Commutators and hyponormal operators on a Hilbert space

Document Type : Research Article

Authors

1 Kazan National Research Technological University, Kazan, Russia

2 Department of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia

Abstract

Let $\mathcal{H}$ be an infinite-dimensional Hilbert space over the field $\mathbb{C}$, $\mathcal{B}(\mathcal{H})$ be the $\ast$-algebra of all linear bounded operators on $\mathcal{H}$, let $|X|=\sqrt{X^*X}$ for $X\in \mathcal{B}(\mathcal{H})$. An operator $A\in \mathcal{B}(\mathcal{H})$ is a commutator if $A=[S, T]=ST-TS$ for some $S, T\in \mathcal{B}(\mathcal{H})$. Let $X, Y \in \mathcal{B}(\mathcal{H})$ and $X\geq 0$. If the operator $XY$ is a non-commutator, then $X^pYX^{1-p}$ is a non-commutator for every $0<p<1$. Let $A \in \mathcal{B}(\mathcal{H})$ be $p$-hyponormal for some $0<p\leq 1$. If $|A^*|^r$ is a non-commutator for some $r>0$ then $|A|^q$ is a non-commutator 
for every $q>0$. Let $\mathcal{H}$ be separable and $A \in \mathcal{B}(\mathcal{H})$ be a non-commutator. If $A$ is hyponormal (or cohyponormal) then $A$ is normal. We also present results in the case of a finite-dimensional Hilbert space.

Keywords

Main Subjects


[1] J. Avron, R. Seiler and B Simon, The index of a pair of projections, J. Funct. Anal. 120 (1994), no. 1, 220--237.
[2] J. Bellissard, A. van Elst, H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect. Topology and physics. J. Math. Phys. 35 (1994), no. 10, 5373--5451.
[3] A. F. Ber, K. K. Kudaybergenov and F. A. Sukochev, Derivation on Murray--von Neumann algebras, Russian Math. Surveys 74 (2019), no. 5, 950--952.
[4] A. Ber, J. Huang, G. Levitina and F. Sukochev, Derivations with values in the ideal of τ -compact operators affiliated with a semifinite von Neumann algebra. Comm. Math. Phys. 390 (2022), no. 2, 577--616.
[5] A. M. Bikchentaev, On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in C*-algebras, Mat. Sb. 199 (2008), no. 3-4 477--493.
[6] A. M. Bikchentaev, Commutativity of projections and trace characterization on von Neumann algebras. Sib. Math. J. 51 (2010), no. 6, 971--977.
[7] A. M. Bikchentaev and R.S. Yakushev, Representation of tripotents and representations via tripotents. Linear Algebra Appl. 435 (2011), no. 9, 2156--2165.
[8] A. M. Bikchentaev, Commutation of projections and characterization of traces on von Neumann algebras. III. Internat. J. Theoret. Phys. 54 (2015), no. 12, 4482--4493.
[9] A. M. Bikchentaev, A block projection operator in normed ideal spaces of measurable operators, Russian Math. (Iz. VUZ) 56 (2012), no. 2, 75--79
[10] A. M. Bikchentaev, Commutativity of operators and the characterization of traces on C*-algebras, Dokl. Math. 87 (2013), no. 1, 79--82
[11] A. M. Bikchentaev, Commutation of projections and characterization of traces on von Neumann algebras. III. Internat. J. Theoret. Phys. 54 (2015), no. 12, 4482--4493.
[12] A. M. Bikchentaev, On the convergence of integrable operators affiliated to a finite von Neumann algebra, Proc. Steklov Inst. Math. 293 (2016), no. 1, 67--76
[13] A. M. Bikchentaev, Differences of idempotents in C*-algebras, Sib. Math. J. 58 (2017), no. 2, 183--189.
[14] A. M. Bikchentaev, Differences of idempotents in C*-algebras and the quantum Hall effect, Theoret. and Math. Phys. 195 (2018), no. 1, 557--562.
[15] A. M. Bikchentaev, Inequalities for determinants and characterization of the trace, Sib. Math. J. 61 (2020), no. 2, 248--254.
[16] A. M. Bikchentaev and F. Sukochev, Inequalities for the block projection operators. J. Funct. Anal. 280 (2021), no. 7, Paper No. 108851, 18 pp.
[17] A. M. Bikchentaev and Kh. Fawwaz, Differences and commutators of idempotents inDifferences and commutators of idempotents in C*-algebras, Russian Math. (Iz. VUZ) 65 (2021), no. 8, 13--22
[18] A. M. Bikchentaev, The trace and commutators of measurable operators affiliated to a von Neumann algebr, J. Math. Sci. 252 (2021), no. 1, 8--19.
[19] A. M. Bikchentaev, Differences and commutators of projections on a Hilbert space. Internat. J. Theoret. Phys. 61 (2022), no. 1, Paper No. 2, 10 pp.
[20] A. M. Bikchentaev, Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators, Sib. Math. J. 63 (2022), no. 2, 224--232.
[21] A. M. Bikchentaev, Commutators in C*-algebras and traces, Ann. Funct. Anal. 14 (2023), no. 2, Paper No. 42, 14 pp.
[22] B. Blackadar, Operator algebras. Theory of C*-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-commutative Geometry, III. Springer-Verlag, Berlin, 2006.
[23] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112--127.
[24] M. Caspers, D. Potapov, F. Sukochev and D. Zanin, Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture, Amer. J. Math. 141 (2019), no. 3, 593--610.
[25] V. Chilin, A. Krygin and F. Sukochev, Extreme points of convex fully symmetric sets of measurable operators, Integral Equations Operator Theory 15 (1992), no. 2, 186--226.
[26] J. Cuntz and G.K. Pedersen, Equivalence and traces on C*-algebras, J. Functional Analysis 33 (1979), no. 2, 135--164.
[27] J. Dixmier, Les algebres d’opérateurs dans l’espace Hilbertien (algebres de von Neumann), 2nd ed. Paris: Gauthier-Villars, 1969.
[28] T. Fack, Finite sums of commutators in C*-algebras, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 1, vii, 129--137.
[29] F. Gesztesy, From mathematical physics to analysis: a walk in Barry Simon’s mathematical garden, II. Fritz Gesztesy, coordinating editor. Notices Amer. Math. Soc. 63 (2016), no. 8, 878--889.
[30] I. M. Glazman and Ju.I. Ljubič, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form MIT Press, Cambridge, MA, 1974.
[31] I. C. Gohberg and M.G. Kreǐn, Introduction to the theory of linear nonselfadjoint operators. Translated from the Russian by A. Feinstein Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969.
[32] P. R. Halmos, A Hilbert space problem book. Second edition. Encyclopedia of Mathematics and its Applications, 17. Graduate Texts in Mathematics, 19. Springer-Verlag, New York-Berlin, 1982.
[33] A. Jafarian, A. I. Popov and H. Radjavi, Common invariant subspaces from small commutators. Indiana Univ. Math. J. 67 (2018), no. 1, 151--167.
[34] L. W. Marcoux, H. Radjavi, and Y. Zhang, Around the closure of the set of commutators of idempotents in B(H): biquasitriangularity and factorisation, J. Funct. Anal. 284 (2023), no. 8, doi:https://doi.org/10.1016/j.jfa.2023.109854.
[35] C. Pop, Finite sums of commutators. Proc. Amer. Math. Soc. 130 (2002), no. 10, 3039--3041.
[36] M. Takesaki, Theory of operator algebras. I. Reprint of the first (1979) edition. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, Berlin, 2002.