=\left(v_{i}, Z_{i}\right)$, where $v_{i} \in V(G)$ and $Z_{i} \subseteq N_{G}\left[v_{i}\right]$. We will say that ω is located at v_{i}. A watching system for a graph G is a finite set $W=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\}$, such that for every $v \in V(G)$, $L_{W}(v)=\left\{\omega_{i}: v \in Z_{i}, 1 \leq i \leq k\right\}$ are non-empty and distinct. The watching number of a graph G is denoted by $\omega(G)$ is the minimum size of watching systems of G. Auger et al. in [3], gave an upper bound on $\omega(G)$ for connected graphs of order n and characterized the trees attaining this bound. In 2014, Maimani et al. in [10], studied the watching systems of triangular graphs. They proved that watching number of triangular graph $T(n)$ is equal to $\left\lceil\frac{2 n}{3}\right\rceil$. In 2017, Roozbayani et al. in [11], studied identifying codes and watching systems in Kneser graphs.

In this paper, we study the watching number of some graphs. In Section 2, we give two bounds for $\omega(G)$, which are sharp. We show that if G is a connected graph, $\Delta(G)=n-2$ and $N_{G}(a)=N_{G}(b)=$ $G \backslash\{a, b\}$, then $\omega(G)=\left\lceil\log _{2}(n+1)\right\rceil$. In Section 3, we give two bounds for $\omega(\mu(G))$, which are sharp. We prove if G has a universal vertex, then $\omega(\mu(G))=\left\lceil\log _{2}(n+1)\right\rceil+2$. Finally, we give an upper bound for $\omega\left(\mu\left(C_{n}\right)\right)$.

2. Some results on watching systems

In this Section, we give some results about watching systems.
Theorem 2.1. [2] Let G be a graph of order n. Then
i) If G is twin free graph, then $\gamma(G) \leq \omega(G) \leq \gamma^{I D}(G)$,
ii) $\left\lceil\log _{2}(n+1)\right\rceil \leq \omega(G) \leq \gamma(G)\left\lceil\log _{2}(\Delta(G)+2)\right\rceil$.

Example 2.2. For graphs G and H which are shown in Figure 1, we have $\omega(G)=4$ and $\omega(H)=3$.

3

Figure 1

Theorem 2.3. Let G be a graph of order n with $\Delta(G)=n-1$. Then $\omega(G)=\left\lceil\log _{2}(n+1)\right\rceil$.

Proof. By Theorem 2.1, (ii), $\left\lceil\log _{2}(n+1)\right\rceil \leq \omega(G)$. Since G has a universal vertex, $\gamma(G)=1$. By Theorem 2.1, $(i i)$, we have $\omega(G) \leq\left\lceil\log _{2}(n-1+2)\right\rceil=\left\lceil\log _{2}(n+1)\right\rceil$. So $\omega(G)=\left\lceil\log _{2}(n+1)\right\rceil$.

Theorem 2.4. Let G be a connected graph and $e \in E(G)$ such that $G \backslash\{e\}=G_{1} \cup G_{2}$. Then $\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-2 \leq \omega(G) \leq \omega\left(G_{1}\right)+\omega\left(G_{2}\right)$.

Proof. Let a and b be two end vertices of $e, a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$. Let W_{i} be a watching system for G_{i} with minimum cardinality, $i \in\{1,2\}$ and $W_{12}=W_{1} \cup W_{2}$. We claim that W_{12} is a watching system of G. For every $x \in V\left(G_{1}\right) \backslash\{a\}$ and $y \in V\left(G_{2}\right) \backslash\{b\}, L_{W_{12}}(x)=L_{W_{1}}(x)$ and $L_{W_{12}}(y)=L_{W_{2}}(y)$. Also, $L_{W_{12}}(a) \subseteq L_{W_{1}}(a) \cup\left\{\left(b, Z_{b}\right)\right\}$ and $L_{W_{12}}(b) \subseteq L_{W_{2}}(b) \cup\left\{\left(a, Z_{a}\right)\right\}$, where $Z_{a} \subseteq N_{G}[a]$ and $Z_{b} \subset N_{G}[b]$. Since W_{1} and W_{2} are watching systems for G_{1} and G_{2}, respectively, so $L_{W_{12}}\left(v_{i}\right) \neq \emptyset$ and $L_{W_{12}}\left(v_{i}\right) \neq L_{W_{12}}\left(v_{j}\right)$ for every v_{i} and v_{j} in $V(G)$. Hence, W_{12} is a watching system for G and so $\omega(G) \leq\left|W_{12}\right|=\left|W_{1}\right|+\left|W_{2}\right|=\omega\left(G_{1}\right)+\omega\left(G_{2}\right)$.
Let W be a watching system for G with minimum cardinality. Then we have the following cases:
Case 1: Let $\left(a, Z_{a}\right) \notin W$ and $\left(b, Z_{b}\right) \notin W$, where $Z_{a} \subseteq N_{G}[a]$ and $Z_{b} \subseteq N_{G}[b]$. Also, let $W_{1}=$ $\left\{\left(v, Z_{v}\right) \in W: v \in V\left(G_{1}\right)\right\}$ and $W_{2}=\left\{\left(u, Z_{u}\right) \in W: u \in V\left(G_{2}\right)\right\}$. Then W_{1} and W_{2} are watching systems for G_{1} and G_{2}, respectively, $W_{1} \cup W_{2}=W$ and $W_{1} \cap W_{2}=\emptyset$. Thus $\omega\left(G_{1}\right)+\omega\left(G_{2}\right) \leq$ $\left|W_{1}\right|+\left|W_{2}\right|=|W|=\omega(G)$. Hence $\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-2 \leq \omega(G)$.
Case 2: Let $\left(a, Z_{a}\right) \in W$ and $\left(b, Z_{b}\right) \notin W$, where $Z_{a} \subseteq N_{G}[a]$ and $Z_{b} \subseteq N_{G}[b]$. Then $W_{1}=$ $\left\{\left(v, Z_{v} \cap V\left(G_{1}\right): v \in V\left(G_{1}\right),\left(v, Z_{v}\right) \in W\right\}\right.$ and $W_{2}=\left\{\left(u, Z_{u}\right) \in W: u \in V\left(G_{2}\right)\right\} \cup\{(b,\{b\})\}$ are watching systems for G_{1} and G_{2}, respectively.
So $\omega\left(G_{1}\right)+\omega\left(G_{2}\right) \leq\left|W_{1}\right|+\left|W_{2}\right|=|W|+1=\omega(G)+1$. Hence $\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-2 \leq \omega(G)$.
Case 3: Let $\left(a, Z_{a}\right) \in W$ and $\left(b, Z_{b}\right) \in W$.
If $\left(b, Z_{b}\right) \in L_{W}(a)$ and $L_{W}(a) \backslash\left\{\left(b, Z_{b}\right)\right\}=L_{W}(x)$ for some $x \in V\left(G_{1}\right)$, then

$$
\begin{gathered}
W_{1}=\left\{\left(v, Z_{v} \cap V\left(G_{1}\right)\right): v \in V\left(G_{1}\right),\left(v, Z_{v}\right) \in W\right\} \cup\{(a,\{a\})\} \\
\text { DOI: https://dx.doi.org/10.30504/JIMS.2023.388523.1097 }
\end{gathered}
$$

is a watching system for G_{1}.
If $\left(b, Z_{b}\right) \in L_{W}(a)$ and $L_{W}(a) \backslash\left\{\left(b, Z_{b}\right)\right\} \neq L_{W}(x)$ for every $x \in V\left(G_{1}\right) \backslash\{a\}$, then

$$
W_{1}=\left\{\left(v, Z_{v} \cap V\left(G_{1}\right)\right): v \in V\left(G_{1}\right),\left(v, Z_{v}\right) \in W\right\}
$$

is a watching system for G_{1}.
If $\left(b, Z_{b}\right) \notin L_{W}(a)$, then

$$
W_{1}=\left\{\left(v, Z_{v} \cap V\left(G_{1}\right)\right): v \in V\left(G_{1}\right),\left(v, Z_{v}\right) \in W\right\}
$$

is a watching system for G_{1}.
Similarly, If $\left(a, Z_{a}\right) \in L_{W}(b)$ and $L_{W}(b) \backslash\left\{\left(a, Z_{a}\right)\right\}=L_{W}(x)$ for some $x \in V\left(G_{2}\right)$, then

$$
W_{2}=\left\{\left(v, Z_{v} \cap V\left(G_{2}\right)\right): v \in V\left(G_{2}\right),\left(v, Z_{v}\right) \in W\right\} \cup\{(b,\{b\})\}
$$

is a watching system for G_{2}.
If $\left(a, Z_{a}\right) \in L_{W}(b)$ and $L_{W}(b) \backslash\left\{\left(a, Z_{a}\right)\right\} \neq L_{W}(x)$ for every $x \in V\left(G_{2}\right) \backslash\{b\}$, then

$$
W_{2}=\left\{\left(v, Z_{v} \cap V\left(G_{2}\right)\right): v \in V\left(G_{2}\right),\left(v, Z_{v}\right) \in W\right\}
$$

is a watching system for G_{2}.
If $\left(a, Z_{a}\right) \notin L_{W}(b)$, then $W_{2}=\left\{\left(v, Z_{v} \cap V\left(G_{2}\right)\right): v \in V\left(G_{2}\right),\left(v, Z_{v}\right) \in W\right\}$ is a watching system for G_{2}. Thus $\omega\left(G_{1}\right)+\omega\left(G_{2}\right) \leq\left|W_{1}\right|+\left|W_{2}\right|$ or $\omega\left(G_{1}\right)+\omega\left(G_{2}\right) \leq\left|W_{1}\right|+\left|W_{2}\right|+1$ or $\omega\left(G_{1}\right)+\omega\left(G_{2}\right) \leq$ $\left|W_{1}\right|+\left|W_{2}\right|+2$. However, $\omega\left(G_{1}\right)+\omega\left(G_{2}\right)-2 \leq \omega(G)$. By Example 2.2, these two bounds are sharp.

Following Ashrafi et al. [1], a link of graphs G_{1} and G_{2} by vertices $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$ is defined as the graph $\left(G_{1} \sim G_{2}\right)(a, b)$ obtained by joining a and b by an edge in the union of these graphs.

Corollary 2.5. Let $G \simeq\left(K_{1, r} \sim K_{1, s}\right)(a, b)$, where a and b be the universal vertices of $K_{1, r}$ and $K_{1, s}$, respectively. Then $\left\lceil\log _{2}\left(\frac{r+2}{2}\right)\right\rceil+\left\lceil\log _{2}\left(\frac{s+2}{2}\right)\right\rceil \leq \omega(G) \leq\left\lceil\log _{2}(r+2)\right\rceil+\left\lceil\log _{2}(s+2)\right\rceil$.

Proof. By Theorems 2.3 and 2.4, the proof is straightforward.
Theorem 2.6. Let G be a connected graph of order n with $\Delta(G)=n-2$, and let a and b be two distinct vertices in G such that $N_{G}(a)=N_{G}(b)=G \backslash\{a, b\}$. Then $\omega(G)=\left\lceil\log _{2}(n+1)\right\rceil$.

Proof. By Theorem 2.1, (ii), $\left\lceil\log _{2}(n+1)\right\rceil \leq \omega(G)$. If $n=2^{k}-1$, then $k \leq \omega(G)$. Let $x \in N_{G}(a)$ and $N_{G}(a) \backslash\{x\}=A \cup B$, where $A \cap B=\emptyset$ and $|A|=|B|=2^{k-1}-2$. Let induced subgraph on $A \cup\{a\}$ in G be A_{a}. By Theorem 2.3, $\omega\left(A_{a}\right)=\left\lceil\log _{2}\left(2^{k-1}-1+1\right)\right\rceil=k-1$. Supoose $W_{1}=\left\{\omega_{i}=\left(a, Z_{i}\right): Z_{i} \subseteq\right.$ $\left.N_{A_{a}}[a], 1 \leq i \leq k-1\right\}$ be a watching system for A_{a} such that $a \in Z_{i}$ for every $1 \leq i \leq k-1$. Since $|A|=|B|$, there exist a bijective function $f: A \longrightarrow B$.
Suppose that $W_{2}=\left\{\omega_{2 i}=\left(a, Z_{i} \cup f\left(Z_{i}\right) \cup\{x\}\right):\left(a, Z_{i}\right) \in W_{1}, 1 \leq i \leq k-1\right\}$ and $W=W_{2} \cup\left\{\left(b, Z_{b}\right)\right\}$, where $Z_{b}=B \cup\{x, b\}$. Then we have:

$$
\begin{gathered}
L_{W}(a)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(a)\right\}, \\
L_{W}(b)=\left\{\omega_{b}\right\},
\end{gathered}
$$

$$
\begin{gathered}
L_{W}(x)=\left\{\omega_{b}\right\} \cup W_{2} \\
L_{W}(y)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(y)\right\}, L_{W}(f(y))=L_{W}(y) \cup\left\{\omega_{b}\right\}, \quad \text { if } y \in A .
\end{gathered}
$$

Hence $L_{W}(v) \neq \emptyset$ and $L_{W}(u) \neq L_{W}(v)$ for every u and v in $V(G)$. Thus W is a watching system for G. Hence, $\omega(G) \leq|W|=k$. Therefore, $\omega(G)=k=\left\lceil\log _{2}(n+1)\right\rceil$.
Let $n \neq 2^{k}-1$. Then $\left\lceil\log _{2}(n+1)\right\rceil=\left\lceil\log _{2}(n+2)\right\rceil$. By Theorem 2.1, $(i i)$,

$$
\left\lceil\log _{2}(n+1)\right\rceil=\left\lceil\log _{2}(n+2)\right\rceil \leq \omega(G)
$$

Let n be even, $N_{G}(a)=A \cup B, A \cap B=\emptyset$ and $|A|=|B|=\frac{n-2}{2}$. Since $|A|=|B|$, there exist a bijective function $f: A \longrightarrow B$. By Theorem 2.3, $\omega\left(A_{a}\right)=\left\lceil\log _{2} \frac{n+2}{2}\right\rceil$. Let $W_{1}=\left\{\omega_{i}=\left(a, Z_{i}\right): Z_{i} \subseteq\right.$ $\left.N_{A_{a}}[a], 1 \leq i \leq t\right\}$ be a watching system for A_{a} such that $a \in Z_{i}$ for every $1 \leq i \leq t$ and $t=\left\lceil\log _{2} \frac{n+2}{2}\right\rceil$. Suppose that $W_{2}=\left\{\omega_{2 i}=\left(a, Z_{i} \cup f\left(Z_{i}\right)\right):\left(a, Z_{i}\right) \in W_{1}, 1 \leq i \leq t\right\}$ and $W=W_{2} \cup\left\{\left(b, Z_{b}\right)\right\}$, where $Z_{b}=B \cup\{b\}$. Then we have:

$$
\begin{gathered}
L_{W}(a)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(a)\right\}, \\
L_{W}(b)=\left\{\omega_{b}\right\}, \\
L_{W}(y)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(y)\right\}, L_{W}(f(y))=L_{W}(y) \cup\left\{\omega_{b}\right\}, \quad \text { if } y \in A .
\end{gathered}
$$

Thus W is a watching system for G. Hence $\omega(G) \leq|W|=\left\lceil\log _{2} \frac{n+2}{2}\right\rceil+1=\left\lceil\log _{2}(n+2)\right\rceil$. Therefore, $\omega(G)=\left\lceil\log _{2}(n+2)\right\rceil=\left\lceil\log _{2}(n+1)\right\rceil$.
Let n be odd, $x \in N_{G}(a)$ and $N_{G}(a) \backslash\{x\}=A \cup B, A \cap B=\emptyset$ and $|A|=|B|=\frac{n-3}{2}$. Since $|A|=|B|$, there exist a bijective function $f: A \longrightarrow B$. By Theorem 2.3, $\omega\left(A_{a}\right)=\left\lceil\log _{2} \frac{n+1}{2}\right\rceil$. Let $W_{1}=\left\{\omega_{i}=\left(a, Z_{i}\right): Z_{i} \subseteq N_{A_{a}}[a], 1 \leq i \leq t\right\}$ be a watching system for A_{a} such that $a \in Z_{i}$ for every $1 \leq i \leq t$ and $t=\left\lceil\log _{2} \frac{n+1}{2}\right\rceil$. Suppose that

$$
W_{2}=\left\{\omega_{2 i}=\left(a, Z_{i} \cup f\left(Z_{i}\right) \cup\{x\}\right):\left(a, Z_{i}\right) \in W_{1}, 1 \leq i \leq t\right\} \text { and } W=W_{2} \cup\left\{\left(b, Z_{b}\right)\right\},
$$

where $Z_{b}=B \cup\{b, x\}$. Then we have:

$$
\begin{gathered}
L_{W}(a)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(a)\right\}, \\
L_{W}(b)=\left\{\omega_{b}\right\}, \\
L_{W}(x)=\left\{\omega_{b}\right\} \cup W_{2}, \\
L_{W}(y)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(y)\right\}, L_{W}(f(y))=L_{W}(y) \cup\left\{\omega_{b}\right\}, \text { if } y \in A .
\end{gathered}
$$

Thus W is a watching system for G. Hence $\omega(G) \leq|W|=\left\lceil\log _{2}(n+1)\right\rceil$. Therefore, $\omega(G)=$ $\left\lceil\log _{2}(n+1)\right\rceil$.

Corollary 2.7. Let G be an $(n-2)$-regular graph of order n. Then $\omega(G)=\left\lceil\log _{2}(n+1)\right\rceil$.
Proof. By Theorem 2.6, the proof is straightforward.
DOI: https://dx.doi.org/10.30504/JIMS.2023.388523.1097

3. Watching systems and Mycielski's construction of graphs

In this Section, we consider the watching number of Mycielski's construction of some graphs.

Theorem 3.1. [2] Let $n \geq 3$ be a positive integer. Then

$$
\omega\left(C_{n}\right)= \begin{cases}3 & \text { if } n=4 \\ \left\lceil\frac{n}{2}\right\rceil & \text { if } n \neq 4\end{cases}
$$

Theorem 3.2. Let G be a graph of order n. Then

$$
\left\lceil\log _{2}(n+1)\right\rceil+1 \leq \omega(\mu(G)) \leq \omega(G)+\left\lceil\log _{2}(n+2)\right\rceil
$$

Furthermore, these bounds are sharp.
Proof. It is clear that $|V(\mu(G))|=2 n+1$. By Theorem 2.1, (ii),

$$
\omega(\mu(G)) \geq\left\lceil\log _{2}(2 n+1)+1\right\rceil=\left\lceil\log _{2}(2 n+2)\right\rceil=\left\lceil\log _{2}(n+1)\right\rceil+1
$$

Now, let $\omega(G)=k$ and $W_{1}=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right\}$ be a watching system of G, where $\omega_{i}=\left(a_{i}, Z_{i}\right), a_{i} \in$ $V(G)$ and $Z_{i} \subseteq N_{G}\left[a_{i}\right]$. By definition of Mycilski's construction, induced subgraph on $V^{\prime}(G) \cup\{w\}$ in $\mu(G)$ is isomorphic to $K_{1, n}$. By Theorem 2.3, $\omega\left(K_{1, n}\right)=\left\lceil\log _{2}(n+2)\right\rceil$. For $1 \leq i \leq t=\left\lceil\log _{2}(n+2)\right\rceil$, suppose that $W_{2}=\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{t}^{\prime}\right\}$ be a watching system for induced subgraph on $V^{\prime}(G) \cup\{w\}$ in $\mu(G)$, where $\omega_{i}^{\prime}=\left(w, T_{i}^{\prime}\right)$ and $T_{i}^{\prime} \subseteq N_{\mu(G)}[w]$. Let $W=W_{1} \cup W_{2}$. Then for every $x \in V(G)$, we have $L_{W}(x)=L_{W_{1}}(x), L_{W}\left(x^{\prime}\right)=L_{W_{2}}\left(x^{\prime}\right)$ and $L_{W}(w)=L_{W_{2}}(w)$, where x^{\prime} is the copy of x in $\mu(G)$. So for every $y \in V(\mu(G))$ the sets $L_{W}(y)$ are non-empty and distinct. Hence W is a watching system of $\mu(G)$. Therefore, $\omega(\mu(G)) \leq|W|=\left|W_{1}\right|+\left|W_{2}\right|=\omega(G)+\left\lceil\log _{2}(n+2)\right\rceil$. Therefore,

$$
\left\lceil\log _{2}(n+1)\right\rceil+1 \leq \omega(\mu(G)) \leq \omega(G)+\left\lceil\log _{2}(n+2)\right\rceil
$$

We know that $\mu\left(P_{2}\right)=C_{5}$. By Theorem 3.1, $\omega\left(\mu\left(P_{2}\right)\right)=3$. On the other hand, we have $\left\lceil\log _{2}(n+\right.$ $1)\rceil+1=3$. This shows that the lower bound is sharp. If $G \cong \overline{K_{n}}$, then $\omega(\mu(G))=n+\left\lceil\log _{2}(n+2)\right\rceil$. This shows that the upper bound is sharp.

Theorem 3.3. Let G be a graph of order n with $\Delta(G)=n-1$. Then

$$
\omega(\mu(G))=\left\lceil\log _{2}(n+1)\right\rceil+2 .
$$

Proof. By Theorem 3.2, $\left\lceil\log _{2}(n+1)\right\rceil+1 \leq \omega(\mu(G))$. By Theorem 2.3, $\omega(G)=\left\lceil\log _{2}(n+1)\right\rceil$. Let a be a universal vertex of G and $W_{1}=\left\{\left(a, Z_{i}\right): 1 \leq i \leq t, Z_{i} \subseteq N_{G}[a]\right\}$ be a watching system of G, where $t=\left\lceil\log _{2}(n+1)\right\rceil$.
Let $W_{2}=\left\{\omega_{2 i}=\left(a, Z_{i} \cup Z_{i}^{\prime}\right): 1 \leq i \leq t, Z_{i} \subseteq N_{G}[a]\right\} \cup\left\{\left(w, N_{\mu(G)}[w]\right),(w,\{w\})\right\}$, where $Z_{i}^{\prime} \subseteq V^{\prime}(G)$ is a copy of Z_{i} in $\mu(G)$. Then we have:

$$
\begin{gathered}
L_{W_{2}}(a)=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(a)\right\}, \\
L_{W_{2}}(x) \underset{\{ }{=\left\{\omega_{2 i} \in W_{2}: \omega_{i} \in L_{W_{1}}(x)\right\}, \text { for every } x \in V(G) \backslash\{a\},} \begin{array}{c}
\text { DOI: https://dx.doi.org/10.30504/JIMS.2023.388523.1097 }
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
L_{W_{2}}\left(x^{\prime}\right)=L_{W_{2}}(x) \cup\left\{\left(w, N_{\mu(G)}[w]\right)\right\}, \text { for every } x \in V(G) \backslash\{a\}, x^{\prime} \text { is the copy of } x \\
L_{W_{2}}\left(a^{\prime}\right)=\left\{\left(w, N_{\mu(G)}[w]\right)\right\} \\
L_{W_{2}}(w)=\left\{\left(w, N_{\mu(G)}[w]\right),(w,\{w\})\right\}
\end{gathered}
$$

Thus W_{2} is a watching system for G and so $\omega(\mu(G)) \leq\left|W_{2}\right|=\left\lceil\log _{2}(n+1)\right\rceil+2$.
Now, let $\omega(\mu(G))=\left\lceil\log _{2}(n+1)\right\rceil+1$ and W be a watching system of $\mu(G)$ with minimum cardinality. Then by Theorem 2.3, there are $\left\lceil\log _{2}(n+1)\right\rceil$ watchers located at vertex a. This watching system must cover a^{\prime} and w. So there exist a watcher ω_{1} is located at a^{\prime} or w. If $\omega_{1}=\left(a^{\prime}, Z_{a^{\prime}}\right)$ and $\left\{a^{\prime}, w\right\} \subseteq Z_{a^{\prime}} \subseteq N_{\mu(G)}\left[a^{\prime}\right]$, then $L_{W}\left(a^{\prime}\right)=\left\{\omega_{1}\right\}$ and $L_{W}(w)=\left\{\omega_{1}\right\}$ which is a contradiction. If $\omega_{1}=\left(w, Z_{w}\right)$ and $\left\{a^{\prime}, w\right\} \subseteq Z_{w} \subseteq N_{\mu(G)}[w]$, then $L_{W}\left(a^{\prime}\right)=\left\{\omega_{1}\right\}$ and $L_{W}(w)=\left\{\omega_{1}\right\}$, which is impossible. Hence, $\omega(\mu(G)) \neq\left\lceil\log _{2}(n+1)\right\rceil+1$. Therefore, $\omega(\mu(G))=\left\lceil\log _{2}(n+1)\right\rceil+2$.

Theorem 3.4. Let $s \geq 2$ and $G \cong K_{2, s}$. Then $\omega(G)=\left\lceil\log _{2}(s+3)\right\rceil$ and $\omega(\mu(G))=\omega(G)+2$.
Proof. By Theorem 2.6, $\omega(G)=\left\lceil\log _{2}(s+3)\right\rceil$. Suppose that the bipartition of G be $X=\{a, b\}$ and Y with $|Y|=s$.
Let $t=\left\lceil\log _{2}(s+3)\right\rceil$ and $W_{1}=\left\{\omega_{1}=\left(a, Z_{1}\right), \ldots, \omega_{t-1}=\left(a, Z_{t-1}\right), \omega_{t}=\left(b, Z_{b}\right)\right\}$ be a watching system for G according to proof of Theorem 2.6. Also, let $\omega_{2 i}=\left(a, Z_{i} \cup Z_{i}^{\prime}\right)$ for $1 \leq i \leq t-1, \omega_{2 t}=\left(b, Z_{b} \cup Z_{b}^{\prime}\right)$, $\omega_{a^{\prime}}=\left(a^{\prime}, N_{\mu(G)}\left[a^{\prime}\right]\right), \omega_{b^{\prime}}=\left(b^{\prime}, N_{\mu(G)}\left[b^{\prime}\right]\right)$ and $W_{2}=\left\{\omega_{2 i}: 1 \leq i \leq t-1\right\} \cup\left\{\omega_{a^{\prime}}, \omega_{b^{\prime}}\right\}$, where Z_{i}^{\prime}, a^{\prime} and b^{\prime} are the copy of Z_{i}, a and b, respectively, in $\mu(G)$ (See Figure 2). Then we have:

$$
\begin{gathered}
L_{W_{2}}(a)=\left\{\omega_{2 j} \in W_{2}: \omega_{j} \in L_{W_{1}}(a)\right\} \\
L_{W_{2}}(b)=\left\{\omega_{2 j} \in W_{2}: \omega_{j} \in L_{W_{1}}(b)\right\} \\
L_{W_{2}}(y)=\left\{\omega_{2 j} \in W_{2}: \omega_{j} \in L_{W_{1}}(y)\right\} \cup\left\{\omega_{a^{\prime}}, \omega_{b^{\prime}}\right\}, \text { for every } y \in Y \\
L_{W_{2}}\left(y^{\prime}\right)=\left\{\omega_{2 j} \in W_{2}: \omega_{j} \in L_{W_{1}}(y)\right\}, \text { for every } y^{\prime} \in Y^{\prime}, y^{\prime} \text { is the copy of } y \\
L_{W_{2}}\left(a^{\prime}\right)=\left\{\omega_{a^{\prime}}\right\} \\
L_{W_{2}}\left(b^{\prime}\right)=\left\{\omega_{b^{\prime}}\right\} \\
L_{W_{2}}(w)=\left\{\omega_{a^{\prime}}, \omega_{b^{\prime}}\right\}
\end{gathered}
$$

Thus W_{2} is a watching system for $\mu(G)$ and so $\omega(\mu(G)) \leq\left|W_{2}\right|=\left\lceil\log _{2}(s+3)\right\rceil+2$.
Now, suppose that $\omega(\mu(G)) \neq\left\lceil\log _{2}(s+3)\right\rceil+2$ and W be a watching system for $\mu(G)$ with minimum cardinality. Then by Theorem 2.6, $\left\lceil\log _{2}(s+3)\right\rceil$ watchers must are located at two vertices a and b. Also, another watcher must is located at a^{\prime}, b^{\prime} or w. Anyway, we will have, $L_{W}\left(a^{\prime}\right)=L_{W}(w)$ or $L_{W}\left(b^{\prime}\right)=$ $L_{W}(w)$. It is impossible. So $\left\lceil\log _{2}(s+3)\right\rceil+2 \leq \omega(\mu(G))$. Therefore, $\omega(\mu(G))=\left\lceil\log _{2}(s+3)\right\rceil+2$.

Theorem 3.5. Let $n \geq 5$ be a positive integer. Then

1) If n is odd, $\omega\left(\mu\left(C_{n}\right)\right) \leq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\log _{2}\left(\frac{n+1}{2}\right)\right\rceil$.
2) If n is even, $\omega\left(\mu\left(C_{n}\right)\right) \leq \frac{n}{2}+\left\lceil\log _{2}\left(\frac{n+4}{2}\right)\right\rceil$.

DOI: https://dx.doi.org/10.30504/JIMS.2023.388523.1097

Figure 2. $\mu\left(K_{2, s}\right)$
Bold line: Every vertex of the set is adjacent to every vertex of the other set.

Proof. 1) Let $n=2 k+1, V\left(\mu\left(C_{n}\right)\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\{w\}$, (See Figure 3), and H be induced subgraph on $\left\{v_{2 i-1}^{\prime}: 2 \leq i \leq k\right\} \cup\{w\}$ in $\mu\left(C_{n}\right)$. By Theorem 2.3, $\omega(H)=\left\lceil\log _{2}\left(\frac{n+1}{2}\right)\right\rceil$. Let $W_{1}=\left\{\omega_{i}=\left(w, Z_{i}\right): Z_{i} \subseteq N_{\mu\left(C_{n}\right)}[w], 1 \leq i \leq t\right\}$ be a watching system for H, where $t=\left\lceil\log _{2}\left(\frac{n+1}{2}\right)\right\rceil$.
Also, let $\omega_{1}^{\prime}=\left(w, Z_{1} \cup\left\{v_{1}^{\prime}\right\} \cup\left\{v_{2 j}^{\prime}: 1 \leq j \leq k\right\}\right), \omega_{t}^{\prime}=\left(w, Z_{t} \cup\left\{v_{n}^{\prime}\right\}\right), \omega_{i}^{\prime}=\omega_{i}$ for $2 \leq i \leq t-1$ and $W_{1}^{\prime}=\left\{\omega_{1}^{\prime}, \ldots, \omega_{t}^{\prime}\right\}$.
We claim that if $\omega_{1}^{\prime \prime}=\left(v_{1},\left\{v_{1}, v_{2}, v_{2}^{\prime}, v_{n}^{\prime}\right\}\right)$ and $\omega_{\left\lceil\frac{n}{2}\right\rceil}^{\prime \prime}=\left(v_{n},\left\{v_{1}^{\prime}, v_{n-1}, v_{n}\right\}\right)$, then

$$
W=W_{1}^{\prime} \cup\left\{\omega_{1}^{\prime \prime}, \omega_{\left\lceil\frac{n}{2}\right]}^{\prime \prime}\right\} \cup\left\{\omega_{j}^{\prime \prime}=\left(v_{2 j-1},\left\{v_{2 j-2}, v_{2 j-1}, v_{2 j}, v_{2 j}^{\prime}\right\}\right): 2 \leq j \leq k\right\}
$$

is a watching system for $\mu\left(C_{n}\right)$. Because we have:

$$
\begin{gathered}
L_{W}\left(v_{2 j-1}^{\prime}\right)=\left\{\omega_{j}^{\prime}: \omega_{j} \in L_{W_{1}}\left(v_{2 j-1}^{\prime}\right)\right\}, L_{W}\left(v_{2 j-1}\right)=\left\{\omega_{j}^{\prime \prime}\right\}, 2 \leq j \leq k, \\
L_{W}\left(v_{2 j}^{\prime}\right)=\left\{\omega_{1}^{\prime}, \omega_{j}^{\prime \prime}\right\}, 2 \leq j \leq k, \\
L_{W}(w)=\left\{\omega_{j}^{\prime}: \omega_{j} \in L_{W_{1}}(w)\right\}, \\
L_{W}\left(v_{1}^{\prime}\right)=\left\{\omega_{1}^{\prime}, \omega_{\left\lceil\frac{n}{2}\right\rceil}^{\prime \prime}\right\}, L_{W}\left(v_{n}^{\prime}\right)=\left\{\omega_{t}^{\prime}, \omega_{1}^{\prime \prime}\right\}, \\
L_{W}\left(v_{2}^{\prime}\right)=\left\{\omega_{1}^{\prime}, \omega_{1}^{\prime \prime}\right\}, L_{W}\left(v_{n}\right)=\left\{\omega_{\left\lceil\frac{n}{2}\right\rceil}^{\prime \prime}\right\}, \\
L_{W}\left(v_{1}\right)=\left\{\omega_{1}^{\prime \prime}\right\}, L_{W}\left(v_{2 k}\right)=\left\{\omega_{k}^{\prime \prime}, \omega_{\left\lceil\frac{n}{2}\right\rceil}^{\prime \prime}\right\}, \\
L_{W}\left(v_{2 j}\right)=\left\{\omega_{j}^{\prime \prime}, \omega_{j+1}^{\prime \prime}\right\}, 1 \leq j \leq k-1 .
\end{gathered}
$$

Therefore, $\omega\left(\mu\left(C_{n}\right)\right) \leq\left\lceil\frac{n}{2}\right\rceil+\left\lceil\log _{2}\left(\frac{n+1}{2}\right)\right\rceil$.
2) Let $n=2 k$ and H be induced subgraph on $\left\{v_{2 i-1}^{\prime}: 1 \leq i \leq k\right\} \cup\{w\}$ in $\mu\left(C_{n}\right)$. By Theorem 2.3, $\omega(H)=\left\lceil\log _{2}\left(\frac{n+4}{2}\right)\right\rceil$. Let $W_{1}=\left\{\omega_{i}=\left(w, Z_{i}\right): Z_{i} \subseteq N_{\mu\left(C_{n}\right)}[w], 1 \leq i \leq t\right\}$ be a watching system for H, where $t=\left\lceil\log _{2}\left(\frac{n+4}{2}\right)\right\rceil$.
Also, let $\omega_{1}^{\prime}=\left(w, Z_{1} \cup\left\{v_{2}^{\prime}, v_{4}^{\prime}, \ldots, v_{2 k}^{\prime}\right\}\right), \omega_{i}^{\prime}=\omega_{i}$ for $2 \leq i \leq t$ and $W_{1}^{\prime}=\left\{\omega_{1}^{\prime}, \ldots, \omega_{t}^{\prime}\right\}$. We claim that $W=W_{1}^{\prime} \cup\left\{\omega_{j}^{\prime \prime}=\left(v_{2 j-1}, N_{C_{n}}\left[v_{2 j-1}\right] \cup\left\{v_{2 j}^{\prime}\right\}\right): 1 \leq j \leq k\right\}$ is a watching system for $\mu\left(C_{n}\right)$. It is easy to see that:

$$
\begin{gathered}
L_{W}\left(v_{2 j-1}^{\prime}\right)=\left\{\omega_{j}^{\prime}: \omega_{j} \in L_{W_{1}}\left(v_{2 j-1}^{\prime}\right)\right\}, L_{W}\left(v_{2 j-1}\right)=\left\{\omega_{i}^{\prime \prime}\right\}, 1 \leq j \leq k, \\
L_{W}(w)=\left\{\omega_{j}^{\prime}: \omega_{j} \in L_{W_{1}}(w)\right\}, \\
L_{W}\left(v_{2 j}^{\prime}\right)=\left\{\omega_{1}^{\prime}, \omega_{j}^{\prime \prime}\right\}, 1 \leq j \leq k, \\
\text { DOI: https://dx.doi.org/10.30504/JIMs.2023.388523.1097 }
\end{gathered}
$$

$$
\begin{gathered}
L_{W}\left(v_{2 j}\right)=\left\{\omega_{j}^{\prime \prime}, \omega_{j+1}^{\prime \prime}\right\}, 1 \leq j \leq k-1 \\
L_{W}\left(v_{2 k}\right)=\left\{\omega_{1}^{\prime \prime}, \omega_{k}^{\prime \prime}\right\}
\end{gathered}
$$

Therefore, $\omega\left(\mu\left(C_{n}\right)\right) \leq|W|=k+\left\lceil\log _{2}\left(\frac{n+4}{2}\right)\right\rceil$.

Figure 3. $\mu\left(C_{n}\right)$

Acknowledgements

The authors are very grateful to the referee for his/her useful comments.

References

[1] A. R. Ashrafi, A. Hamzeh and S. Hossein Zadeh, Calculation of some topological indices of splices and links of graphs, J. Appl. Math. Inform. 29 (2011), no. 1-2, 327-335.
[2] D. Auger, I. Charon, O. Hudry and A. Lobstein, Watching systems in graphs: an extension of identifying codes, Discrete Appl. Math. 161 (2013), no. 12, 1674-1685.
[3] D. Auger, I. Charon, O. Hudry and A. Lobstein, Maximum size of a minimum watching system and the graphs achieving the bound, Discrete Appl. Math. 164 (2014), part 1, 20-33.
[4] S. Balamurgan, M. Anitha and N. Anbazhagan, Various domination parameters in mycielski's graphs, Int. J. Pure Appl. Math. 119 (2018), no. 15, 203-211.
[5] F. Foucaud, S. Gravier, R. Naserasr, A. Parreau and P. Valicov, Identifying codes in line graphs, J. Graph Theory 73 (2013), no. 4, 425-448.
[6] F. Foucaud and G. Perarnau, Bounds for identifying codes in terms of degree parameters, Electron. J. Combin. 19 (2012), no. 1, Paper 32, 28 pages.
[7] D. A. Mojdeh and N. J. Rad, On domination and its forcing in Mycielski's graphs, Sci. Iran. 15 (2008), no. 2, 218-222.
[8] J. Mycielski, Sur le coloriage des graphes, In Colloq. Math. 3 (1955) 9 pages.
[9] D. F. Rall and K. Wash, Identifying codes of the direct product of two cliques, European J. Combin. 36 (2014), 159-171.
[10] M. Roozbayani, H. Maimani and A. Tehranian, Watching systems of triangular graphs. Trans. Comb. 3 (2014), no. 1, 51-57.
[11] M. Roozbayani and H. R. Maimani, Identifying codes and watching systems in kneser graphs, Discrete Math. Algorithms Appl. 9 (2017), no. 1, 1750007, 9 pages.
[12] A. Shaminejad, E. Vatandoost and K. Mirasheh, The identifying code number and Mycielski's construction of graphs, Trans. Comb. 11 (2022), no. 4, 309-316.

Somayeh Ahmadi

Department of pure Mathematics, Faculty of science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: somaiya.ahmadi@edu.ikiu.ac.ir

Ebrahim Vatandoost

Department of pure Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.

Email: vatandoost@sci.ikiu.ac.ir

[^0]: Communicated by Alireza Abdollahi
 MSC(2020): Primary: 05C76.
 Keywords: Identifying code, watching system, Mycielski's construction.
 Received: 5 March 2023, Accepted: 10 July 2023.
 *Corresponding author

