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LEFT 3-ENGEL ELEMENTS IN GROUPS: A SURVEY

A. HADJIEVANGELOU, P. LONGOBARDI, M. MAJ, C. MONETTA, E. A. O’BRIEN AND G. TRAUSTASON∗

Dedicated to Prof. D. J. S. Robinson

Abstract. We survey left 3-Engel elements in groups.

1. Introduction

An element a of a group G is left Engel if for each x ∈ G there exists a non-negative integer n(x)

such that
[[[x, a], a], . . . , a]︸ ︷︷ ︸

n(x)

= 1.

If n(x) is bounded above, then a is bounded left Engel. More precisely, a is left n-Engel if n(x) ≤ n

for all x ∈ G.

Recall that the Hirsch-Plotkin radical, HP(G), of G is the product of its locally nilpotent normal
subgroups. It is straightforward to see that every element of HP(G) is left Engel in G and the converse
is known for some classes of groups, including solvable groups and finite groups (more generally, groups
satisfying the maximal condition on subgroups) [3, 7]. The converse is not true in general, not even
for bounded left Engel elements. In fact, whereas it is clear that a left 2-Engel element is always in
HP(G), this remains an open question for left 3-Engel elements. There have been breakthroughs in
recent years. In [14] it is shown that every left 3-Engel element of odd order is contained in HP(G).
In [8] this result is generalized to include elements of every order, by replacing left 3-Engel with a
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stronger condition that we call strong left 3-Engel. Left 3-Engel elements of odd order are strong left
3-Engel.

The results of [23] imply that, in order to show that every left 3-Engel element of finite order is in
HP(G), it suffices to consider elements of order 2. By looking at a similar setting for Lie algebras,
there are reasons to doubt that elements of order 2 must be in HP(G) however. Little is known about
left 4-Engel elements, although there are some interesting results in [2].

Groups of prime power exponent satisfy some Engel-type conditions and the solution to the re-
stricted Burnside problem also uses the fact that the associated Lie ring satisfies certain Engel-type
identities [28,29]. Burnside [5] observed that every element of a group of exponent 3 is a left 2-Engel
element, and so the fact that every left 2-Engel element lies in the Hirsch-Plotkin radical can be seen
as the underlying reason why groups of exponent 3 are locally finite. For groups of 2-power exponent,
there is a close link with left Engel elements. If a is an involution in a finitely generated group G of
exponent 2n, then

[[[x, a], a], . . . , a︸ ︷︷ ︸
n+1

] = [x, a](−2)n = 1.

Thus a is a left (n + 1)-Engel element of G. Hence, if G/G2n−1 is finite and the left (n + 1)-Engel
elements of G are in HP(G), then G is finite. For sufficiently large n, the variety of groups of exponent
2n is not locally finite [13,17], so for sufficiently large n there are left n-Engel elements not contained
in HP(G). Since groups of exponent 4 are locally finite [22], if all left 4-Engel elements of a group G

of exponent 8 are in HP(G), then G is locally finite.
Is a left 3-Engel element of prime power order in a group G contained in HP(G)? We reduce this

question to elements of prime order using the following result by Abdollahi [1]: for every prime p and
every left 3-Engel element x of finite p-power, xp is in the Baer radical of G and, in particular, ⟨xp⟩G is
locally nilpotent. For the case p = 2 this implies the local finiteness of groups of exponent 4, originally
proved by Sanov [22]. It is also proved in [1] that two left 3-Engel elements generate a nilpotent group
of class at most 4, and this bound is achieved.

We now swap the role of a and x in the definition of a left Engel element. Thus a ∈ G is a right
Engel element if for each x ∈ G there exists a non-negative integer n(x) such that

[a,n(x) x] = 1.

If n(x) is bounded above by n, then a is a right n-Engel element. By a result of Heineken [11], if a is
a right n-Engel element of G, then a−1 is a left (n+ 1)-Engel element.

In [18] Newell proved that if a is a right 3-Engel element of G, then a ∈ HP(G); in fact, he proved
the stronger result that ⟨a⟩G is nilpotent of class at most 3. A natural question arises whether ⟨a⟩G is
nilpotent when a is a left 3-Engel element of G. In [21] it was shown that this is not the case by giving
an example of a locally finite 2-group with a left 3-Engel element a such that ⟨a⟩G is not nilpotent
and in [9] this was generalized to an infinite family of examples. In [10] this was extended to include
every odd prime. Thus for each prime p, there is a locally finite p-group G containing a left 3-Engel
element a such that ⟨a⟩G is not nilpotent.
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The structure of this survey is as follows. In Section 2 we discuss (strong) sandwich elements in
Lie algebras and groups. We give a consistent power-conjugate presentation [12, Section 9.4] of the
largest 3-generator sandwich group, which is nilpotent of class 5 and at most 3 if all elements have
odd order. We then present one of our main results: every finitely generated strong sandwich group
is nilpotent. It follows that a strong left 3-Engel element of a group G always lies in HP(G); we
mention applications for groups of exponents 5, 9 and 8. We do not know if all sandwich groups of
rank 4 are nilpotent, but in Section 3 we give partial results. We show that there is a largest finite
sandwich group of rank 4 generated by involutions. In Section 3.1 we obtain a new reduction theorem
for sandwich groups of rank 4 with generators that have two commuting pairs. In Section 3.2 we
report some results of computations in residually nilpotent sandwich groups of rank 5 generated by
involutions. In particular, we show that these are finite if there are at least 3 commuting pairs among
the generators. Finally, in Sections 4 and 5 we consider the global nilpotence problem for the normal
closure of left 3-Engel elements in locally finite p-groups.

2. Local nilpotence of (strong) sandwich groups and strong left 3-Engel elements

The approach of [8, 14] is by working with sandwich groups; these are group-theoretic analogues
of sandwich Lie algebras introduced by Kostrikin [15]. Zel’manov and Kostrikin [30] proved that
sandwich Lie algebras are locally nilpotent and this is a key ingredient to both Kostrikin’s solution to
the restricted Burnside problem for groups of prime exponent [16], and Zel’manov’s general solution
[28,29].

2.1. Sandwich Lie algebras. As for group commutators, we use the left normed convention for Lie
products.

Definition 2.1. An element a of a Lie algebra L is a sandwich element if axa = 0 and axya = 0

for all x, y ∈ L. A Lie algebra is a sandwich Lie algebra if it can be generated (as Lie algebra) by
sandwich elements.

The second condition is superfluous in odd characteristic: 0 = x(yaa) = xyaa − 2xaya + xaay =

2axya. In characteristic 2 it is needed as this example shows.

Example 2.2. Consider the largest vector space L = ⟨a, b, c⟩ over GF(2) subject to Id(c) being
abelian, bc = 0 and bxb = axa = cxc = 0, for all x ∈ L. Then L is a Lie algebra generated by a, b, ab,
c(ab)n, and c(ab)na for n ≥ 0. To show that L is non-nilpotent (or, equivalently, infinite dimensional),
we give a concrete example where these generators are basis elements. Let y = ab, un = c(ab)n and
vn+1 = c(ab)na. We have the following multiplication table for these basis elements of L.

ab = y,

ya = yb = 0,

una = vn+1, unb = 0, uny = un+1,

vna = 0, vnb = un, vny = vn+1,

unvm = 0, vnvm = 0, unum = 0.
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It suffices to show that the Jacobi identity holds for these generators. Since the characteristic is 2, we
deduce that:

aby + bya+ yab = 0,

unab+ abun + buna = vn+1b+ yun = 2un+1 = 0,

vnab+ abvn + bvna = yvn + una = 2un+1 = 0,

unay + ayun + yuna = vn+1y + un+1a = 2vn+2 = 0,

vnby + byvn + yvnb = uny + vn+1b = 2un+1 = 0.

2.2. 3-generator sandwich groups. In [25] the notion of a sandwich group was introduced.

Definition 2.3. A subset X of a group G is a sandwich set if ⟨a, bg⟩ is nilpotent of class at most 2

for all a, b ∈ X and g ∈ ⟨X⟩. If G is generated by a sandwich set, then G is a sandwich group.

The connection with left 3-Engel elements arises because the following are equivalent.
(1) If a is a left 3-Engel element of a group G, then a is in the locally nilpotent radical of G.
(2) Every finitely generated sandwich group is nilpotent.

The equivalence is a consequence of the following: If a is a left 3-Engel element in G, then ⟨a⟩G is a
sandwich group; every element of a sandwich set X is left 3-Engel in ⟨X⟩.

A significant feature of sandwich groups is that there is a largest sandwich group of any given
rank [25].

Theorem 2.4. Let R = ⟨x, y, z⟩ be the free sandwich group of rank 3. If the generators have odd
order, then R has class at most 3, else R has class 5.

We obtained in [25] the following consistent power-conjugate presentation for R.

Let e1(z, z
x, y) = [z, x, y, y].

Generators
x1 = e1(z, z

x, y), x2 = e1(x, x
y, z), x3 = e1(y, y

z, x),
x4 = [z, x, [z, y]], x5 = [x, y, [x, z]], x6 = [y, z, [y, x]],

x7 = [z, x, y], x8 = [z, y, x]

x9 = [z, x], x10 = [z, y], x11 = [x, y]

x12 = x, x13 = y, x14 = z.
Relations
x21 = x22 = x23 = 1, x24 = x25 = x26 = x3x2x1,
xx12
4 = x4x3, xx13

4 = x4x1, xx13
5 = x5x1, xx14

5 = x5x2,

xx12
6 = x6x3, xx14

6 = x6x2,

xx9
7 = x7x2x3, xx10

7 = x7x1, xx11
7 = x7x1, xx12

7 = x7x5x3x2,

xx13
7 = x7x1, xx14

7 = x7x4x3x2,

xx9
8 = x8x3, xx10

8 = x8x2x1, xx11
8 = x8x3, xx12

8 = x8x3,

xx13
8 = x8x6x3, xx14

8 = x8x4x3,

xx10
9 = x9x4, xx11

9 = x9x5, xx13
9 = x9x7, xx11

10 = x10x6, xx12
10 = x10x8,

xx14
11 = x11x8x

−1
7 x6x5x4x3, xx13

12 = x12x11, xx14
12 = x12x

−1
9 , xx14

13 = x13x
−1
10 .
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2.3. (Strong) sandwich groups and strong left 3-Engel elements. The results of [14] imply
that a group G generated by a finite sandwich set consisting of elements of odd order is nilpotent.
Thus every left 3-Engel element of odd order in G is in HP(G).

We wish to extend this result to include groups generated by elements of any order. We take a cue
from the definition of sandwich algebras. In [8] we introduced the notion of a strong sandwich set.

Definition 2.5. A subset X of a group G is a strong sandwich set if:

(1) ⟨a, bg⟩ is nilpotent of class at most 2 for all a, b ∈ X and g ∈ ⟨X⟩;
(2) ⟨a, bf , cg⟩ is nilpotent of class at most 3 for all a, b, c ∈ X and f, g ∈ ⟨X⟩.

If G is generated by a strong sandwich set, then it is a strong sandwich group.

Remark 2.6. A strong sandwich group is somewhat analogous to a sandwich Lie algebra: if all the
elements of X have odd order, then condition (2) is superfluous. This follows from Theorem 2.4.

There is also a connection to left 3-Engel elements. We first need a definition.

Definition 2.7. An element a of a group G is a strong left 3-Engel element if:

(1) ⟨a, ag⟩ is nilpotent of class at most 2 for all g ∈ G;
(2) ⟨a, af , ag⟩ is nilpotent of class at most 3 for all f, g ∈ G.

Remark 2.8. Notice that a is left 3-Engel in G if and only if it satisfies (1). Condition (2) is
superfluous when a has odd order. Therefore a left 3-Engel element of odd order is a strong left
3-Engel element.

Strong left 3-Engel elements and strong sandwich groups are related because the following are
equivalent.

(1) If a is a strong left 3-Engel element of G, then ⟨a⟩G is locally nilpotent.
(2) Every finitely generated strong sandwich group is nilpotent.

The following results obtained in [8] about finitely generated strong sandwich groups generalize
work of Jabara and Traustason [14].

Theorem 2.9. Every finitely generated strong sandwich group is nilpotent.

Theorem 2.10. If a is a strong left 3-Engel element of a group G, then ⟨a⟩G is locally nilpotent.

A key ingredient in proving these results was the following [8].

Proposition 2.11. Let X be a strong sandwich set in a group G and let a, b ∈ X. Then X ∪ {[a, b]}
is also a strong sandwich set in G.

We discuss briefly how Theorem 2.9 was proved using this proposition. Let X = {x1, x2, . . . , xr} be a
strong sandwich set and let X consist of all commutators in X (in any order and with any bracketing).
Iterated use of Proposition 2.11 shows that X is a strong sandwich set. As every 3-generator strong
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sandwich group is nilpotent of class at most 3, the Hall-Witt identity essentially reduces to the Jacobi
identity. So for every u, v, w ∈ X

[u, [v, w]] = [u, v, w][u,w, v]−1.

As a result, we applied the same basic approach as used in Chanyshev’s proof of the local nilpotence
of sandwich Lie algebras [26, Section 3.2]. We mention applications to groups of exponents 5, 9 and 8.

Theorem A. [25] A group of exponent 5 is locally finite if and only if it satisfies the law

[z, [y, x, x, x], [y, x, x, x], [y, x, x, x]] = 1.

Remark 2.12. This result implies in particular that a group of exponent 5 is locally finite if and only
if all of its 3-generator subgroups are finite; it was originally proved by Vaughan-Lee [27].

Theorem B. [14] Let w be a word in n variables x1, . . . , xn where the variety of groups satisfying the
law w3 = 1 is a locally finite variety of groups of exponent 9. Then the same is true for the variety of
groups on n+ 1 variables satisfying the law (x3n+1w

3)3 = 1.

Remark 2.13. We can use Theorem B to construct an explicit sequence of words. Define the word
wn = wn(x1, . . . , xn) in n variables recursively by w1 = x1 and wn+1 = x3n+1w

3
n. The variety of groups

satisfying the law x31 = 1 is locally finite by Burnside and by repeated application of Theorem B we see
that, for each n ≥ 1, the variety of groups satisfying the law w3

n is a locally finite variety of groups of
exponent 9.

Theorem C. [8] Assume all groups of exponent 8 satisfying a law w = 1 in n variables x1, . . . , xn

are locally nilpotent. Let V be the variety on n + 3 variables satisfying both [xn+1, w, w,w] = 1 and
⟨w,wxn+2 , wxn+3⟩ is nilpotent of class at most 3. Then V is locally nilpotent.

Remark 2.14. Starting for example with w = x41, Theorem C gives us a sequence of locally nilpotent
varieties.

3. Left 3-Engel involutions

Theorem 2.10 implies that if a left 3-Engel element has odd order, then its normal closure is locally
nilpotent. This observation and [23] imply that, to generalize this to left 3-Engel elements of arbitrary
finite order, it suffices to consider elements of order 2. Despite Theorems 2.9 and 2.10, the question
whether the normal closure of a left 3-Engel involution is locally nilpotent remains open. The best
general result is the following.

Theorem 3.1. Let x be a left 3-Engel involution in a group G. If ⟨x⟩G has no elements of order 8,
then ⟨x⟩G is locally nilpotent.

Even this apparently slight progress was surprisingly difficult to establish. The difficulty comes
from the fact that we do not know initially that ⟨x⟩G is a 2-group. Once we have a 2-group, it is clear
that ⟨x⟩G has exponent 4 and thus it is locally finite by Sanov [22].
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Consider sandwich groups generated by involutions. From [25], we know that such a group is
nilpotent if its rank is at most 3. The largest sandwich group of rank 3 generated by involutions has
order 213 and class 5.

3.1. Rank 4 sandwich groups generated by involutions. It remains unknown whether sandwich
groups of rank 4 generated by involutions are nilpotent. Nickel’s nilpotent quotient algorithm [20] is
available in both GAP [6] and Magma [4]. Using these implementations, we proved that such a group
has a largest nilpotent quotient of order 2776 and class 13. The calculation took 18 days of CPU time
using Magma 2.27-3 on a computer with a 2.6 GHz processor.

We have some partial results on the nilpotence of such groups. Before presenting them, we need
the following definition.

Definition 3.2. Let G be a sandwich group generated by a finite set X = {a1, . . . , ar} of sandwich
elements. The commutativity graph V (G) of G is an (undirected) graph whose vertices are the gen-
erators X, and a pair of distinct vertices ai and aj are joined by an edge if and only if ai and aj

commute.

Remark 3.3.
(1) The commutativity graph of the free r-generator sandwich group has no edges. The free abelian
group of rank r is the largest r-generator sandwich group having the complete graph as its commutativity
graph.
(2) Let H and K be the largest r-generator sandwich groups with commutativity graphs V (H) and
V (K) respectively. If V (H) ⊆ V (K), then K is isomorphic to a quotient of H.

Assume for the remainder of the section that G is a sandwich group generated by 4 involutions.
If V (G) is the complete graph, then G is elementary abelian of order 16. There is just one type of
commutativity graph with 5 edges, namely

ba

yx
@
@
@�

�
�

and the largest sandwich group ⟨x, y, a, b⟩ with this commutativity graph is ⟨x, y⟩ × ⟨a, b⟩ = D8 ×C2
2 ,

a group of order 32. If the commutativity graph has 4 edges, then there are two types of graphs to
consider: either the two removed edges are adjacent or not.

ba

yx
@
@
@�

�
�

xa

bc
@
@
@�

�
�

The largest sandwich group with the first commutativity graph is ⟨x, y⟩ × ⟨a, b⟩ = D8 × D8, it has
order 64. For the second group, observe that a and bc commute with each of b and ac. Thus

⟨a, b, c⟩ = ⟨a, bc⟩ ≀ ⟨c⟩ = D8 ≀ C2,
DOI: https://dx.doi.org/10.30504/JIMS.2023.401476.1124

https://dx.doi.org/10.30504/JIMS.2023.401476.1124


214 J. Iran. Math. Soc. 4 (2023), no. 2, 207-234 Hadjievangelou et al.

the standard wreath product of D8 by C2. Thus the largest sandwich group with the second commu-
tativity graph is ⟨a, b, c⟩ × ⟨x⟩ = (D8 ≀ C2)× C2, a group of order 256.

Next, we consider the case when the commutativity graph has 3 edges. This is much more difficult.
There are three types of commutativity graphs:

zx

ya

α =
@
@
@ ca

β =

bx

�
�
�

ba

γ =

yx

The largest sandwich group with commutativity graph α is

Gα = ⟨x, y, z⟩ × ⟨a⟩ = R× C

where R is the largest sandwich group generated by involutions x, y, z. From [25] we know that R is
nilpotent of class at most 5. The results of [23] show that the others are finite.

3.1.1. Sandwich groups with commutativity graph β. Let Gβ = ⟨x, a, b, c⟩ be a sandwich group where
x, a, b, c are involutions and Gβ has the commutativity graph

ca

β =

bx

�
�
�

In [23] it was shown that Gβ has order 228 and class 9. It has the following consistent power-conjugate
presentation.
Let

t(a) = [[xc, xa], [xa, xb]], t(b) = [[xa, xb], [xb, xc]], t(c) = [[xb, xc], [xc, xa]]

and
y(a) = [x, xbc, xa], y(b) = [x, xca, xb], y(c) = [x, xab, xc].

Generators
b1 = [t(a), b], b2 = t(a), b3 = t(b),

b4 = y(b), b5 = y(b)a, b6 = y(a), b7 = y(a)b, b8 = y(a)c,

b9 = [x, xab][xc, xabc], b10 = [x, xab], b11 = [x, xbc][xa, xabc],

b12 = [x, xbc], b13 = [x, xac][xb, xabc], b14 = [x, xac], b15 = [x, xabc][xc, xab],
b16 = [x, xabc][xa, xbc], b17 = [x, xabc],
b18 = x, b19 = xa, b20 = xb, b21 = xc, b22 = xab, b23 = xca,
b24 = xbc, b25 = xabc,
b26 = a, b27 = b, b28 = c.
Relations
b21 = . . . = b228 = 1,
bb272 = b2b1, bb282 = b2b1, bb263 = b3b1, bb283 = b3b1,
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bb194 = b4b2, bb214 = b4b3b2, bb224 = b4b2b1, bb234 = b4b3, bb244 = b4b3b2b1,
bb254 = b4b3, bb264 = b5, bb284 = b8b6b4,

bb185 = b5b2, bb205 = b5b2b1, bb215 = b5b3b1, bb235 = b5b3b2b1,
bb245 = b5b3b1, bb255 = b5b3b2, bb265 = b4, bb285 = b8b6b5,
bb206 = b6b3, bb216 = b6b3b2, bb226 = b6b3b1, bb236 = b6b3b2b1, bb246 = b6b2,
bb256 = b6b2, bb276 = b7, bb286 = b8,
bb187 = b7b3, bb197 = b7b3b1, bb217 = b7b2b1, bb237 = b7b2b1,

bb247 = b7b3b2b1, bb257 = b7b3b2, bb277 = b6, bb287 = b8b7b6,
bb188 = b8b3b2, bb198 = b8b3b2b1, bb208 = b8b2b1, bb228 = b8b2b1,
bb248 = b8b3b1, bb258 = b8b3, bb278 = b8b7b6, bb288 = b6,
bb129 = b9b1, bb149 = b9b1, bb189 = b9b6b4,

bb199 = b9b6b5, bb209 = b9b7b4, bb219 = b9b6b4,
bb229 = b9b7b5, bb239 = b9b6b5, bb249 = b9b7b4,
bb259 = b9b7b5,
bb1110 = b10b1, bb1210 = b10b3, bb1310 = b10b1, bb1410 = b10b2,
bb1610 = b10b1, bb1710 = b10b3b2, bb2110 = b10b6b4,
bb2310 = b10b6b5, bb2410 = b10b7b4, bb2510 = b10b7b5,
bb2810 = b10b9,
bb1411 = b11b1, bb1811 = b11b6, bb1911 = b11b6,
bb2011 = b11b7, bb2111 = b11b8, bb2211 = b11b7, bb2311 = b11b8, bb2411 = b11b8b7b6,
bb2511 = b11b8b7b6,
bb1312 = b12b1, bb1412 = b12b3b2, bb1512 = b12b1,
bb1712 = b12b2, bb1912 = b12b6, bb2212 = b12b7, bb2312 = b12b8, bb2512 = b12b8b7b6,
bb2612 = b12b11,
bb1813 = b13b4, bb1913 = b13b5, bb2013 = b13b4,

bb2113 = b13b8b6b4, bb2213 = b13b5, bb2313 = b13b8b6b5, bb2413 = b13b8b6b4,

bb2513 = b13b8b6b5,
bb1514 = b14b1, bb1614 = b14b1, bb1714 = b14b3, bb2014 = b14b4,
bb2214 = b14b5, bb2414 = b14b8b6b4, bb2514 = b14b8b6b5, bb2714 = b14b13,
bb1815 = b15b6b4b3b2, bb1915 = b15b6b5b3b2b1,
bb2015 = b15b7b4b3b2b1, bb2115 = b15b6b4b3b2, bb2215 = b15b7b5b3b2, bb2315 = b15b6b5b3b2b1,
bb2415 = b15b7b4b3b2b1, bb2515 = b15b7b5b3b2,
bb1816 = b16b6b2, bb1916 = b16b6b2, bb2016 = b16b7b2b1,
bb2116 = b16b8b2b1, bb2216 = b16b7b2b1, bb2316 = b16b8b2b1, bb2416 = b16b8b7b6b2,
bb2516 = b16b8b7b6b2,
bb1917 = b17b6b2, bb2017 = b17b4b3, bb2117 = b17b6b4b3b2, bb2217 = b17b7b5b3b2,
bb2317 = b17b8b6b5b3, bb2417 = b17b8b7b6b2, bb2617 = b17b16, bb2717 = b17b16b15,
bb2817 = b17b15,
bb2218 = b18b10, bb2318 = b18b14, bb2418 = b18b12, bb2518 = b18b17, bb2618 = b19,
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bb2718 = b20, bb2818 = b21,
bb2019 = b19b10, bb2119 = b19b14, bb2419 = b19b17b16, bb2519 = b19b12b11, bb2619 = b18,
bb2719 = b22, bb2819 = b23,
bb2120 = b20b12, bb2320 = b20b17b16b15, bb2520 = b20b14b13, bb2620 = b22, bb2720 = b18,
bb2820 = b24,
bb2221 = b21b17b15, bb2521 = b21b10b9, bb2621 = b23, bb2721 = b24, bb2821 = b18,
bb2322 = b22b12b11, bb2422 = b22b14b13, bb2622 = b20, bb2722 = b19, bb2822 = b25,
bb2423 = b23b10b9, bb2623 = b21, bb2723 = b25, bb2823 = b19,
bb2624 = b25, bb2724 = b21, bb2824 = b20,
bb2625 = b24, bb2725 = b23, bb2825 = b22.

3.1.2. Sandwich groups with commutativity graph γ. Let Gγ = ⟨a, b, x, y⟩ be a sandwich group where
a, b, x, y are involutions and Gγ has the commutativity graph

ba

γ =

yx

In [23], it was shown that Gγ has order 220 and class 9. It has the following consistent power-conjugate
presentation.

Generators
e1 = [x, b, [y, a], x, y, [x, b]], e2 = [x, b, [y, a], y, x, [y, a]],
e3 = [x, b, [y, a], x, y, x], e4 = [x, b, [y, a], y, x, y],
e5 = [x, b, [y, a], x, y], e6 = [x, b, [y, a], y, x],
e7 = [x, b, [y, a], x], e8 = [x, b, [y, a], y],
e9 = [x, b, y, x], e10 = [x, [y, a], y],

e11 = [x, b, [y, a]], e12 = [x, b, y], e13 = [x, [y, a]],
e14 = [x, y],

e15 = [x, b], e16 = [y, a], e17 = x, e18 = y,

e19 = a, e20 = b.
Relations
e21 = e22 = . . . = e220 = 1,
ee203 = e3e1, ee194 = e4e2, ee155 = e5e1, ee175 = e5e3,

ee166 = e6e2, ee186 = e6e4, ee127 = e7e1, ee147 = e7e3, ee187 = e7e5,
ee138 = e8e2, ee148 = e8e4, ee178 = e8e6,

ee119 = e9e1, ee139 = e9e3, ee169 = e9e5e4e2, ee199 = e9e7e6e1,
ee1110 = e10e2, ee1210 = e10e4, ee1510 = e10e6e3e1, ee2010 = e10e8e5e2,
ee1411 = e11e6e5e4e3, ee1711 = e11e7, ee1811 = e11e8,
ee1312 = e12e6e5e4e3, ee1612 = e12e8, ee1712 = e12e9, ee1912 = e12e11e8,
ee1513 = e13e7, ee1813 = e13e10, ee2013 = e13e11e7,
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ee1514 = e14e9, ee1614 = e14e10, ee1914 = e14e13e10, ee2014 = e14e12e9,
ee1615 = e15e11, ee1815 = e15e12, ee1716 = e16e13,
ee1817 = e17e14, ee2017 = e17e15, ee1918 = e18e16.

3.1.3. Sandwich groups whose commutativity graph have 2 edges. Let G = ⟨a, x, y, z⟩ be a sandwich
group where a, x, y, z are involutions and G has the commutativity graph

ya

zx

δ =

We know little about such groups. In the remainder of this section we prove the following “reduction”
theorem.

Theorem 3.4. If [[z, x], [z, a]] = 1 and [[z, y], [z, a]] = 1, then G is nilpotent.

Remark 3.5. We used the Magma implementation of the nilpotent quotient algorithm to determine
that the largest nilpotent quotient Q of G has order 271 and class 10. If we impose the two relations
of Theorem 3.4, then Q has order 238 and class 9.

Let N =
⋃∞

i=0 Zi(G). As G is finitely generated, it suffices to show that G/N is nilpotent. Since
G is finitely generated, G/N has trivial center. Without loss of generality, we can thus assume that
Z(G) = 1. Under this assumption, we will prove that G = 1. Our lengthy proof of this claim concludes
in Proposition 3.25 where we prove that G is nilpotent.

The next two results do not rely on this assumption. The first is particularly useful.

Proposition 3.6. Let u ∈ G where u commutes with each of x, y, [x, z], [y, z], and [a, z]. Then u = 1.

Proof. We first show that if v ∈ G commutes with each of x, y, z and [z, a], then v = 1. As a first
step, we prove that [v, a] commutes with x, y, z and [z, a]. Since each of a and v commutes with x, y
and [z, a], it is clear that [v, a] commutes with each, so it suffices to show that [v, a] commutes with z.
This follows from

[v, a]z = [v, az] = [v, a[a, z]] = [v, [z, a]a] = [v, a][v, [z, a]]a = [v, a].

Thus each of v, [v, a] and [v,2 a] commutes with each of x, y and z. However, [v,2 a] commutes also
with a. Thus [v,2 a] ∈ Z(G) so [v,2 a] = 1. It follows that [v, a] = 1, so v = 1.

Next, notice that [u, z] commutes with x, y, [x, z], [y, z] and [a, z]. Note that z commutes with
[x, z], [y, z] and [a, z], so [u, z] commutes with each of these elements. It thus suffices to show that
[u, z] commutes with x and y. This follows from

[u, z]x = [u, z[z, x]] = [u, [z, x]z] = [u, z][u, [z, x]]z = [u, z],

[u, z]y = [u, z[z, y]] = [u, [z, y]z] = [u, z][u, [z, y]]z = [u, z].

Thus [u, z, z] commutes with x, y and [z, a], but [u, z, z] also commutes with z. From the first paragraph
we deduce that [u, z, z] = 1. Hence [u, z] commutes with each of x, y, z and [z, a] and thus it follows
again from the first paragraph that [u, z] = 1. The same argument shows that u = 1. □
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Below we use the following power-conjugate presentation for the largest sandwich group of rank 3
generated by involutions; it is an immediate consequence of that given in Section 2.2.

Let e1(z, z
x, y) = [z, x, y, y].

Generators
x1 = e1(z, z

x, y), x2 = e1(x, x
y, z), x3 = e1(y, y

z, x),
x4 = [z, x, [z, y]], x5 = [x, y, [x, z]], x6 = [y, z, [y, x]],

x7 = [z, x, y], x8 = [z, y, x],
x9 = [z, x], x10 = [z, y], x11 = [x, y],

x12 = x, x13 = y, x14 = z.
Relations
x21 = · · · = x26 = 1, x3 = x2x1, x27 = x1, x28 = x3, x29 = · · · = x214 = 1,

xx12
4 = x4x2x1, xx13

4 = x4x1, xx13
5 = x5x1, xx14

5 = x5x2,

xx12
6 = x6x2x1, xx14

6 = x6x2,

xx9
7 = x7x1, xx10

7 = x7x1, xx11
7 = x7x1, xx12

7 = x7x5x1,

xx13
7 = x7x1, xx14

7 = x7x4x1,

xx9
8 = x8x2x1, xx10

8 = x8x2x1, xx11
8 = x8x2x1, xx12

8 = x8x2x1,

xx13
8 = x8x6x2x1, xx14

8 = x8x4x2x1,

xx10
9 = x9x4, xx11

9 = x9x5, xx13
9 = x9x7, xx11

10 = x10x6, xx12
10 = x10x8,

xx14
11 = x11x8x7x6x5x4x2, xx13

12 = x12x11, xx14
12 = x12x9, xx14

13 = x13x10.

Lemma 3.7. γ3(⟨[x, y], [z, a]⟩) = 1.

Proof. Notice that 1 = [x, y2] = [x, y]2 and 1 = [z, a2] = [z, a]2. So

[[x, y], [a, z], [a, z]] = [[x, y], [z, a], [x, y]] = ([a, z][x, y])4

and thus it suffices to show that [[x, y], [z, a], [z, a]] ∈ Z2(G) = 1. Calculating in the sandwich group
⟨x, y, az⟩, using the presentation above, we see that

[[x, y], [a, z], [a, z]] = [x, y, az, az] = [x11, x14, x14] = [x8x7x6x5x4x2, x14] = x2.

Observe that x2 commutes with x, y and az, and also with a. We finish the proof by showing that
[[x, y], [a, z], [a, z], z] commutes with each of a, x, y and z. We will calculate in the sandwich group
⟨ā, b̄, c̄, x̄⟩, where ā = a, b̄ = x, c̄ = xy and x̄ = z. Since it has commutativity graph β, we can use
the relations satisfied by such a group. We have already seen that [[x, y], [a, z], [a, z]] commutes with
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[z, a] = [x̄, ā] and x = b̄. We will use this in the following calculation:

[[x, y], [z, a], [z, a]] = [b̄c̄, [x̄, ā], [x̄, ā]]

= [[x̄, ā]b̄c̄, [x̄, ā]] (commutes with b̄ = x)

= [[x̄, ā]c̄, [x̄, ā]b̄]

= [x̄c̄x̄āc̄, x̄b̄x̄āb̄]

= [x̄c̄, x̄b̄xāb̄]x̄
āc̄
[x̄āc̄, x̄b̄x̄āb̄]

= [x̄c̄, x̄āb̄]x̄
āc̄
[x̄c̄, x̄b̄]x̄

āb̄x̄āc̄
[x̄āc̄, x̄āb̄][x̄āc̄, x̄b̄]x̄

āb̄

= (b17b15)
b23bb22b2312 bb2612 (b17b16b15)

b22

= b16b11b2b1.

This element commutes with b̄ = x and thus

b16b11b2b1 = (b16b11b2b1)
b27 = b16b11b2b1b1,

so b1 = 1. Hence
[[x, y], [z, a], [z, a], z] = [b16b11b2, b18] = b2

commutes with each of x, z and a. Since [x, y] = [y, x], we see by symmetry that b2 also commutes
with y. □

We deduce that b2 = 1. We analyze some consequences. Consider the elements:

b11 = [x̄b̄c̄, x̄][x̄ā, x̄āb̄c̄] = [z, z[x,y]][za, za[x,y]];

b6 = [b11, b18] = [b11, x̄] = [b11, z];

b8b7 = [b6, b27b28] = [b6, [x, y]];

all are symmetric in x, y. Since b1 = b2 = 1, we deduce that b8b7 commutes with each of x, a and
z, and by symmetry also with y; thus b8b7 = 1. Recall that 1 = [x, y, az, az] = x2 in ⟨x, y, az⟩. In
summary:

Lemma 3.8.
(1) x2 = 1 in ⟨x, y, az⟩.
(2) b1 = b2 = 1, b8 = b7 and b16 = b11 in ⟨a, x, xy, z⟩ and ⟨a, y, yx, z⟩.

From now on, we use the conditions given in the statement of Theorem 3.4. Since [zy, za] =

[z, y, [z, a]] = 1, we deduce that ⟨z, za, zy, x⟩ is a β-group. We will later work with this subgroup.
First, we prove a crucial lemma.

Lemma 3.9. [z, a, x] = [z, x, a] and [z, a, y] = [z, y, a].

Proof. Since [z, x, [z, a]] = 1, it follows that [z, x, a] = [xz, a] commutes with z. Hence

[z, x, a] = [xz, a] = [xz, a]z = [x, az] = [az, x] = [z, a, x].

The latter claim is proved similarly. □
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Lemma 3.10. [x, y, z, z] = 1.

Proof. We calculate in the β-group ⟨ā, b̄, c̄, x̄⟩ = ⟨a, x, xy, z⟩. We know that

b1 = b2 = 1, b8 = b7, b16 = b11.

Furthermore,
1 = [za, zx] = [x̄ā, x̄b̄] = b10.

As a consequence,

1 = [b10, b12] = b3

1 = [b10, b28] = b9

1 = [b9, b19] = b6b5

1 = [b9, b22] = b7b5

1 = [b9, b20] = b7b4.

The last three identities imply that b4 = b5 = b6 = b7 = b8. We show that this common element is
trivial. We consider

[z, z[x,y], za] = [x̄, x̄b̄c̄, x̄ā] = [b12, b19] = b6.

From the presentation, bx6 = bb̄6 = bb276 = b7 = b6, so b6 commutes with x. Also b6 commutes with
[z, x] = b18b20 and [z, a] = b18b19. As b6 is symmetric in x and y, it commutes with y and [z, y].
Proposition 3.6 implies that b6 = 1. Hence

b4 = b5 = b6 = b7 = b8 = 1.

Next, consider [z, z[x,y]][za, za[x,y]] = b12b
b26
12 = b11. Observe that b11 commutes with each of x = b27,

[z, x] = b18b20 and [z, a] = b18b19. As b11 is symmetric in x and y, it commutes with y and [z, y].
Proposition 3.6 implies that b11 = 1. Hence

b16 = b11 = 1.

Finally, we consider [x, y, z, z] = [z, z[x,y]] = b12. Observe that b12 commutes with each of x = b27,
[z, x] = b18b20 and [z, a] = b18b19. As b12 is symmetric in x and y, it commutes with y and [z, y].
Proposition 3.6 implies that b12 = [x, y, z, z] = 1. □

Remark 3.11. We know from the presentation for ⟨x, y, z⟩ that γ5(⟨x, y, z⟩) is generated by [x, y, z, z]

and [z, x, y, y] and [z, y, x, x] and their product is trivial. Also [x, y, z, z] = 1. Hence γ5(⟨x, y, z⟩) is
cyclic, and generated by [z, x, y, y] = [z, y, x, x].

Lemma 3.12. ⟨x, y, az⟩ is nilpotent of class at most 4 and [[az, x], [az, y]] = 1.

Proof. As ⟨x, y, az⟩ is a sandwich group, we know from the presentation of the largest such group that
γ5(⟨x, y, az⟩) is generated by [x, y, az, az], [az, x, y, y] and [az, y, x, x]. The product of these elements is
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trivial and Lemma 3.8 implies that [x, y, az, az] = 1. Using Lemma 3.9 and the presentation for the
γ-group ⟨x̄, ā, b̄, ȳ⟩ = ⟨xz, x, a, y⟩, we deduce that

[az, x, y, y] = [xz, a, y, y] = [x̄, b̄, ȳ, ȳ] = [e12, e18] = 1.

Hence ⟨x, y, az⟩ is nilpotent of class at most 4. For the last claim, notice that [az, x, [az, y]] commutes
with z by the assumptions of Theorem 3.4 and, as ⟨x, y, az⟩ is nilpotent of class at most 4, it commutes
with x and y, and it obviously commutes with a. Hence [az, x, [az, y]] ∈ Z(G) = 1. □

Lemma 3.13. In the β-group ⟨ā, b̄, c̄, x⟩ = ⟨z, za, zy, x⟩, the following relations hold:

b1 = b2 = b3 = b4 = b5 = b6 = b7 = b9 = b10 = 1.

Proof. Observe that 1 = [zx, za] = [āx, b̄] = [x, ā, b̄] = xxāxb̄xāb̄ from which it follows that xāb̄ = xxāxb̄.
In particular,

1 = [x, xāb̄] = b10.

As a consequence,

1 = [b10, b11] = b1

1 = [b10, b14] = b2

1 = [b10, b12] = b3

1 = [b10, b28] = b9

1 = [b9, b18] = b6b4

1 = [b9, b19] = b6b5

1 = [b9, b20] = b7b4.

From the last three identities, b4 = b5 = b6 = b7. We show that this common element is trivial. We
consider t = [z, a, x, [z, y, x, x]]. Calculating first in ⟨z, za, zy, x⟩,

t = [āb̄, x, [āc̄, x, x]] = [b26b27, b18, b14] = [bb26b2718 b18, b14] = [b22b18, b14] = b5.

From the presentation, [b5, [z, a]] = [b5, b26b27] = b4b5 = 1.
We next consider t in the γ-group ⟨x̄, ā, b̄, ȳ⟩ = ⟨xz, x, a, y⟩. We first find some relations in this

group. Using the fact that ⟨x, y, az⟩ is nilpotent of class at most 4 and Lemma 3.9, we deduce that

1 = [az, x, [x, y], y] = [xz, a, [x, y], y] = [x̄, b̄, [ā, ȳ], ȳ] = [e11, e18] = e8.

As a consequence,

1 = [e8, e13] = e2;

1 = [e8, e14] = e4;

1 = [e8, e17] = e6.
DOI: https://dx.doi.org/10.30504/JIMS.2023.401476.1124

https://dx.doi.org/10.30504/JIMS.2023.401476.1124


222 J. Iran. Math. Soc. 4 (2023), no. 2, 207-234 Hadjievangelou et al.

We use the facts that [z, a, x] = [z, x, a] from Lemma 3.9 and [z, y, x, x] = [z, x, y, y]. Hence

t = [[z, x, a], [z, x, y, y]]

= [[xz, a], [xzx, y, y]]

= [[x̄, b̄], [āx̄, ȳ, ȳ]]

= [x̄, b̄, [[ā, ȳ][ā, ȳ, x̄][x̄, ȳ], ȳ]]

= [x̄, b̄, [ā, ȳ, x̄, ȳ][x̄,ȳ]]

= [e15, e
e14
10 ]

= [e15, e10]

= e3e1.

From the presentation, we deduce that t commutes with y = ȳ = e18 and x = ā = e19. Both
[z, x, a] and [z, x, y, y] commute with z. Hence t commutes with z and thus with [z, x] and [z, y].
Thus t commutes with each of x, y, [z, x], [z, y] and [z, a]. Proposition 3.6 implies that t = 1. Hence
b5 = 1. □

Lemma 3.14. ⟨x, y, z⟩ is nilpotent of class at most 4 and [[z, x], [z, y]] = 1.

Proof. In the β-group ⟨ā, b̄, c̄, x⟩ = ⟨z, za, zy, x⟩

[z, y, x, x] = [xzz
y
, x] = [x̄āc̄, x] = b14.

The expressions for both b14 and b13 = [z, y, x, x, [z, a]] = [b14, b26b27] are symmetric in x and y. We
read from the presentation that:

[b13, [z, a]] = [b13, b26b27] = 1;

[b13, x] = [b13, b18] = b4 = 1;

[b13, [z, x]] = [b13, [ā, x]] = [b13, b18b19] = b5b4 = 1.

As b13 is symmetric in x and y, it commutes with y and [z, y], so by Proposition 3.6 it is trivial.
Hence [z, y, x, x] = b14 commutes with [z, a]. It clearly commutes with each of x, y, [z, x] and [z, y], so
by Proposition 3.6 it is trivial. Therefore ⟨x, y, z⟩ is nilpotent of class at most 4. Hence [z, x, [z, y]]

commutes with each of x, y, [z, x] and [z, y]. As [z, a] commutes with both [z, x] and [z, y] it follows
that [z, x, [z, y]] commutes with [z, a]. Proposition 3.6 implies that [z, x, [z, y]] = 1. □

Lemma 3.15. In the γ-group ⟨x̄, ā, b̄, ȳ⟩ = ⟨xz, x, a, y⟩ the following relations hold:

e1 = e2 = e3 = e4 = e5 = e6 = e7 = e8 = e10 = 1, e11 = e9.
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Proof. We have seen in the proof of Lemma 3.13 that e2 = e4 = e6 = e8 = 1. As ⟨x, y, z⟩ is nilpotent
of class at most 4,

1 = [z, x, y, y]

= [xzx, y, y]

= [x̄ā, ȳ, ȳ]

= [[x̄, ȳ][x̄, ȳ, ā][ā, ȳ], y]

= [x̄, ȳ, ā, ȳ][ā,ȳ]

= [e14, e19, e18]
e16

= [e13e10, e18]
e16

= ee1610

= e10.

Also
1 = [e10, e15, e20] = [e3e1, e20] = e1;

1 = [e10, e15] = e3;

1 = [e10, e20] = e5.

We consider [z, x, a, [z, x, [x, y]]]. Both [z, x, a] and [z, x, [x, y]] commute with each of z and x, so
[z, x, a, [z, x, [x, y]]] commutes with both. We compute in the γ-group ⟨xz, x, a, y⟩. Note that

[z, x, a, [z, x, [x, y]]] = [xz, a, [xz, [x, y]]] = [x̄, b̄, [x̄, [ā, ȳ]]] = [e15, e13] = e7.

From the presentation, e7 commutes with e20 = b̄ = a and e18 = ȳ = y. It follows that e7 ∈ Z(G) = 1.
Finally, we consider [z, x, a, [z, x, y]]. By Lemma 3.14 we know that [z, x, y] commutes with z and
as [z, x, a] also commutes with z we see that [z, x, a, [z, x, y]] commutes with z. From the γ-group
presentation, we deduce that

[z, x, a, [z, x, y]] = [xz, a, [xzx, y]]

= [x̄, b̄, [x̄ā, ȳ]]

= [e15, e
e19
14 e16]

= [e15, e14e13e16]

= e9e11.

We see that e9e11 commutes with e20 = b̄ = a, e18 = ȳ = y and e17 = x. Hence e9e11 ∈ Z(G) = 1. □

Lemma 3.16. In the β-group ⟨ā, b̄, c̄, x̄⟩ = ⟨a, x, xy, z⟩ the following relations hold:

b1 = b2 = b3 = b4 = b5 = b6 = b7 = b8 = b9 = b10 = b11 = b12 = b16 = 1, b15 = b13.

Proof. All equalities were established in the proof of Lemma 3.10 apart from b15 = b13. In the proof of
Lemma 3.15 we show that [z, x, a, [z, x, [x, y]]] = e7 = 1. We now view it as an element of ⟨a, x, xy, z⟩.
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Our relations already imply that γ3(⟨x̄⟩⟨ā,b̄,c̄⟩) = 1. This simplifies our computations:

1 = [z, x, a, [z, x, [x, y]]]

= [x̄x̄āx̄b̄x̄āb̄, x̄x̄b̄x̄b̄c̄x̄c̄]

= [x̄ā, x̄b̄c̄][x̄ā, x̄c̄][x̄āb̄, x̄b̄c̄][x̄āb̄, x̄c̄]

= b17b14b14b13b17b15

= b13b15.

This finishes the proof. □

Armed with the last two lemmas, we finish the proof of the reduction theorem via a series of
technical lemmas.

Lemma 3.17.

(a) [z, a, x, y] = [z, x, a, y] = [z, x, y, a].
(b) [z, a, x, y, x] = [z, x, a, y, x] = [z, x, y, a, x] = [z, x, y, x, a].

Proof. (a) As [z, x, a] = [z, a, x], it suffices to show that [z, x, a, y] = [z, x, y, a]. Calculating in
⟨x̄, ā, b̄, ȳ⟩ = ⟨xz, x, a, y⟩, we deduce that

[z, x, y, a] = [x̄ā, ȳ, b̄] = [[x̄, ȳ][x̄, ȳ, ā][ā, ȳ], b̄] = e12,

and

[z, x, a, y] = [x̄, b̄, ȳ] = [e15, e18] = e12.

(b) By (a) the first three equalities hold, and thus it only remains to show that [z, x, a, y, x] =

[z, x, y, x, a]. Now [z, x, a, y, x] = [e12, e19] = e11. Also

[z, x, y, x, a] = [x̄ā, ȳ, ā, b̄]

= [[x̄, ȳ][x̄, ȳ, ā][ā, ȳ], ā, b̄]

= [x̄, ȳ, ā, b̄]

= [e14, e19, e20]

= [e13, e20]

= e11.

This finishes the proof. □

Lemma 3.18. [z, x, y, x, [z, a, y]] = [z, x, y, x, [z, a], y] = [z, a, x, y, x, [z, y]] = [z, a, x, y, x, z, y].

Proof. Notice that [z, x, y, x] = [z, x, [y, x]] and [z, a, x, y, x] = [z, a, x, [y, x]]. Calculating in ⟨a, x, xy, z⟩,
we deduce that

[z, x, [y, x], [z, a]] = [z, a, x, [y, x], z] = b17b14.
DOI: https://dx.doi.org/10.30504/JIMS.2023.401476.1124

https://dx.doi.org/10.30504/JIMS.2023.401476.1124


J. Iran. Math. Soc. 4 (2023), no. 2, 207-234 Hadjievangelou et al. 225

Hence the 2nd and 4th terms are equal. The Hall-Witt identity implies that

1 = [z, a, y, [z, x, y, x]]y[y, [z, x, y, x], [z, a]][z,x,y,x][z, x, y, x, [z, a], y][z,a]

= [z, a, y, [z, x, y, x]][z, x, y, x, [z, a], y][z,a].

Thus

(3.1) [z, x, y, x, [z, a, y]] = [z, x, y, x, [z, a], y][z,a].

Notice that [z, a, y] = [z, y, a]. Using the Hall-Witt identity again, we get

1 = [z, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y]][z,x,y,x][z, x, y, x, [z, y], a][z,y]

= [z, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y]],

where we use the fact that [z, x, y, x, a] commutes with [z, x, y, x], which can for example be read from
the presentation for ⟨xz, x, a, y⟩. Thus

(3.2) [z, x, y, x, [z, y, a]] = [z, x, y, x, a, [z, y]]a.

As [z, x, [y, x], [z, a]] = b17b14 commutes with a, and the same is true for y and [z, a], we see from (3.1)
that [z, x, y, x, [z, a, y]] commutes with a. As this element also commutes with z, the conjugation by a

and [z, a] in (3.1) and (3.2) can be dropped and the claimed equalities hold. □

Lemma 3.19. [z, x, y, x, [z, a, y, x]] = [z, x, y, x, [z, a, y], x] = [z, x, y, x, [z, a], y, x] = [z, a, x, y, x, [z, y, x]].

Proof. It follows from Lemma 3.18 that the 2nd and 3rd terms are equal. We use the Hall-Witt
identity to deduce that

1 = [z, a, y, x, [z, x, y, x]]x[x, [z, x, y, x], [z, a, y, x]][z,x,y,x][z, x, y, x, [z, a, y], x][z,a,y]

= [z, a, y, x, [z, x, y, x]][z, x, y, x, [z, a, y], x][z,a,y].

Thus

(3.3) [z, x, y, x, [z, a, y, x]] = [z, x, y, x, [z, a, y], x][z,a,y].

We also deduce that

1 = [z, y, x, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x]][z,x,y,x][z, x, y, x, [z, y, x], a][z,y,x]

= [z, y, x, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x]],

since [a, [z, x, [y, x]]] commutes with [z, x, [y, x]] in ⟨a, x, xy, z⟩. Thus

(3.4) [z, x, y, x, [z, y, x, a]] = [z, x, y, x, a, [z, y, x]]a.

From the proof of Lemma 3.18, we see that [z, x, y, x, [z, a, y]] commutes with a. The same is true for
x and [z, a, y] and thus it follows from (3.3) that [z, x, y, x, [z, a, y, x]] commutes with a. Calculating
in the γ-group ⟨x̄, ā, b̄, ȳ⟩ = ⟨yz, y, a, x⟩, we see that

[z, y, a, x, [z, y]] = [x̄, b̄, ȳ, x̄ā] = e11e9 = 1.
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Thus [z, x, y, x, [z, a, y, x]] commutes with [z, y] and hence also with [z, y, a] = [z, a, y]. Therefore the
conjugation by a and [z, a, y] can be dropped and the lemma follows from (3.3) and (3.4) and Lemma
3.18. □

Lemma 3.20. [z, x, y, x, [z, a, y, x, y]] = [z, x, y, x, [z, a, y, x], y] = [z, a, x, y, x, [z, y, x, y]].

Proof. The Hall-Witt identity implies that

1 = [z, a, y, x, y, [z, x, y, x]]y[y, [z, x, y, x], [z, a, y, x]][z,x,y,x][z, x, y, x, [z, a, y, x], y][z,a,y,x]

= [z, a, y, x, y, [z, x, y, x]][z, x, y, x, [z, a, y, x], y][z,a,y,x],

so

(3.5) [z, x, y, x, [z, a, y, x, y]] = [z, x, y, x, [z, a, y, x], y][z,a,y,x].

From the proof of Lemma 3.19, we see that [z, x, y, x, [z, a, y, x]] commutes with [z, a, y] and clearly y

commutes with [z, a, y]. It can be read from the presentation for ⟨yz, y, a, x⟩ that [z, y, a, x] = [z, a, y, x]

commutes with [z, a, y] = [z, y, a]. It follows that the RHS, and thus LHS, of (3.5) commutes with
[z, a, y]. Clearly the LHS also commutes with x. Hence it commutes with [z, a, y, x] and

(3.6) [z, x, y, x, [z, a, y, x, y]] = [z, x, y, x, [z, a, y, x], y].

Also

1 = [z, y, x, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x, y]][z,x,y,x][z, x, y, x, [z, y, x, y], a][z,y,x,y]

= [z, y, x, y, a, [z, x, y, x]]a[a, [z, x, y, x], [z, y, x, y]].

Thus

[z, x, y, x, [z, y, x, y, a]] = [z, x, y, x, a, [z, y, x, y]]a.

By the proof of Lemma 3.19, the RHS of (3.6) commutes with a. Hence

[z, x, y, x, [z, y, x, y, a]] = [z, x, y, x, a, [z, y, x, y]].

This finishes the proof. □

Lemma 3.21. [z, x, y, x, [z, a, y, x, y]] = [z, a, x, y, x, [z, y, x, y]] = 1.

Proof. From Lemma 3.20,

u := [z, x, y, x, [z, a, y, x, y]] = [z, a, x, y, x, [z, y, x, y]].

Each of [z, x, y, x] and [z, a, y, x, y] commutes with each of x, y and [z, y]. That [z, a, y, x, y] =

[z, y, a, x, y] commutes with [z, y] can be read from the presentation for ⟨yz, y, a, x⟩. Thus the LHS
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commutes with x, y, and [z, y] and by symmetry the RHS commutes with [z, x]. Thus u commutes
with each of x, y, [z, x] and [z, y]. We now show that u commutes with a:

ua = [z, a, x, y, x, [z, y, x, y]a]

= [z, a, x, y, x, [z, y, x, y][z, a, y, x, y]]

= [z, a, x, y, x, [z, a, y, x, y][z, y, x, y]] (working in ⟨yz, y, a, x⟩)

= [z, a, x, y, x, [z, y, x, y]][z, a, x, y, x, [z, a, y, x, y]][z,y,x,y]

= [z, a, x, y, x, [z, y, x, y]]

= u.

In the 3rd last identity we use the fact that ⟨az, x, y⟩ is nilpotent of class at most 4.
We prove the following claim: If v commutes with each of a, x, y, [z, x] and [z, y], then the same is

true for [v, [z, a]]. To see this, notice first that as [z, a] commutes with [z, x],[z, y] and a, the same is
true for [v, [z, a]]. It follows that v commutes with [z, a, x] = [z, x, a] and thus

[v, [z, a]]x = [v, [z, a][z, a, x]] = [v, [z, a, x][z, a]] = [v, [z, a]][v, [z, a, x]][z,a] = [v, [z, a]]

and [v, [z, a]] commutes with x. Likewise [v, [z, a]] commutes with y. Thus [v, [z, a]] commutes with
each of a, x, y, [z, x] and [z, y].

Next, notice that ⟨[z, a]u, [z, a]⟩ ≤ ⟨a, z, zu⟩ and thus ⟨[z, a]u, [z, a]⟩ is nilpotent, as every sand-
wich group of rank 3 is nilpotent. Using this fact, let m be the smallest positive integer such that
[u,m [z, a]] = 1. We claim that m = 1. Notice that [u,m−1 [z, a]] commutes with each of x, y, [z, a], [z, x]
and [z, y]. Proposition 3.6 implies that [u,m−1 [z, a]] = 1. Hence m = 1 and u = 1. □

Lemma 3.22. v := [z, x, y, x, [z, a, y, x]] = 1.

Proof. By Lemmas 3.21 and 3.20, we know that v commutes with y. It also commutes with x (as
[az, y, x, x] = 1). Observe that [z, x, y, x, a] commutes with [z, x, y, x] in ⟨xz, x, a, y⟩ and [z, x, y, x, a] =

[z, a, x, y, x] commutes with [z, a, y, x] in ⟨az, x, y⟩. Hence

va = [[z, x, y, x]a, [z, a, y, x]] = [[z, x, y, x, a][z, x, y, x], [z, a, y, x]] = [z, x, y, x, [z, a, y, x]] = v,

so v commutes with a. It remains to show that v commutes with z. Lemmas 3.18 and 3.19 imply that

v = [z, x, y, x, [z, a, y], x] = [z, a, x, y, x, [z, y], x].

We read from the presentation for ⟨xz, x, a, y⟩ that

[z, a, x, y, x] = [z, x, a, y, x]

commutes with [z, x] and by Lemma 3.14 this is also true for [z, y]. Hence

[z, a, x, y, x, [z, y]] = [z, x, y, x, [z, a, y]]

commutes with [z, x]. Clearly [z, x, y, x] and [z, a, y] commute with z. Thus

vz = [z, x, y, x, [z, a, y], x[x, z]] = [z, x, y, x, [z, a, y], [z, x]x] = v[z, x, y, x, [z, a, y], [z, x]]x = v.
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Thus v ∈ Z(G) = 1. □

Lemma 3.23. v := [z, x, y, x, [z, a, y]] = 1.

Proof. Lemmas 3.19 and 3.22 imply that v commutes with x. It also commutes with y and z. By the
proof of Lemma 3.18, it commutes with a. Thus v ∈ Z(G) = 1. □

Lemma 3.24. v := [z, x, y, x, [z, a]] = 1.

Proof. In ⟨a, x, xy, z⟩ we read that v = b17b14 commutes with a, x and z. From Lemmas 3.23 and 3.18,
it commutes also with y. Thus v ∈ Z(G) = 1. □

Proposition 3.25. G is nilpotent.

Proof. As ⟨x, y, z⟩ is nilpotent of class at most 4, it follows from Lemma 3.24 and Proposition 3.6
that [z, x, y, x] = 1. By symmetry in x and y, we deduce that [z, y, x, y] = 1. We saw earlier that
[z, x, [z, y]] = 1. It follows that ⟨x, y, z⟩ is nilpotent of class at most 3. In particular, calculating in
⟨a, x, xy, z⟩, we see that

1 = [z, x, [y, x], [z, a]] = b17b14.

Hence b17 = b14. From the presentation for a β-group, we see that b14 commutes with b28. Hence
1 = [b17, b28] = b15. But b15 = b13 so b13 = 1. Also b17 commutes with a = b26 and z = b18, and
x = b27. Recall that b17 = [z, za[x,y]], so it is symmetric in x and y; thus it commutes with y. Hence
b17 ∈ Z(G) = 1.

We now consider [x, y, z]. Calculating in ⟨a, x, xy, z⟩, we see that [x, y, z, [z, a]] = b17 = 1. As ⟨x, y, z⟩
is nilpotent of class at most 3, Proposition 3.6 implies that [x, y, z] = 1. But now [x, y] commutes with
a, x, y, z and thus [x, y] = 1. Hence G is a β-group and thus nilpotent. □

As a corollary to Theorem 3.4, we deduce the following.

Theorem 3.26. If G = ⟨a, x, y, z⟩ is a δ-group, then ⟨z, zx, zy, a⟩ is nilpotent.

Proof. Observe that ⟨a1, x1, y1, z1⟩ = ⟨z, zx, zy, a⟩ is also a δ-group. Now

[z1, a1, x1, z1] = [a, z, zx, a] = [azz
x
, a] = [z, x, a, a] = [xz, a, a] = 1.

Similarly, we see that [z1, a1, y1, z1] = 1. Theorem 3.4 now implies that ⟨a1, x1, y1, z1⟩ is nilpotent. □

3.1.4. Sandwich groups whose commutativity graph has 1 edge. Let G be the largest sandwich group
generated by 4 involutions where precisely one pair commutes. We used the Magma implementation
of the nilpotent quotient algorithm to determine that the largest nilpotent quotient of G has order
2235 and class 11.
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3.2. Rank 5 sandwich groups generated by involutions. Let G be a residually nilpotent sand-
wich group of rank 5 generated by involutions. It remains an open question whether G is finite. As a
step towards its resolution, we report the following.

Theorem 3.27. A residually nilpotent sandwich group of rank 5 generated by involutions is finite if
there are least three commuting pairs among its generators.

We consider all 10 commutativity graphs for such a group G that have 3 or 4 edges. In Table 1 we
list the graphs and upper bounds for the class and orders of the largest 2-quotient of each group.

We proved these claims computationally by studying each of the 10 groups using our implementation
in Magma of the p-quotient algorithm [19]. Let Q be the group generated by the involutions a, b, c, d, e
which satisfy one of these commutativity graphs. It required too much CPU time to impose the
sandwich condition directly. Instead, we added up to 2500 random instances of this condition as
explicit relations to the presentation for Q, and constructed its largest finite 2-quotient. The most
expensive of these computations took 7 days of CPU time using Magma 2.27-3 on a computer with a
2.6 GHz processor. Computational evidence suggests that the largest 2-quotient of G and Q coincide.

Commutativity graph Class bound log2 |G|
a− b, a− c, a− d, a− e 13 777

a− b− c− d− e 17 2643

a− b− c− d− a 16 2831

a− b− c− a, d− e 16 3145

a− b− c− a− d 16 3324

a− b, a− c, a− d− e 16 2636

a− b− c− d 17 10354

a− b− d− a 16 12598

a− b, a− c, a− d 16 10906

a− b− c, d− e 16 9987

Table 1. Class and order bounds for the 2-quotients

4. Global nilpotence question for ⟨a⟩G in locally finite 2-groups

In this section we give an example from [21] of a locally finite 2-group G with a left 3-Engel element
a such that ⟨a⟩G is not nilpotent. The construction is based on a Lie algebra given in [24]. This result
was generalized in [9] to an infinite family of examples.

4.1. The Lie algebra. Let F be the field of order 2 and consider the 4-dimensional vector space
V = Fx+ Fu+ Fv + Fw. We equip L with a binary product where

u · v = u, v · w = w, w · u = v, u · x = 0, v · x = 0, w · x = u.
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We then extend the product linearly on V . Observe that V is a Lie algebra with trivial center and
W = Fu+Fv+Fw is a simple ideal. Let E = ⟨ad(x), ad(u), ad(v), ad(w)⟩ ≤ End(V ) be the associative
enveloping algebra of V . Now E is 12-dimensional with basis

e1 = ad(w), e2 = ad(w)2, e3 = ad(w)3, e4 = ad(v),
e5 = ad(v)ad(w), e6 = ad(v)ad(w)2, e7 = ad(u), e8 = ad(u)ad(w),
e9 = ad(u)ad(w)2, e10 = ad(x)ad(v), e11 = ad(x)ad(w), e12 = ad(x)ad(w)2.

We construct a certain locally nilpotent Lie algebra over F of countably infinite dimension. For ease
of notation, we introduce the following modified union of subsets of N:

A ⊔B =

A ∪B, if A ∩B = ∅

∅ otherwise.

For each non-empty subset A of N, let WA be a copy of W . That is, WA = {zA : z ∈ W} with addition
zA + tA = (z + t)A. We take the direct sum

W ∗ =
⊕

∅̸=A⊆N

WA.

We view W ∗ as a Lie algebra by defining a multiplication

zA · tB = (zt)A⊔B,

for zA ∈ WA and tB ∈ WB, and then extend this product linearly on W ∗. The interpretation here is
that z∅ = 0. Finally, we extend this to a semidirect product with Fx

V ∗ = W ∗ ⊕ Fx

induced from the action zA · x = (zx)A. Notice that V ∗ has basis

{x} ∪ {uA, vA, wA : ∅ ̸= A ⊆ N}

and
uA · uB = vA · vB = wA · wB = 0,

uA · x = 0, vA · x = 0, wA · x = uA

and
uA · vB = uA⊔B, vA · wB = wA⊔B, wA · uB = vA⊔B.

Every finitely generated subalgebra of V ∗ is contained in some

S = ⟨x, uA1 , . . . , uAr , vB1 , . . . , vBs , wC1 , . . . , wCt⟩.

Since zxx = 0 for all z ∈ V ∗, it follows that S is nilpotent of class at most 2(r + s+ t). Hence V ∗ is
locally nilpotent.
We now construct a group G ≤ GL(V ∗) containing a := 1+ ad(x) where a is a left 3-Engel element of
G but ⟨a⟩G is not nilpotent. Let y be one of x, uA, vA, wA. Observe that ad(y)2 = 0 so

(1 + ad(y))2 = 1 + 2ad(y) + ad(y)2 = 1.
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Thus 1 + ad(y) is an involution in GL(V ∗). The subgroups

U = ⟨1 + ad(uA) : A ⊆ N⟩, V = ⟨1 + ad(vA) : A ⊆ N⟩, W = ⟨1 + ad(wA) : A ⊆ N⟩

are elementary abelian of countably infinite rank. Analysis of G := ⟨a,U ,V,W⟩ establishes the
following.

Theorem 4.1. The element a is a left 3-Engel element of G. However ⟨a⟩G is not nilpotent.

5. Global nilpotence question for ⟨x⟩G in locally finite p-groups, for odd p

In Section 4, following [9, 21], we gave an example of a locally finite 2-group G with a left 3-Engel
element a such that ⟨a⟩G is not nilpotent. We now provide such an example for locally finite p-groups
where p is any odd prime [10]. The odd case is more involved and the construction is quite different
from the p = 2 case. We first describe the pair (G, x) that will provide our example and we show
directly that x is a left 3-Engel element of G. The description of G is not as transparent as in Section
4. To show that ⟨x⟩G is not nilpotent requires more work. We construct first a pair (L, z) where L

is a Lie algebra over Fp, the field of p elements, and Id(z) is not nilpotent. The pair (L, z) can be
seen as the Lie algebra analogue of our group construction. We then build a group H within End(L)
containing 1+ ad(z) where (H, 1+ ad(z)) is a homomorphic image of (G, x). Since (1+ ad(z))H is not
nilpotent, ⟨x⟩G is not nilpotent.

5.1. The group G and Lie algebra L. Let x, a1, a2, . . . be an infinite list of group variables. Recall
that a simple commutator in x, a1, a2, . . . is a group word defined recursively as follows: x, a1, a2, . . .

are simple commutators; if u and v are simple commutators, then [u, v] is a simple commutator. A
simple commutator s has multi-weight (m, e1, e2, . . .) in x, a1, a2, . . ., if x occurs m times and ai occurs
ei times in s. The weight of s is m+ e1 + e2 + · · · . The following definition is critical.

Definition 5.1. Let s be a simple commutator of multi-weight (m, e1, e2, . . .) in x, a1, a2, . . .. The type
of s is t(s) = e1 + e2 + . . .− 2m.

Remark 5.2. If u, v are simple commutators in x, a1, a2, . . ., then t([u, v]) = t(u)+t(v). In particular,
t([u, aj ]) = t(u) + 1 and t([u, x]) = t(u)− 2.

For a fixed odd prime p, let G = ⟨x, a1, a2, . . . ⟩ be the largest group satisfying the following condi-
tions:

(1) ⟨ai⟩G is abelian for all i ≥ 1;
(2) ⟨x⟩G is metabelian;
(3) xp = ap1 = ap2 = · · · = 1;
(4) if s ̸= x is a simple commutator in x, a1, a2, . . . and |t(s)| ≥ 2, then s = 1.

It is not difficult to see that G is a locally finite p-group. From (4), it is clear that s = 1 unless it is
of the form [x, aj1 , aj2 , aj3 , x, aj4 , aj5 , . . . , x, aj2m , aj2m+1 ].

In [10] it was proved directly that x is a left 3-Engel element of G. To show that ⟨x⟩G is not
nilpotent, it suffices to show that the special commutators above, which are not trivial by (4), are
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non-trivial. The structure of G is not transparent enough for us to prove this directly. Instead, we
look at the analogous Lie algebra setting.

We first consider the largest Lie algebra F = ⟨z, c1, c2, . . . ⟩ over Fp such that:

(1) Id(ci) is abelian for i = 1, 2, . . . ;
(2) Id(z) is metabelian.

Let B be the following basis for IdF (z):

[[z, cI1 ], [z, cI2 ], . . . , [z, cIm ]]

where m ≥ 1, I1, . . . , Im are pairwise disjoint and [z, cI1 ] > [z, cI2 ] ≤ · · · ≤ [z, cIm ]. We define the type
of a Lie commutator by analogy with that of a group commutator.

Definition 5.3. Let s be a simple commutator of multi-weight (m, e1, . . . , er) in z, c1, . . . , cr. The
type of s is t(s) = e1 + · · ·+ er − 2m.

Remark 5.4. If c and d are simple commutators, then t([c, d]) = t(c)+ t(d). In particular, t([c, x]) =
t(c)− 2 and t([c, a1]) = t(c) + 1.

We construct a Lie algebra L that is a quotient of F by a certain multi-homogeneous ideal J . Since
F is multi-graded, L is also multi-graded. Now J is the smallest ideal satisfying the following:

(3) c ∈ B is in J if c ̸= z is a commutator of type having absolute value greater than 1;
(4) c ∈ B is in J if one of I1, I3, . . . , Im has size greater than 2.

By careful analysis, we determine the structure of J and prove that IdL(z) is not nilpotent. From L,
we obtain a group H = ⟨1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . . ⟩. We deduce that H is a homomorphic
image of G by showing that relations (1)–(4) of G hold in H where x, a1, a2, . . . are replaced by
1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . .. Finally, we show that ⟨1 + ad(z)⟩H is non-nilpotent, so ⟨x⟩G is
non-nilpotent.

Theorem 5.5. The element x is a left 3-Engel element of G. However ⟨x⟩G is not nilpotent.
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