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Abstract. If G is a group and H,K are normal subgroups of G, H ≤ K, then K/H is said to be a

G-perfect factor if [K/H,G] = K/H. If G is a nilpotent group, then every non-trivial factor of G is

not G-perfect. Conversely, if G is finite and all non-trivial factors of G are not G-perfect, then G is

nilpotent. We study (infinite) groups with no non-trivial G-perfect factors. We prove that if either G

is a locally generalized radical group with finite section rank, or G has a normal nilpotent subgroup

A such that G/A is a locally finite group with Chernikov Sylow p-subgroups for every prime p, and

G has no non-trivial G-perfect factors, then for every prime p there exists a positive integer sp, such

that ζsp(G), the sp-term of the upper central series of G, contains the Sylow p-subgroups of G, and

G/Tor(G) is nilpotent. In particular, G is hypercentral and the hypercentral length of G is at most

ω + k, for some positive integer k.

1. Introduction

If G is a group and H,K are normal subgroups of G, H ≤ K, then the group K/H is called a factor

of G. The factor K/H is called perfect (more precisely, G-perfect), if [K/H,G] = K/H. Otherwise,

we will say that the factor is not perfect. Thus H/K not perfect means that [K/H,G] ̸= K/H. The

factor K/H is called central (more precisely, G-central), if [K,G] ≤ H.
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If G is a nilpotent group, then every non-trivial factor of G is not perfect. Moreover, it is easy to

prove that if G is a finite group, such that all of whose non-trivial factors are not perfect, then G is

nilpotent. Therefore the following natural question arises:

What can be said concerning the structure of a group G whose non-trivial factors are not G-perfect?

And, in particular,

When is a group G whose non trivial factors are not G-perfect nilpotent?

If G is a group whose non-trivial factors are not G-perfect, then obviously every quotient of G has

this property. Moreover, every chief factor of G is central; recall that groups G with each chief factor

central are called Z̄-groups (see [9]). The class of all Z̄-groups is very wide and has been studied by

Yu.I. Merzljakov, P. Hall and M.I. Kargapolov (see [9]). Notice that there exist Z̄−groups (and even

hypercentral groups)that have perfect factors. For example, let D be a divisible abelian 2-group. Then

D has an automorphism ν, such that ν(d) = d−1 for each element d ∈ D. Consider the semidirect

product G = D ⋊ ⟨b⟩, such that db = ν(d) = d−1 for every element d ∈ D. Let a ∈ D, since D is

divisible, there exists an element d ∈ D, such that d2 = a. We have [b, d] = b−1d−1bd = d2 = a. It

follows that [b,D] = D and therefore [G,D] = D. The group G is not nilpotent, however the series

⟨1⟩ ≤ Ω1(D) ≤ · · · ≤ Ωn(D) ≤ Ωn+1(D) ≤ · · · ≤ D ≤ G is central, hence G is an hypercentral

abelian-by-finite group.

Notice that it is not true that a group whose non-trivial factors are not G-perfect is nilpotent.

In fact such groups can be very far from being nilpotent. Indeed, H. Heineken and A. Mohamed

constructed in the paper [4] a p-group H, where p is a prime, satisfying the following conditions: H

contains a normal elementary abelian p-subgroup A such that H/A is a Prüfer p-group and every

proper subgroup S of H is subnormal in H and nilpotent, SA ̸= H, and Z(H) = ⟨1⟩. It is possible to

prove that every non-trivial factor of H is not H-perfect. Another example is the group constructed

by R.I. Grigorchuk in the paper [3]. This is an infinite finitely generated p-group, whose non-trivial

normal subgroups have finite index. It is easy to see that every non-trivial factor of this group is not

G-perfect.

Other examples of groups with no non-trivial G-perfect factors are the following groups, which are

close to be nilpotent. A periodic group G is said to be Sylow-nilpotent if G is locally nilpotent

and every Sylow p-subgroup of G is nilpotent, for every prime p. It is not hard to see that every

Sylow-nilpotent group has no non-trivial G-perfect factors.

Before to state our results, we recall some definitions. A group G is generalized radical, if G

has an ascending series, whose factors are either locally nilpotent or locally finite. Notice that every

generalized radical group has an ascending series of normal, indeed characteristic, subgroups with

locally nilpotent or locally finite factors. Let p be a prime. We say that a group G has finite section

p-rank (srp(G) = r), if every elementary abelian p-section of G is finite of order at most pr, and there

is an elementary abelian p-section A/B of G, such that |A/B| = pr. We say that the group G has

finite section rank, if srp(G) is finite for all primes p. We let ω denotes the first infinite ordinal.

Our results are the following.
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Theorem A. Let G be a locally generalized radical group with finite section rank. If G has no non-

trivial G-perfect factors, then G satisfies the following conditions:

(i) for every prime p, there exists a positive integer sp, such that the sp-center of G, ζsp(G),

contains the Sylow p-subgroups of G;

(ii) the factor group G/Tor(G) is nilpotent.

In particular, G is hypercentral, and the hypercentral length of G is at most ω + k, for some positive

integer k.

Theorem B. Let G be a group, and let A be a normal nilpotent subgroup of G, such that G/A is a

locally finite group, whose Sylow p-subgroups are Chernikov for all prime p. If G has no nontrivial

G-perfect factors, then G satisfies the following conditions:

(i) for every prime p there exists a positive integer sp such that ζsp(G) contains the Sylow p-

subgroups of G;

(ii) the factor group G/Tor(G) is nilpotent.

In particular, G is hypercentral, and the hypercentral length of G is at most ω + k for some positive

integer k.

Theorem B has some interesting corollaries.

Corollary 1.1. Let G be a periodic group, and let A be a normal nilpotent subgroup of G, such that

G/A is a locally finite group, whose Sylow p-subgroups are Chernikov for all primes p. If G has no

nontrivial G-perfect factors, then G is Sylow-nilpotent.

Corollary 1.2. Let G be a group, and let A be a normal nilpotent subgroup of G such that G/A is

finite. If G has no non-trivial G-perfect factors, then G is nilpotent.

2. Generalized radical groups without non-trivial perfect factors.

In this section we investigate locally generalized radical groups G without non-trivial perfect factors.

We start by studying finite factors and finitely generated abelian factors of groups with this property.

Lemma 2.1. Let G be a group, and let S,K be normal subgroups of G such that K ≤ S and S/K is

finite. If G has no non-trivial G-perfect factors, then S/K is contained in thenth term of the upper

central series of G/K, for some positive integer n. In particular, S/K is nilpotent.

Proof. Let K = K0 ≤ K1 ≤ · · · ≤ Kt−1 ≤ Kt = S be a series of G-invariant subgroups whose

factors are G-chief factors. Since [Kj/Kj−1, G] is a G-invariant subgroup of Kj/Kj−1, the hypothesis

[Kj/Kj−1, G] ̸= Kj/Kj−1 implies that [Kj , G] = Kj−1, 1 ≤ j ≤ t. Therefore the above series is

G-central. □

Let G be a group and A be a normal abelian subgroup of G. Define the G-center of A by the

following rule

ζG(A) = {a ∈ A | [a, g] = 1, ∀g ∈ G},
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and the upper G-central series of A,

⟨1⟩ = ζG,0(A) ≤ ζG,1(A) ≤ · · · ≤ ζG,α(A) ≤ ζG,α+1(A) ≤ · · · ≤ ζG,γ(A),

writing: ζG,1(A) = ζG(A), ζG,α+1(A)/ζG,α(A) = ζG,1(A/ζG,α(A)), ζG,λ(A) =
∪

β<λ ζG,β(A), for all

limit ordinals, ζG(A/ζG,γ(A)) = {1}.
Notice that every term of this series is a ZG-submodule.

We say that A is G-hypercentral, if the last term ζG,γ(A) of this series coincides with A. We say

that A is G-nilpotent, if A = ζG,n(A) for some positive integer n.

Lemma 2.2. Let G be a group , and let S,K be normal subgroups of G, such that K ≤ S and S/K

is a finitely generated torsion-free abelian group. If G has no non-trivial G-perfect factors, in the nth

term of the upper central series of G/K, for some positive integer n. In particular, S/K is nilpotent.

Proof. Let r = r0(S/K). For every prime p, the factor (S/K)/(S/K)p is an elementary abelian p-

group of order pr. Write Sp/K = (S/K)p. By Lemma 2.1, there exists a positive integer t, such that

S/Sp ≤ ζt(G/Sp). Since S/Sp has order pr, so t ≤ r. Therefore [S, rG] ≤ Sp , for all prime p.

Therefore [S, rG] ≤
∩

p∈P Sp, where P is the set of all primes. Since S/K is a free abelian group,

then
∩

p∈P Sp/K =
∩

p∈P (S/K)p is trivial. Thus [S, rG] ≤ K. It follows that S/K ≤ ζr(G/K), as

required. □

Corollary 2.3. Let G be a group, and let S,K be normal subgroups of G, such that K ≤ S and S/K

is a finitely generated abelian group. If G has no non-trivial G-perfect factors, then S/K is contained

in the nth term of the upper central series of G/K, for some positive integer n. In particular, S/K is

nilpotent.

Now interesting informationconcerning some particular normal subgroups , follows.

Corollary 2.4. Let G be a group, and let K be a normal subgroup of G, having a finite series of

G-invariant subgroups, whose factors are either finite groups or finitely generated abelian groups. If G

has no non-trivial G-perfect factors, then K is contained in the nth term of the upper central series

of G, for some positive integer n. In particular, K is G-nilpotent.

Corollary 2.5. Let G be a group, and let K be a normal polycyclic-by-finite subgroup of G. If G has

no non-trivial G-perfect factors, then K is contained in the nth term of the upper central series of G,

for some positive integer n. In particular, K is G-nilpotent.

Now, a useful lemma.

Lemma 2.6. Let G be a group, and let A be a normal abelian subgroup of G, such that A is finitely

generated as ZG-module and G/CG(A) is a finitely generated nilpotent group. If G has no non-trivial

G-perfect factors, then A is contained in the nth term of the upper central series of G, for some positive

integer n.
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Proof. Let M be a maximal ZG-submodule of A. Since the factor A/M is a G-chief factor, the

hypothesis [A/M,G] ̸= A/M implies that [A,G] = M . Then the factor A/M is G-central. Therefore

A is G-nilpotent (see [7, Corollary 13.3]). □

Using the previous results, we can prove that finitely generated soluble-by-finite groups are nilpo-

tent, if they have no non-trivial G-perfect factors.

Corollary 2.7. Let G be a finitely generated soluble-by-finite group. If G has no non-trivial G-perfect

factors, then G is nilpotent.

Proof. By Lemma 2.1 every finite factor group of G is nilpotent. Hence G is soluble. Let A be a

normal abelian subgroup of G such that G/A is nilpotent. Since a finitely generated nilpotent group is

finitely presented, A is finitely generated as ZG-submodule (see, for example, [1, Proposition 8.1.12]).

Then Lemma 2.6 implies that A ≤ ζr(G), for some positive integer r. It follows that G is nilpotent.

The result follows by induction. □

In the next three lemmas, we study normal torsion-free subgroups of finite 0-rank in a group

without non-trivial G-perfect factors. Here we say that a group G has finite 0-rank (r0(G) = r), if G

has an ascending series whose factors are either infinite cyclic or periodic and the number of infinite

cyclic factors is exactly r.

Lemma 2.8. Let G be a group, and let A be a normal abelian torsion-free subgroup of G, such that

r0(A) is finite and G/CG(A) is a finitely generated nilpotent group. If G has no non-trivial G-perfect

factors, then A is contained in the nth term of the upper central series of G, for some positive integer

n.

Proof. Since A has finite 0-rank, there exists a finitely generated subgroup B of A, such that A/B

is periodic. Let D = BG. Write S = G/CG(A) and consider A as a ZS-module. Then D is

a finitely generated ZS-submodule of A, containing a free abelian subgroup C such that D/C is

periodic and the set Π(D/C) is finite (see, for example, [7, Corollary 1.8]). Denote by π the set

of all primes p such that p /∈ Π(D/C). If p ∈ π, then C/Cp is the Sylow p-subgroup of D/Cp.

Then we have D/Cp = C/Cp × E/Cp, where E/Cp is the Sylow p′-subgroup of D/Cp. This direct

decomposition shows that (D/Cp)p = E/Cp. On the other hand, (D/Cp)p = (DpCp)/Cp = Dp/Cp, so

that Dp/Cp = E/Cp. It follows that C ∩Dp = Cp. Let r = r0(A). For every prime p the factor D/Dp

is an elementary abelian p-group of order pr. By Lemma 2.1 there exists a positive integer t such that

D/Dp ≤ ζt(G/Dp) Since D/Dp has order at most pr, we have t ≤ r, thus [D, rG] ≤ Dp. This holds for

every prime p ∈ π, therefore [D, rG] ≤
∩

p∈π D
p. We have (

∩
p∈π D

p)∩C =
∩

p∈π(D
p∩C) =

∩
p∈π C

p.

Since C is a free abelian group and the set π is infinite, then
∩

p∈π C
p = ⟨1⟩. Thus∩

p∈π D
p ≃ (

∩
p∈π D

p)/((
∩

p∈π D
p) ∩ C) ≃ (

∩
p∈π D

p)C/C.

Notice that D/C is periodic, so that
∩

p∈π D
p is periodic. On the other hand, the subgroup D is

torsion-free. It follows that
∩

p∈π D
p = ⟨1⟩. Thus [D, rG] = ⟨1⟩, therefore D ≤ ζr(G). Since the

factor A/D is periodic, it is now easy to prove that A ≤ ζr(G). □
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Let G be a group and A be an abelian torsion-free normal subgroup of G. Then A is called G-

rationally irreducible, if the factor A/B is periodic for every non-trivial G-invariant subgroup B.

Notice that A is G-rationally irreducible, if and only the QG-module A
⊗

ZQ is simple.

Lemma 2.9. Let G be a group, and let A be a normal abelian torsion-free subgroup of G such that

r0(A) is finite, A is G-rationally irreducible and G/CG(A) is a locally nilpotent group of finite 0-rank.

If G has no nontrivial G-perfect factors, then A is contained in the nth term of the upper central series

of G, for some positive integer n.

Proof. Since A has finite 0-rank, there exists a finitely generated subgroup B of A such that A/B is

periodic. Let D = BG. Write S = G/CG(A), and consider A as a ZS-module. Then D is a finitely

generated ZS-submodule of A. There exists a set π of primes such that D ̸= Dp for each p ∈ π and the

set P \π is finite where P is the set of all primes (see, for example, [7, Theorem 1.15]). Let r = r0(A).

For every prime p the factor D/Dp is an elementary abelian p-group of order at most pr. By Lemma

2.1 there exists a positive integer t such that D/Dp ≤ ζt(G/Dp). Since D/Dp has order at most pr,

we have t ≤ r. Therefore [D, rG] ≤ Dp. This is true for every prime p ∈ π, thus [D, rG] ≤
∩

p∈π D
p.

Now, the subgroup C =
∩

p∈π D
p is G-invariant. Suppose that it is not trivial, then A/C is periodic,

hence D/C is also periodic. Moreover, the choice of C implies that the set Π(D/C) is infinite. On the

other hand, D/C is a finitely generated ZG-module, then the set Π(D/C) is finite. This contradiction

shows that
∩

p∈π D
p = ⟨1⟩. Thus [D, rG] = ⟨1⟩, that is D ≤ ζr(G). Since the factor A/D is periodic,

it is now easy to prove that A ≤ ζr(G). □

Corollary 2.10. Let G be a group, A be a normal abelian torsion-free subgroup of G such that r0(A)

is finite and G/CG(A) is a locally nilpotent group of finite 0-rank. If G has no nontrivial G-perfect

factors, then A is contained in in the nth term of the upper central series of G, for some positive

integer n.

Proof. Since A has finite 0-rank, A has a series ⟨1⟩ = A0 ≤ A1 ≤ · · · ≤ At−1 ≤ At = A of G-invariant

pure subgroups of A whose factors are G-rationally irreducible. The result follows using induction

and Lemma 2.9. □

Now we can prove part (ii) of Theorem A. Recall that, if G is a group, then Tor(G) denotes the

largest normal periodic subgroup of G.

Corollary 2.11. Let G be a locally generalized radical group, with finite 0-rank. If G has no nontrivial

G-perfect factors, then the factor group G/Tor(G) is nilpotent.

Proof. Without loss of generality we may suppose that Tor(G) = ⟨1⟩. Then G has a series ⟨1⟩ ≤
L ≤ K ≤ G of normal subgroups, such that L is a torsion-free nilpotent subgroup, K/L is a

finitely generated torsion-free abelian group, G/K is a finite group (see, for example, [1, Theorem

2.4.13]). By Lemma 2.1, G/K is nilpotent. By Lemma 2.2, there exists a positive integer t such that

K/L ≤ ζt(G/L). Thus G/L is nilpotent. Let ⟨1⟩ = C0 ≤ C1 ≤ · · · ≤ Cn−1 ≤ Cn = L be the upper

central series of L. Then C1, . . . , Cn are G -invariant. Moreover, the factors Cj/Cj−1 are torsion-free,
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1 ≤ j ≤ n (see, for example, [1, Corollary 1.2.9]). Then Corollary 2.10 implies that there exists a

positive integer s, such that L/Cn−1 ≤ ζs(G/Cn−1). Therefore G/Cn−1 is nilpotent. Using repeatedly

Corollary 2.10, we obtain that G is nilpotent. □

Now we study locally finite normal subgroups in a group with no non-trivial perfect factors. We

start with the following definition.

Let G be a group, and let A be an infinite normal subgroup of G. We say that A is called

G-quasifinite, if A does not contain proper infinite G-invariant subgroups. Obviously, every G-

quasifinite normal subgroup satisfies the minimal condition on G-invariant subgroups (the condition

Min-G). Moreover, either A contains a proper G-invariant subgroup C such that the factor A/C is a

G-chief factor, or A is generated by the union of its proper finite G-invariant subgroups. Conversely,

suppose that A satisfies the minimal condition on G-invariant subgroups, and consider the family

M = {B | , B is an infinite G-invariant subgroup of A }.
Then, ordered by inclusion, the family M has a minimal element C, and obviously C, is a

G-quasifinite normal subgroup of G.

Lemma 2.12. Let G be a group, and let K be a normal G-quasifinite subgroup of G. If G has no

non-trivial G-perfect factors, then K is a Prüfer p-subgroup, for some prime p. Moreover, K ≤ ζ(G).

Proof. Put S = [K,G], then S is finite. The inclusion K/S ≤ ζ(G/S) together with the fact that K/S

is G-quasifinite, imply that K/S is a Prüfer p-subgroup for some prime p. Moreover, K is the union of

its proper finite G-invariant subgroups. If H is a finite G-invariant subgroup of K, then its centralizer

CG(H) has finite index in G. Obviously, K does not contain proper G-invariant subgroups of finite

index. Hence CG(H)∩K = K, then H ≤ ζ(K). This is true for each finite G-invariant subgroup of K,

hence K = ζ(K). Therefore K is abelian and then K is a Prüfer p-subgroup. Put C = CG(S). Since

S is finite, so G/C is finite. Let g be an arbitrary element of C. For each element a ∈ K, we have

g−1ag = ab, where b ∈ S. Then g−2ag2 = g−1(g−1ag)g = g−1(ab)g = (g−1ag)(g−1bg) = abb = ab2,

and, by induction, we obtain that g−nagn = abn for every positive integer n. Hence, if we write

|S| = k, we get that gk ∈ CG(K). Therefore the factor C/CC(K) is bounded. Since G/C is finite, we

obtain that G/CG(K) is bounded. By Lemma 2.1 there exists a positive integer n

such that S ≤ ζn(G). Then [S, nG] = ⟨1⟩, hence [K, n+1G] = ⟨1⟩. Since K is a divisible subgroup

and G/CG(K) is periodic, it follows that [K,G] = ⟨1⟩ (see, for example, [9, Lemma 3.13]), i.e. K ≤
ζ(G). □

Lemma 2.13. Let G be a group, and let K be a normal Chernikov subgroup of G. If G has no

non-trivial G-perfect factors, then there exists a positive integer n such that K ≤ ζn(G). In particular,

K is G-nilpotent. Moreover, if the factor group G/CG(K) is periodic, then the divisible part of K is

contained in ζ(G).

Proof. The group K satisfies the minimal condition on subgroups. Let D be the divisible part of K.

Then K has a finite series C = C1 ≤ C2 ≤ · · · ≤ Cn = D ≤ K of G-invariant subgroups, such that

the factors Cj+1/Cj are G-quasifinite, 1 ≤ j ≤ n, while the factor K/D is finite. By Lemma 2.12,
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every factor Cj+1/Cj is G-central. Then D ≤ ζn(G). Since K/D is finite, by Lemma 2.1, there exists

a positive integer t such that K/D ≤ ζt(G/D). Therefore K ≤ ζn+t(G).

Finally, suppose that G/CG(K) is periodic. Since [D, nG] = ⟨1⟩, we obtain [D,G] = ⟨1⟩ (see, for

example, [9, Lemma 3.13]). □

Let G be a group and H be a normal subgroup of G. Write H = γG,1(H), and, recursively,

γG,α+1(H) = [γG,α(H), G], for all ordinals α and γG,β(G) =
∩

λ<β γG,λ(H), for a limit ordinal β. The

series

H = γG,1(H) ≥ · · · ≥ γG,α(H) ≥ γG,α+1(H) ≥ · · · ≥ γG,δ(H)

is called the lower G-central series of H. The terms of this series are G-invariant subgroups of H.

The last term γG,δ(H) is called the lower G-hypocenter of H, and we have γG,δ(H) = [γG,δ(H), G].

If H = G, we obtain the lower central series of G.

Notice that if the group G has no non-trivial G-perfect factors, then the lower G-hypocenter of

every normal subgroup of G is trivial.

Lemma 2.14. Let G be a group and H be a locally finite normal subgroup of G. If G has no non-

trivial G-perfect factors, then H is locally nilpotent. Moreover, if C/CG(H) is a locally finite subgroup

of G/CG(H), then C/CG(H) is a locally nilpotent Π(H)-group.

Proof. Consider the lower G-central series of H, as we noticed, the lower G-hypocenter of H is trivial,

and H = γG,1(H) ≥ · · · ≥ γG,α(H) ≥ γG,α+1(H) ≥ · · · ≥ γG,δ(H) = ⟨1⟩.
We will use induction on δ. If δ is finite, then the result is obvious. Suppose that δ = ω is the first

infinite ordinal. Let S be an arbitrary finite subgroup of H. Then there exists a positive integer t such

that S ∩ γG,t(H) = ⟨1⟩, and so S ≃ S/(S ∩ γG,t(H)) ≃ (SγG,t(H))/γG,t(H), and these isomorphisms

show that S is nilpotent. Suppose that H/γG,α(H) is locally nilpotent for all ordinals α < δ. If δ is

not a limit ordinal, then γG,δ−1(H) is contained in the center of G . Then S is central-by-nilpotent,

thus S is nilpotent. Suppose now that δ is a limit ordinal. Then there exists an ordinal β < δ such

that S ∩ γG,β(H) = ⟨1⟩. Therefore we have S ≃ S/(S ∩ γG,β(H)) ≃ (SγG,β(H))/(γG,β(H)), and these

isomorphisms show that S is nilpotent. Hence H is locally nilpotent.

Since H is locally nilpotent, thus H = Drp∈Π(H)Hp where Hp is the Sylow p-subgroup of H. Let

D/CG(Hp) be an arbitrary finite subgroup of C/CG(Hp). Then D/CD(Hp/γG,n(Hp)) is nilpotent for

each positive integer n, by Kaluzhnin theorem (see, for example, [1, Theorem 1.2.22]). Moreover it

is easy to see that D/CD(Hp/γG,n(Hp)) is a p-group. Since D/CG(Hp) is finite, there exists a pos-

itive integer t such that CD(Hp/γG,t(Hp)) = CD(Hp/γG,ω(Hp)). Therefore D/CD(Hp/γG,ω(Hp))

is a finite p-group. Suppose that CD(Hp/γG,ω(Hp)) ̸= ⟨1⟩. Let α be the greatest ordinal such

that CD(Hp/γG,ω(Hp)) = CD(Hp/γG,α(Hp)). Put D1 = CD(Hp/γG,α(Hp)). Using again Kaluzh-

nin theorem, we obtain that D1/CD1(Hp/γG,α+n(Hp)) is a p-group, for each positive integer n. Since

D1/CG(Hp) is finite, there exists a positive integer k such that CD1(Hp/γG,α+k(Hp)) =

CD1(Hp/γG,α+ω(Hp)). Then D/CD1(Hp/γG,α+ω(Hp)) is a p-group. Since CD1(Hp/γG,α+ω(Hp)) is

not trivial, we could repeat the previous arguments. After finitely many steps, we obtain that
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D/CG(Hp) is a finite p-group. Then C/CG(Hp) is a p-group. Since CG(H) =
∩

p∈Π(H)CG(Hp), ws

obtain that C/CG(H) is isomorphic to a subgroup of Crp∈Π(H)C/CG(Hp). Since C/CG(H) is locally

finite and C/CG(Hp) is a p-group for each p ∈ Π(H), we obtain that C/CG(H) is a locally nilpotent

Π(H)-group. □

Now we can prove Theorem A.

Theorem A. Let G be a locally generalized radical groupwith finite section rank. If G has no non-

trivial G-perfect factors, then the following hold:

(i) for every prime p there exists a number sp such that every Sylow p-subgroup of G is contained

in ζsp(G);

(ii) the factor-group G/Tor(G) is nilpotent.

In particular, G is hypercentral, and the hypercentral length of G is at most ω + k, for some positive

integer k.

Proof. Let T = Tor(G). Since T is locally finite, Lemma 2.14 shows that T is locally nilpotent.

Let p ∈ Π(T ) and Sp be the Sylow p-subgroup of T . Then Sp is a Chernikov subgroup (see, for

example [1, Theorem 4.2.1]). Then Lemma 2.13 shows that there exists a positive integer n, such

that Sp ≤ ζn(G). Therefore T ≤ ζω(G). By Corollary 2.11 G/T is nilpotent. Hence there exists a

positive integer k such that G = ζω+k(G), as required. □

From Theorem A the following corollary follows easily.

Corollary 2.15. Let G be a locally generalized radical group, having finite section rank, and let the

set Π(G) is finite. If G has no nontrivial G-perfect factors, then G is nilpotent.

3. Abelian-by-(locally finite) groups with no non-trivial perfect factors.

In this section, we prove Theorem B. We begin with some probably well-known results, that are

interesting in their own right.

Lemma 3.1. Let X be a class of groups, closed by taking subgroups and finite direct products of

subgroups. Let G be a group containing a normal abelian subgroup A, such that G/CG(A) is finite. If

A contains a subgroup B, with A/B ∈ X , then A contains a G-invariant subgroup C such that C ≤ B

and A/C ∈ X .

Proof. For each element g ∈ G we have A/Bg = Ag/Bg ≃ A/B, hence A/Bg ∈ X . Since the subgroup

CG(A) has finite index in G, the set {Bg | g ∈ G} is finite. Write {Bg | g ∈ G} = {B1, · · · , Bn}, and
C = B1∩· · ·∩Bn. Using Remaks theorem we obtain an embedding A/C ≤ A/B1×· · ·×A/Bn. Since

A/Bj ∈ X , for every j ∈ {1, · · · , n} we obtain that A/C ∈ X , as required. □

Lemma 3.2. Let A be an abelian p-group, where p is a prime. If A is not bounded, then A contains

a subgroup B such that A/B is a divisible Chernikov group.
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Proof. Suppose first that A is the direct product of cyclic subgroups. Since A is not bounded, then

A contains a subgroup C such that A/C = Drn∈N⟨dn⟩, where the element dn has order pn , n ∈ N.
Consider the subgroup B/C = ⟨dndpn+1|n ∈ N⟩. Then the factor group A/B is a Prüfer p-group, as

required.

Suppose now that A can not be decomposed into a direct product of cyclic subgroups. In this

case , using for example [2, Theorem 32.3], we obtain that A contains a subgroup D satisfying the

following conditions: D is a direct product of cyclic subgroups; D is a pure subgroup of A (that is

Dn = D ∩ An, for every n ∈ N); A/D is a divisible group. Therefore, A/D is a direct product of

Prüfer p-subgroups (see, for example, [2, Theorem 23.1]), hence A/D has a subgroup B/D such that

A/B is a Prüfer p-group, as required. □

Lemma 3.3. Let G be a group, p be a prime, and suppose that G contains a normal abelian p-subgroup

A such that G/CG(A) is finite. If A contains a G-invariant divisible Chernikov subgroup D, then A

contains a G-invariant subgroup S such that A = SD and the intersection S ∩D is finite.

Proof. Since D is divisible, there exists a subgroup B of A such that A = D×B (see, for example, [2,

Theorem 21.2]). Then if n = |G/CG(A)|, using for example Theorem 5.9 of [8], we obtain a G-invariant

subgroup C of A such that (D ∩ C)n = ⟨1⟩ and An ≤ DC. In particular, the intersection D ∩ C is

finite. Hence, DC/C ≃ D/(D ∩ C) ≃ D. In particular, DC/C is a divisible subgroup of A/C,

therefore there exists a subgroup E/C such that A/C = (DC/C) × E/C. Since the factor A/DC is

bounded, so E/C is bounded and (E/C)n = ⟨1⟩. Put n = pk, so we have E/C ≤ Ωk(A/C). Also

consider S/C = Ωk(A/C), then the intersection (S/C)∩ (DC/C) is finite and A/C = (DC/C)(S/C).

It follows that A = SD. Since both D ∩ C and (S/C) ∩ (DC/C) are finite, thus S ∩D is finite, as

required. □

Lemma 3.4. Let G be a group, and let A be a normal elementary abelian p-subgroup of G such that

G/CG(A) is a finite p-group, where p is a prime. Then there exists a positive integer n such that

A ≤ ζn(G).

Proof. Let |G/CG(A)| = pn. We use induction on n. Suppose first that n = 1. Then the factor

group G/CG(A) is cyclic of order p, namely G = CG(A)⟨g⟩. For every a ∈ A consider the subgroup

⟨a⟩⟨g⟩ = ⟨a, ag, · · · , agp−1⟩. Then ⟨a⟩⟨g⟩ is normal in G and of order at most pp. Moreover gp ∈ ζ(⟨a, g⟩)
and ⟨a, g⟩/⟨gp⟩ is a finite p-group. Then ⟨a, g⟩ is nilpotent of class ≤ p, hence a ∈ ζp(⟨a, g⟩) ≤ ζp(G).

Therefore A ≤ ζp(G).

Suppose now that n > 1. Let z ∈ ζ(G/CG(A)) be an element of order p. Arguing as in the first

part of the proof on the group CG(A)⟨z⟩, we obtain a series of G-invariant subgroups of A, ⟨1⟩ = A0 ≤
A1 ≤ · · · ≤ At−1 ≤ At = A, such that A1 = CA(z), Aj+1/Aj = CA/Aj

(z), 1 ≤ j ≤ t− 1, where t ≤ p.

Since z ∈ CG(Aj+1/Aj), we have |G/CG(Aj+1/Aj)| < |G/CG(A)|, for each j, 0 ≤ j ≤ t− 1. Thus we

can apply for each factor Aj+1/Aj the induction hypothesis and the result follows. □
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Corollary 3.5. Let G be a group, and let A be a normal bounded abelian p-subgroup of G, such that

G/CG(A) is a finite p-group, where p is a prime. Then there exists a positive integer n, such that

A ≤ ζn(G).

Proof. Since A is bounded, so A = Ωt(A), for some positive integer t. We use induction on t. If t = 1,

then A is an elementary abelian p-subgroup, and the result follows from Lemma 3.4. Suppose now

that t > 1. Set B = Ω1(A), then B is an elementary abelian p-subgroup and CG(A) ≤ CG(B), so that

G/CG(B) is a finite p-group. By Lemma 3.4 there exists a positive integer k such that B ≤ ζk(G). If

A is not contained in ζk(G), then Aζk(G)/ζk(G) = Ωs(Aζk(G)/ζk(G)), where s < t. By the induction

hypothesis, Aζk(G)/ζ(G) ≤ ζk+m(G)/ζk(G), for some positive integer m. Thus A ≤ ζk+m(G), as

required. □

Now we study normal abelian p-subgroups A of a group G with no non-trivial G-perfect factors,

when G/CG(A) is finite.

Lemma 3.6. Let G be a group, and let A be a normal abelian subgroup of G such that G/CG(A) is

finite. Suppose that A contains a subgroup B such that A/B is a divisible Chernikov group. If G has

no non-trivial G-perfect factors, then A/[G,A] is not bounded.

Proof. We have C = CoreG(B) =
∩

g∈GBg. So C is a G-invariant subgroup of G and, by Lemma

3.1, A/C is an abelian Chernikov group. Therefore A contains a G-invariant subgroup H such that

C ≤ H, H/C is finite and A/H is a divisible Chernikov group. Without loss of generality we may

suppose that, A/C is a divisible Chernikov group. By Lemma 2.13 we have A/C ≤ ζ(G/C), thus

[G,A] ≤ C. Since A/C is a divisible Chernikov group, so A/[G,A] is not bounded, as required. □

Proposition 3.7. Let G be a group and suppose that G contains a normal abelian p-subgroup A such

that G/CG(A) is finite, where p is a prime. If G has no non-trivial G-perfect factors, then the subgroup

[G,A] is bounded.

Proof. If the subgroup A is bounded, the result holds. Assume that A is not bounded, then by Lemma

3.2, there exists a subgroup B of A such that A/B is a divisible Chernikov group. Then Lemma 3.6

implies that A/[G,A] is not bounded. Suppose that the subgroup D = [G,A] is not bounded. Then,

by Lemma 3.2, there exists a subgroup C of D such that D/C is a divisible Chernikov group. Put

E = CoreG(C) =
∩

g∈GCg . Then E is G-invariant and D/E is a Chernikov group, by Lemma

3.1. Therefore D contains a G-invariant subgroup H such that E ≤ H, H/E is finite and D/H

is a divisible Chernikov group. Without loss of generality we can suppose that D/E is a divisible

Chernikov group. We have [G/E,A/E] = [G,A]E/E = DE/E = D/E. Hence [G/E,A/E] is a

divisible Chernikov group. By Lemma 3.3, A/E contains a G-invariant subgroup S/E such that

A/E = (D/E)(S/E) and the intersection (D/E) ∩ (S/E) is finite. Then A/S ≃ (A/E)/(S/E) =

(D/E)(S/E)/(S/E) ≃ (D/E)/((D/E)∩ (S/E)) ≃ D/E is a divisible Chernikov group. Furthermore,

A/S = (DS)/S = [G,A]S/S = [G/S,A/S]. We obtain a contradiction, since A/S is not G-perfect.

This contradiction shows that the subgroup [G,A] is bounded. □
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Corollary 3.8. Let G be a group, and let A be a be normal abelian p-subgroup of G such that G/CG(A)

is a Chernikov p-group, where p is a prime. If G has no non-trivial G-perfect factors, then the subgroup

[G,A] is bounded.

Proof. LetD/CG(A) be the divisible part ofG/CG(A). Then, by Lemma 2.13,D/CG(A) ≤ ζ(G/CG(A))

and G/CG(A) is nilpotent. Since [G,A] ̸= A, then [D,A] ̸= A. Suppose that C = [D,A] ̸= ⟨1⟩. Then
again [D,C] = E ̸= C. The factor D/E is nilpotent and D/A is divisible, then A/E ≤ ζ(D/E) (see,

for example [5]). But in this case [D,A] ≤ E, and we obtain a contradiction. This contradiction

shows that [D,A] = ⟨1⟩, thus D ≤ CG(A). In particular, G/CG(A) is finite. The result follows from

Proposition 3.7. □

We continue our investigation of normal abelian subgroups A of a group G with no non-trivial

G-perfect factors, assuming that G/CG(A) is a locally finite group whose Sylow p-subgroups are

Chernikov groups, for every prime p.

Lemma 3.9. Let G be a group and let A be a normal abelian p-subgroup, where p is a prime, such

that G/CG(A) is a locally finite group whose Sylow p-subgroups are Cernikov. If G has no non-trivial

G-perfect factors, then G/CG(A) is a finite p-group.

Proof. By Lemma 2.14 the factor group G/CG(A) is a locally nilpotent p-group. In particular, it

is a Chernikov group. Let D/A be the divisible part of G/A. Since [G,A] ̸= A, then [D,A] ̸= A.

Suppose that C = [D,A] ̸= ⟨1⟩. Then again [D,C] = E ̸= C. The factor D/E is nilpotent and D/A

is divisible, then A/E ≤ ζ(D/E) (see, for example, [5]). But in this case [D,A] ≤ E, and we obtain a

contradiction. This contradiction shows that [D,A] = ⟨1⟩, thus D ≤ CG(A). In particular, G/CG(A)

is finite. □

Corollary 3.10. Let G be a group and let A be a normal abelian p-subgroup of G, where p is a prime,

such that G/CG(A) is a locally finite group whose Sylow p-subgroups are Chernikov. If G has no

non-trivial G-perfect factors, then there exists a positive integer n such that A ≤ ζn(G).

Proof. By Lemma 3.9, G/CG(A) is a finite p-group. By Corollary 3.8, the subgroup D = [G,A] is

bounded. Then Corollary 3.5 implies that there exists a positive integer t such that D ≤ ζt(G). The

choice of D implies that Aζt(G)/ζt(G) ≤ ζ(G/ζt(G)), hence A ≤ ζt+1(G), as required. □

Corollary 3.11. Let G be a group and let A be a normal nilpotent p-subgroup of G, where p is a

prime, such that G/CG(A) is a locally finite group whose Sylow p-subgroups are Cernikov. If G has

no non-trivial G-perfect factors, then there exists a positive integer n such that A ≤ ζn(G).

Proof. Let ⟨1⟩ = A0 ≤ A1 ≤ · · · ≤ An−1 ≤ An = A be the upper central series of A. We use induction

on n. If n = 1, then the result follows from Corollary 3.10. Let n > 1 and suppose that An−1 ≤ ζm(G).

Then A/An−1 is a normal abelian p-subgroup of the factor group G/An−1. Using again Corollary 3.10,

there exists a positive integer k such that A/An−1 ≤ ζk(G/An−1), Then A ≤ ζm+k(G), as required. □
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Corollary 3.12. Let G be a group and let A be a normal nilpotent p-subgroup of G, where p is a

prime, such that G/A is a Chernikov group. If G has no non-trivial G-perfect factors, then G is

nilpotent

Proof. By Corollary 3.11, there exists a positive integer t such that A ≤ ζt(G). By Lemma 2.13 the

factor group G/A is nilpotent. It follows that G itself is nilpotent. □

Proposition 3.13. Let G be a group and let A be a normal periodic nilpotent subgroup of G, such

that G/A is a locally finite group whose Sylow p-subgroups are Chernikov for all primes p. If G has

no non-trivial G-perfect factors, then G is Sylow-nilpotent.

Proof. The group G is locally finite, thus, by Lemma 2.14, G is locally nilpotent. Corollary 3.12 shows

that every Sylow p-subgroup of G is nilpotent. □

Now we study torsion-free normal abelian subgroups of a group with no non-trivial G-perfect factors.

Proposition 3.14. Let G be a group and let A be a normal abelian torsion-free subgroup of G, such

that G/CG(A) is a locally finite group whose Sylow p-subgroups are Chernikov, for all primes p. If G

has no non-trivial G-perfect factors, then A ≤ ζ(G).

Proof. Lemma 2.14 implies that G/CG(A) is locally nilpotent. Then G/CG(A) = Drp∈πSp/A where

Sp/CG(A) is the Sylow p-subgroup of G/CG(A) and π = π(G/CG(A)). Let Dp/CG(A) be divisible

part of Sp/CG(A), and Qp/CG(A) = Drq ̸=pSq/CG(A).

Let M be an arbitrary finite subset of A and let C =< M >G. Then C is a finitely generated

ZH-module, where H = G/CG(A).

We claim that there exists a positive integer t such that C ≤ ζt(G).

If C has finite 0-rank, this follows from Corollary 2.10. Suppose that C has infinite 0-rank. There

exists a set µ of primes such that, Π\µ is finite and C ̸= Cp for every p ∈ µ (see, for example [7, The-

orem 1.15]). Let p ∈ µ. Then, by Lemma 2.14, G/CG(C/Cp) is a p-group, that is CG(C/Cp) ≥ Qp.

In particular, it is a Chernikov group. Therefore Lemma 3.9 implies that G/CG(C/Cp) is finite, that

is CG(C/Cp) ≥ DpQp. Hence the group C/Cp is finite. Write C1 = Cp, C2 = Cp
1 , Cn+1 = Cp

n, n ∈ N.
Since C is abelian and torsion-free, the map c ∈ C 7−→ cp ∈ C is a monomorphism. Therefore the

factors C/C1 and C1/C2 are isomorphic. In particular, C1/C2 is finite, thus C/C2 is finite. By in-

duction, all factors C/Cn are finite, n ∈ N. It follows that CG(C/Cn) ≥ DpQp, for every n ∈ N.
Put E =

∩
n∈NCn, then CG(C/E) ≥ DpQp, so that CG(C/E) has finite index. Since C ̸= C1, we

obtain that Cn ̸= Cn+1, for all n ∈ N. Therefore the group C/E is infinite. Let T/E be the pe-

riodic part of C/E. Since T/E is a pure subgroup of C/E, we have (T/E)p = (T/E) ∩ (C/E)p.

Then (T/E)/(T/E)p = (T/E)/((T/E) ∩ C/E)p) ≃ (T/E)(C/E)p/(C/E)p ≤ (C/E)/(C/E)p =

(C/E)/(CpE/E) ≃ C/CpE.

Hence the factor (T/E)/(T/E)p is finite, and T/E = B/E × P/E, where B/E is finite and P/E is

divisible (see, for example, [6, Lemma 3]). Since C/E is residually finite, we obtain that T/E = B/E

is finite. Thus C/T is an infinite torsion-free group. Since G/CG(C/T ) is finite, we obtain that C/T
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is a finitely generated abelian group. It follows that T has infinite 0-rank, in particular, the subgroup

T is not trivial.

Assume that T is divisible. Consider [T,G] = T1 ̸= T . Suppose that the factor T/T1 is not

periodic and let T2/T1 be the periodic part of T/T1. Then T/T2 is a divisible torsion-free group. Let

g ∈ CG(C/T ). Then, for every c ∈ C, (gT2)
−1cT2gT2 = cT2zT2, where zT2 ∈ T/T2. Notice that the

factor group G/CG(A) is periodic, therefore there exists a positive integer k such that gk ∈ CG(A).

We have cT2 = (g−kcgk)T2 = (gT2)
−kcT2(gT2)

k = cT2(zT2)
k. Thus (zT2)

k = T2. Then zT2 = T2, since

T/T2 is torsion free. Therefore g ∈ CG(C/T2), hence CG(C/T ) ≤ CG(C/T2). In particular, CG(C/T2)

has finite index. Then C/T2 is a finitely generated abelian group, since C is finitely generated as

ZG-module. Since the group T/T2 is divisible, we obtain a contradiction. This contradiction shows

that the group T/T1 is periodic. Suppose that there exists a prime q such that T q
1 = T3 ̸= T1. By

Lemma 3.9 and Corollary 3.5, there exists a positive integer s such that T1/T3 ≤ ζs(G/T3). Since

the factor T/T1 is G-central, there exists a positive integer t such that [T/T3, tG] = ⟨1⟩. Since T/T3

is divisible and G/A is periodic, we obtain that [T/T3, G] = ⟨1⟩ (see, for example, [9, Lemma 3.13]),

hence [G,T ] ≤ T3 ̸= T1 = [G,T ], and we obtain a contradiction. This contradiction proves that

T q
1 = T1, for all primes q, hence the subgroup T1 is also divisible. Suppose that T1 ̸= ⟨1⟩. Then

[T1, G] = T4 ̸= T1. Assume first that the factor T1/T4 is not periodic and let T5/T4 be the periodic

part of T1/T4. Then T1/T5 is a divisible torsion-free group. Being divisible, the subgroup T1/T5 has

a complement in T/T5, hence T/T5 = T1/T5 × T6/T5 (see, for example, [2, Theorem 21.2]). The

isomorphism T6/T5 ≃ T/T1 shows that T6/T5 is a periodic divisible subgroup. Then T6/T5 is the

periodic part of T/T5 and, in particular, T6/T5 is G-invariant. Let x be an element of G, b an element

of T6. Since the factor T/T1 is G-central, [xT5, bT5] ∈ T1/T5. Since T6/T5 is G-invariant, we have that

[xT5, bT5] ∈ T6/T5, then [xT5, bT5] ∈ (T1/T5)∩ (T6/T5) = ⟨1⟩. Hence T6/T5 ≤ ζ(G/T5). It follows that

T/T5 ≤ ζ(G/T5). Then [G,T ] ≤ T5 ̸= T1 = [G,T ], a contradiction. This contradiction shows that the

factor T1/T4 is periodic. The factors T/T1 and T1/T4 are G-central, therefore [T/T4,2G] = ⟨1⟩. Since
T/T4 is divisible and G/A is periodic we obtain that [T/T4, G] = ⟨1⟩ (see, for example [9, Lemma

3.13]), thus [G,T ] ≤ T4 ̸= T1 = [G,T ], and we obtain a contradiction. This contradiction proves that

T1 = ⟨1⟩. Hence T ≤ ζ(G) and then the subgroup T is torsion-free, a contradiction.

This contradiction shows that the subgroup T is not divisible.

Therefore, there exists a prime q such that T ̸= T q. Obviously T/T q is the periodic part of C/T q

and, since T/T q is bounded, there exists a subgroup R/T q such that C/T q = T/T q × R/T q (see, for

example, [2, Theorem 27.5]). The isomorphism R/T q ≃ C/T shows that R/T q is a free abelian group of

finite 0-rank. Then R/T q ̸= (R/T q)q. We have (C/T q)q = (R/T q)q, moreover (C/T q)q = CqT q/T q =

Cq/T q. We have (C/T q)/(C/T q)q = (C/T q)/(Cq/T q) ≃ C/Cq and the equality (C/T q)q = (R/T q)q

implies that |C/Cq| = |T/T q||(R/T q)/(R/T q)q| = |T/T q||(C/T )/(C/T )q|. Then T ≤ Cp implies

C/Cp ≃ (C/T )/(Cp/T ). In particular, q ̸= p, moreover T = T p. Write U1 = T q, U2 = U q
1 , Un+1 = U q

n,

rn = qn, n ∈ N. Now, T/Un is the periodic part of Cn/Un, and, since T/Un is bounded, there exists

a subgroup Rn/Un such that Cn/Un = T/Un × Rn/Un (see, for example Theorem 27.5 of [2]). Then

Rn ∩ T = Un, n ∈ N. The isomorphism Rn/Un ≃ Cn/T shows that Rn/Un is a free abelian group of
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finite 0-rank. Then Rn/Un ̸= (Rn/Un)
rn . We have (Cn/Un)

rn = (Rn/Un)
rn . On the other hand, the

inclusion T ≤ Cn implies that Un = T rn ≤ Crn
n , so that (Cn/Un)

rn = (Crn
n Un)/Un = Crn

n /Un. Write

Vn = Crn
n , n ∈ N. Then C/Vn is a direct product of finitely many cyclic groups, having order either pn

or qn and Vn∩T = Un, n ∈ N. Write W =
∩

n∈N Vn. Then CG(C/W ) has finite index. Therefore C/W

is a finitely generated abelian group. We haveW∩T = (
∩

n∈N Vn)∩T =
∩

n∈N(Vn∩T ) =
∩

n∈N Un = Y .

Obviously Un ̸= Un+1, for each n ∈ N, hence T/Y is infinite. Thus TW/W ≃ T/(W ∩ T ) = T/Y is

a non periodic finitely generated abelian group. Then (TW/W )p ̸= TW/W . On the other hand we

have T p = T , hence (TW/W )p = TW/W , and we obtain a contradiction. This contradiction proves

that T = ⟨1⟩.
Therefore the subgroup C is finitely generated, and by Lemma 2.2, there exists a positive integer t

such that C ≤ ζt(G), as required.

Suppose that C is not contained in ζ(G), and Z1 = C ∩ ζ(G), Z2 = C ∩ ζ2(G). Then the subgroups

Z1, Z2 are pure in C. Let y ∈ Z2 such that y /∈ Z1. Then there exists an element g such that yg ̸= y.

We have yg = yz for some z ∈ Z1. Since G/CG(A) is locally finite, there exists a positive integer m

such that gm ∈ CG(A). DIFdel Then,So y = g−mygm = yzm, hence zm = 1, and so z = 1, since C is

torsion-free, and we obtain a contradiction. This contradiction proves the inclusion C ≤ ζ(G). The

choice of C implies that A ≤ ζ(G). □

Corollary 3.15. Let G be a group and A be a normal nilpotent torsion-free subgroup such that

G/CG(A) is a locally finite group whose Sylow p-subgroup are Chernikov, for all primes p. If G has

no non-trivial G-perfect factors, then there exists a positive integer t such that A ≤ ζt(G).

Now we can prove Theorem B.

Theorem B. Let G be a group and A be a normal nilpotent subgroup of G such that G/A is a locally

finite group whose Sylow p-subgroups are Chernikov for all prime p. If G has no non-trivial G-perfect

factors, then G satisfies the following conditions:

(i) for every prime p there exists a positive integer sp such that ζsp(G) contains the Sylow p-

subgroups of G;

(ii) the factor group G/Tor(G) is nilpotent.

In particular, G is hypercentral, and the hypercentral length of G is at most ω + k for some positive

integer k.

Proof. Let T = Tor(A), then T = Drp∈Π(T )Tp, where Tp is the Sylow p -subgroup of T , p ∈ Π(T ).

By Lemma 2.14, the factor group G/A is locally nilpotent, moreover it is hypercentral. By Corollary

3.11, for each prime p there exists a positive integer mp such that Tp ≤ ζmp(G). Thus T ≤ ζω(G). By

Corollary 3.15, A/T ≤ ζt(G/T ), for a suitable positive number t. Since G/A is hypercentral, then G

is hypercentral. Then the subset R of all elements of G having finite order is a characteristic subgroup

of G. Furthermore, for every prime p the Sylow p-subgroup of R/T is a Chernikov group, and there

exists a positive integer np such that it is contained in ζnp(G/T ), by Lemma 2.13. Then, for every
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prime p, there exists a positive integer sp such that the Sylow p-subgroup of R is contained in ζsp(G).

Finally, G/R is nilpotent, since AR/R is nilpotent and (G/R)/(AR/R) is periodic.

□
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Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy. Email:

mmaj@unisa.it

DOI: https://dx.doi.org/10.30504/JIMS.2023.400933.1123

https://dx.doi.org/10.30504/JIMS.2023.400933.1123

	1. Introduction
	2. Generalized radical groups without non-trivial perfect factors.
	3. Abelian-by-(locally finite) groups with no non-trivial perfect factors.
	Acknowledgements
	References

