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MODULI OF J-HOLOMORPHIC CURVES WITH LAGRANGIAN BOUNDARY
CONDITIONS AND OPEN GROMOV-WITTEN INVARIANTS FOR AN
SI-EQUIVARIANT PAIR

C.-C. MELISSA LIU

ABSTRACT. Let (X,w) be a symplectic manifold, J be an w-tame almost complex structure, and
L be a Lagrangian submanifold. The stable compactification of the moduli space of parametrized
J-holomorphic curves in X with boundary in L (with prescribed topological data) is compact and
Hausdorff in Gromov’s C*°-topology. We construct a Kuranishi structure with corners in the sense of
Fukaya and Ono. This Kuranishi structure is orientable if L is spin. In the special case where the
expected dimension of the moduli space is zero, and there is an S'-action on the pair (X, L) which
preserves J and has no fixed points on L, we define the Euler number for this S'-equivariant pair
and the prescribed topological data. We conjecture that this rational number is the one computed by

localization techniques using the given S*-action.

1. Introduction

1.1. Background. String theorists have been making predictions on enumerative invariants using
dualities. One of the most famous examples is the astonishing predictions of the number of rational
curves in a quintic threefold in [8]. To understand these predictions, mathematicians first developed
Gromov-Witten theory to give the numerical invariants a rigorous mathematical definition so that
these predictions could be formulated as mathematical statements, and then tried to prove these

statements. The predictions in [3] are proven in [11,25].
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Later, string theorists have produced enumerative predictions about holomorphic curves with La-
grangian boundary conditions by studying dualities involving open strings [4,5, 30,32, 33]. Moreover,
assuming the existence of a virtual fundamental cycle and the validity of virtual localization, math-
ematicians have carried out computations which coincide with these predictions [14,241]. In certain
cases, these numbers can be reproduced by considering relative morphisms [26]. It is desirable to
give a rigorous mathematical definition of these enumerative invariants, so that we may formulate
physicists’ predictions as mathematical theorems, and then try to prove these theorems.

Gromov-Witten invariants count J-holomorphic maps from a Riemann surface to a fixed symplectic
manifold (X,w) together with an w-tame almost complex structure J. These numbers can be viewed
as intersection numbers on the moduli space of such maps. We want the moduli space to be compact
without boundary and oriented so that there exists a fundamental cycle which allows us to do intersec-
tion theory. The moduli space of J-holomorphic maps can be compactified by adding “stable maps”,
whose domain is a Riemann surface which might have nodal singularities. The stable compactification
is compact and Hausdorff in the C*° topology defined by Gromov [15]. The moduli space is essentially
almost complex, so it has a natural orientation. In general, the moduli space is not of the expected
dimension and has bad singularities, but there exists a “virtual fundamental cycle” which plays the
role of fundamental cycles [7,9,27,28,37]. These are now well-established in Gromov-Witten theory.

The “open Gromov-Witten invariants” that we want to establish shall count J-holomorphic maps
from a bordered Riemann surface to a symplectic manifold X as above such that the image of the
boundary lies in a Lagrangian submanifold L of X. To compactify the moduli space of such maps,
Sheldon Katz and the author [24] introduced stable maps in this context. The stable compactification
is compact and Hausdorff in the C*° topology, as in the ordinary Gromov-Witten theory. However,
orientation is a nontrivial issue in the open Gromov-Witten theory. Moreover, the boundary is of real
codimension one, so the compactified moduli space does not “close up” as in the ordinary Gromov-
Witten theory, and the best we can expect is a fundamental “chain”.

A fundamental “chain” is not satisfactory for intersection theory. For example, the Euler charac-
teristic of a compact oriented manifold without boundary can be defined as the number of zeros of a
generic vector field, counted with signs determined by the orientation. This number is independent of
the choice of the vector field, and thus well-defined. For a compact oriented manifold with boundary,
one can still count the number of zeros of a generic vector field with signs determined by the orien-
tation, but the number will depend on the choice of the vector field. Therefore, we need to specify

extra boundary conditions to get a well-defined number.

1.2. Main results. Let (X,w) be a symplectic manifold of dimension 2N, and L be a Lagrangian
submanifold. To compactify the moduli space of parametrized J-holomorphic curves in X with bound-
ary in L, Gromov introduced cusp curves with boundary [15], which are called here prestable maps. A
prestable map to (X, L) is a continuous map f : (X,0%) — (X, L) such that for : (2,0%) — (X, L)
is J-holomorphic, where ¥ is a prestable (i.e., smooth or nodal) bordered Riemann surface, and

T : ¥ — ¥ is the normalization map [24, Definition 3.6.2].
DOI: http://dx.doi.org/10.30504/jims.2020.104185
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A smooth bordered Riemann surface X is of type (g, h) if it is topologically a sphere with g handles
and h holes. The boundary of ¥ consists of h disjoint circles BY,..., B". We say ¥ has (n,n)
marked points if there are n distinct marked points in its interior and m® distinct marked points
on B, where m = (m!,...,m"), m’ > 0. By allowing nodal singularities, we have the notion of a
prestable Riemann surface of type (g, h) with (n, %) marked points and an ordering B',... B" of the
boundary components. An isomorphism between two such prestable bordered Riemann surfaces is an
isomorphism of prestable bordered Riemann surfaces which preserves the marked points and ordering
of boundary components. An isomorphism between two prestable maps f: ¥ — X and f/: ¥ — X
is an isomorphism ¢ : ¥ — Y/ in the above sense such that f = f’ o ¢. A prestable map is stable if its
automorphism group is finite. This is the analogue of Kontsevich’s stable maps [23] in the ordinary
Gromov-Witten theory.

For B € H*(X,L;Z), 7= (W', ...,v") € HY(L;Z)®", and u € Z, define

M (g 1), (i) (X, L | B,7, 1)

to be the moduli space of isomorphism classes of stable maps f : (2,0X) — (X, L), where ¥ is
a prestable bordered Riemann surface of type (g,h) with (n,m) marked points and an ordering
B!, ..., B" of the boundary components, f.[X] = 8, f«[B'| =~% i =1,...,h,and u(f*Tx, (flog)*TL) =
w. Here p(f*Tx, ((flox)*TL) is the Maslov index defined in [24, Definition 3.3.7]. We have the follow-

ing result, which is possibly part of the literature.

Theorem 1.1. M(g,h),(n,m) (X,L|B,7,p) is compact and Hausdorff in the C> topology.

Here the C*° topology is the one defined by Gromov’s weak convergence [15]. The stability condition
is necessary for Hausdorffness. The compactness follows from [15,47], which will be explained in
Section 5.3.

The boundary of the moduli space corresponds to degeneration of the domain or blowup of the map.
An interior node corresponds to a (real) codimension 2 stratum, while a boundary node corresponds to
a codimension 1 stratum. Blowup of the map at an interior point leads to the well-known phenomenon
of bubbling off of spheres which is codimension 2, while blowup at a boundary point leads to bubbling
off of discs which is codimension 1. The intersection of two or more codimension 1 strata forms a

corner. The next result is shown in Section 6.

Theorem 1.2. M, p) () (X, L | 8,9, 1) has a Kuranishi structure with corners of (real) virtual
dimension i+ (N —3)(2—2g — h) +2n+m! +---+m”, where 2N is the (real) dimension of X. The
Kuranishi structure is orientable if L is spin or if h =1 and L is relatively spin (i.e., L is orientable
and we(TL) = |, for some o € H*(X,Z3)).

The case for the disc with only boundary marked points (9 = n = 0, h = 1) is proven in [10].
Let us describe briefly what a Kuranishi structure with corners is, and refer to Section 6.1 for the
complete definition. A chart of a Kuranishi structure with corners is a 5-uple (V, E,T',v, s), where V'

is a smooth manifold (possibly with corners), I' is a finite group acting on V, E is a I-equivariant
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vector bundle over V, s : V — E is a I-equivariant section, and v maps s~1(0)/T" homeomorphically
to an open set of the moduli. The dimension of V', rank of E, and the finite group I' might vary with
charts, but d = dim V' — rankF is fixed and is the virtual dimension of the Kuranishi structure with
corners. Now det(TV) @ (det E)~! can be glued to an orbibundle, the orientation bundle, and the
Kuranishi structure with corners is orientable if its orientation bundle is a trivial real line bundle.

If s intersects the zero section transversally, s~*(0) is a manifold (possibly with corners) of dimension
d. In general, s~!(0) might have dimension larger than d and bad singularities due to the nontransver-
sality of s. The virtual fundamental chain can be constructed by perturbing s to a transversal section.
Locally it is a singular chain with rational coefficients in V/I" which is a rational combination of the
images of d-dimensional submanifolds of V.

A virtual fundamental chain is not satisfactory for intersection theory. For example, when X is a
Calabi-Yau threefold and L is a special Lagrangian submanifold, M(g,h),(o,ﬁ) (X, L | B,7,u) is empty
for u # 0, and the expected dimension of M(g,h),(o,G) (X,L | 5,7,0) is zero for any g, h, 3, 4. The
virtual fundamental chain is a zero chain with rational coefficients, and we would like to define the
invariant x5y (X, L | 8,7, 1) € Q to be the degree of this zero chain. However, this number depends
on the perturbation, so we need to impose extra boundary conditions to obtain a well-defined number.

Next assume that

ere is an S*-action ¢ : S* x X — X which preserves J and L.
1) There is an S!'-acti S x X — X which J and L
(2) The restriction of p to L is fixed point free.

(3) The virtual dimension of M(gﬁ),(o,ﬁ) (X,L|B,79,p) is zero.

Note that (1) implies that S! acts on the moduli spaces M(Qﬁth’m) (X,L | B,9,1). We will only
consider the case (n,7) = (0,0) (no marked points). Also (2) implies that the S'-action on the
moduli space has no fixed point in the union of corners. Under assumptions (1),(2),(3) one can, using

the S'-action, impose boundary conditions to get a well-defined rational number

X(g,h)(XJ L?Q | ﬁa’_ﬁﬂ)

The construction can be illustrated by a toy model. We first consider a toy model of a space with an
oriented Kuranishi structure (without corners) of virtual dimension zero. Let E be a rank r oriented
vector bundle over a compact, connected, oriented r dimensional manifold V. Let s : V — E be a
smooth section, and let M = s~1(0). Then (V, E, {1},1,s) defines an orientable Kuranish structure
of virtual dimension 0 on M, where v : s~1(0) — M is the identity map. Let s’ : V — E be a smooth
section transversal to the zero section. The number of zeros of s’, counted with signs determined by
orientation, is independent of choice of s’. Replacing V by a compact manifold with boundary, we
get a toy model of a space with an oriented Kuranishi structure with corners of virtual dimension
zero. The number of zeros of a section s’ : V' — E transversal to the zero section (counted with signs)
depends on the choice of s'. However, suppose that there is an S* action on V which preserves 0V
and acts freely on 9V, and suppose that E and s are S'-equivariant, we may require s’ be transversal
to the zero section and satisfy an extra boundary condition: s’|5y is never zero and is S'-equivariant.

The number of zeros of such a section s’ (counted with signs) is independent of choice of s’. This
DOI: http://dx.doi.org/10.30504/jims.2020.104185
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number is an invariant of the S'-equivariant vector bundle £ — V but not an invariant of E — V. If
E — V admits more than one S' action, different S* actions may define different numbers.
Similarly, X (g.n) (X, L, 0 | 8,7, it) is an invariant of the equivariant pair (X, L, ¢), but not an invariant
of the pair (X, L). I conjecture that these rational numbers are the ones computed by localization
techniques using the S' action o [14,24]. The computations in [14,24,26] coincide with physicists’

predictions.

Note added in 2019. This article is a minor revision of arXiv:math/0210257v2 (Version 2 submitted
on 4 December 2004), which is a revised version of the author’s 2002 PhD thesis under the supervision

of Professor Shing-Tung Yau. This article does not include any developments after 2004.
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2. Surfaces with Analytic or Dianalytic Structures

In this section, we review some definitions and facts on surfaces with analytic or dianalytic struc-
tures, following [3, Chapter 1] closely. This section is an expansion of Section 3.1 and 3.2 of [21].

The marked bordered Riemann surfaces defined in Section 2.2.5 are directly related to open Gromov-
Witten theory.

2.1. Analyticity and dianalyticity.
Definition 2.1. A map f : A — C is analytic on A if % = 0, antianalytic on A if % =0 and

dianalytic on A if its restriction to each component of A is either analytic of antianalytic.
DOL: http://dx.doi.org/10.30504/jims.2020.104185
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Definition 2.2. Let A and B be nonempty subsets of Ct = {z € C | Imz > 0}. A continuous function
f: A — B isanalytic (resp. antianalytic) on A if it extends to an analytic (resp. antianalytic) function
fc: U — C, where U is an open neighborhood of A in C. f is said to be dianalytic on A if its restriction

to each component of A is either analytic or antianalytic.

Theorem 2.3 (Schwarz reflection principle). Let A and B be nonempty subsets of Ct = {2z € C |
Imz > 0}. A continuous function f : A — B is dianalytic (resp. analytic) if it is dianalytic (resp.
analytic) on the interior of A and satisfies f(ANR) C R.

Definition 2.4. A surface is a Hausdorff, connected, topological space ¥ together with a family
A={(U;, ¢i) | i € I} such that {U; | i € I} is an open covering of ¥ and each map ¢; : Uy — A; is a
homeomorphism onto an open subset A; of CT. A is called a topological atlas on X, and each pair
(Ui, ¢i) is called a chart of A. The boundary of ¥ is the set

X ={zeX|Jielst. xecU,pi(z)eR}

and ¢i; = ¢ 0 <Z>j_1 c0;(UinU;) — ¢i(Us NU;) are surjective homeomorphisms, called the transition
functions of A. A is called a dianalytic (resp. analytic) atlas if all its transition functions are

dianalytic (resp. analytic).
2.2. Various categories of surfaces.
2.2.1. Riemann surfaces.

Definition 2.5. A Riemann surface is a surface equipped with the analytic structure induced by an

analytic atlas.
A Riemann surface is canonically oriented by its analytic structure.
2.2.2. Symmetric Riemann surfaces.

Definition 2.6. A symmetric Riemann surface is a Riemann surface X together with an antiholo-

morphic involution o : X — X, called the symmetry of 3.

Definition 2.7. A morphism between symmetric Riemann surfaces (3, 0) and (X', 0’) is an analytic
map f: 3 — Y such that foo =0 o f.

Definition 2.8. A symmetric Riemann surface with (n,m) marked points is a symmetric Riemann
surface (X,0) together with 2n + m distinct points p1,...,Dantm in X such that o(p;) = pp+i for
i=1,...,nand o(p;)) =pi fori=2n+1,...,2n+m.

2.2.3. Klein surfaces.

Definition 2.9. A Klein surface is a surface equipped with the dianalytic structure induced by a

dianalytic atlas.
DOI: http://dx.doi.org/10.30504/jims.2020.104185
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A Riemann surface can be viewed as a Klein surface. A Klein surface can be equipped with an
analytic structure compatible with the dianalytic structure if and only if it is orientable. In particular,

an orientable Klein surface without boundary admits a compatible structure of a Riemann surface.

Definition 2.10. A morphism between Klein surfaces ¥ and ¥ is a continuous map f : (X,0%) —
(X,0%) such that for any x € X there exist analytic charts (U,$) and (V,) about x and f(x)

respectively, and an analytic function F : ¢(U) — C such that the following diagram commutes:

U I, 1%

K !

o(U) 2= ¢ 2t

where ®(z + iy) = x + ily| is the folding map.

Given a Klein surface Y, there are three ways to construct an unramified double cover of ¥. We
refer to [3, 1.6] for the precise definition of an unramified double cover and detailed constructions.
The complex double ¥¢ is an orientable Klein surface without boundary. The orienting double Yo
is an orientable Klein surface. It is disconnected if and only if ¥ is orientable, and it has nonempty
boundary if and only of 3 has nonempty boundary. The Schottkey double Xg is a Klein surface without
boundary. It is disconnected if and only if the boundary of ¥ is empty, and it is nonorientable if and
only if ¥ is nonorientable.

If ¥ is orientable, then ¥¢ = Xg, and Yo is disconnected (the trivial double cover). If 9% = ¢,
then Y¢ = Yo, and Xg is disconnected. In particular, if ¥ comes from a Riemann surface, then these

three covers are the trivial disconnected double cover.

Example 2.11. Let X be a Mébius strip. Then ¢ is a torus, Xg is a Klein bottle, and Yo is an

annulus.
2.2.4. Bordered Riemann surfaces.

Definition 2.12. A bordered Riemann surface is a compact surface with nonempty boundary equipped

with the analytic structure induced by an analytic atlas.

Remark 2.13. A bordered Riemann surface is canonically oriented by the analytic (complez) structure.
In the rest of this paper, the boundary circles B' of a bordered Riemann surface ¥ with boundary
0% = B'U ... U B" will always be endowed with the orientation induced by the complex structure,
which is a choice of tangent vector to B' such that the basis (the tangent vector of B', inner normal)

for the real tangent space is consistent with the orientation of ¥ induced by the complex structure.

Definition 2.14. A morphism between bordered Riemann surfaces ¥ and ¥’ is a continuous map
[ (3,0%) — (X,0%) such that for any x € X there exist analytic charts (U,¢) and (V1) about

x and f(x) respectively, and an analytic function F : ¢(U) — C such that the following diagram
DOI: http://dx.doi.org/10.30504/jims .2020. 104185
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commutes:

$(U) —— C
A bordered Riemann surface is topologically a sphere with ¢ > 0 handles and with A > 0 discs
removed. Such a bordered Riemann surface is said to be of type (g, h).
A bordered Riemann surface can be viewed as a Klein surface. Its complex double and Schottkey

double coincide since it is orientable.

2.2.5. Marked bordered Riemann surfaces. The following refinement of an earlier definition is suggested
to the author by Ezra Getzler.

Definition 2.15. Let h be a positive integer, g,n be nonnegative integers, and m = (m?!, ... ,mh) be
an h-uple of nonnegative integers. A marked bordered Riemann surface of type (g,h) with (n,n)
marked points is an (h + 3)-uple
(Z,Bip;d’,...,q")

whose components are described as follows.

e X is a bordered Riemann surface of type (g,h).

e B=(B',...,B"), where B,..., B" are connected components of 0%, oriented as in Remark

2.13.
e p=(p1,...,pn) is an n-uple of distinct points in X°.

e q = (q,... 7an¢) is an m'-uple of distinct points on the circle B.

Let 0 = (0,...,0). Note that a marked bordered Riemann surface of type (g, h) with (n,0) marked

points is a bordered Riemann surface together with an ordering of the h boundary components.

Definition 2.16. A morphism between marked bordered Riemann surfaces of type (g, h) with (n,m)
marked points

(Z,B:pia’y....q") = (&, B5p(d) .., (@)")
is an isomorphism of bordered Riemann surface f : ¥ — ¥/ such that f(B) = (B')" fori=1,...,h,
f(pj) =0 forj=1,...,n, and f(g) = (d). fork=1,...,m"

Remark 2.17. The category of marked bordered Riemann surfaces of type (g, h) with (n,m) marked

points is a groupoid since every morphism in Definition 2.16 is an isomorphism.

2.3. Topological types of compact symmetric Riemann surfaces. A compact symmetric Rie-
mann surface is topologically a compact orientable surface without boundary Y together with an
orientation reversing involution o, which is classified by the following three invariants:

(1) The genus g of 3.

(2) The number h = h(o) of connected components of X7, the fixed locus of o.

(3) The index of orientability, k = k(o) := 2—the number of connected components of 3\ %7.
DOL: http://dx.doi.org/10.30504/jims.2020.104185
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These invariants satisfy:

(1) 0<h<g+1.

(2) For k=0, h>0and h=g+1 (mod 2).

(3) For k=1,0<h <g.
The above classification was realized already by Felix Klein (see e.g. [22,306,44]). It is probably better
understood in terms of the quotient Q(X) = X/(o), where (o) = {id, o} is the group generated by
o. The quotient Q(X) is orientable if & = 0 and nonorientable if & = 1, hence the name “index of
orientability”. Furthermore, h is the number of connected components of the boundary of Q(X). If
Q(X) is orientable, then it is topologically a sphere with g > 0 handles and with A > 0 discs removed,
and the invariants of (X,0) are (g,h,k) = (29 + h — 1,h,0). If Q(X) is nonorientable, then it is
topologically a sphere with g > 0 crosscaps and with h > 0 discs removed, and the invariants of 3 are
(g,h,k)=(g+h—1,h,1).

From the above classification we see that symmetric Riemann surfaces of a given genus g constitute

[%] topological types.

3. Deformation theory of bordered Riemann rurfaces

In this section, we study deformation theory of bordered Riemann surfaces. We refer to [24, Section
3] for some preliminaries such as doubling constructions and the Riemann-Roch theorem for bordered

Riemann surfaces.

3.1. Deformation theory of smooth bordered Riemann surfaces. Let ¥ be a bordered Rie-
mann surface, (3¢, o) be its complex double (see e.g. [24, Section 3.3.1] for the definition). Analyti-
cally, (X¢, o) is a compact symmetric Riemann surface. Algebraically, it is a smooth complex algebraic
curve X which is the complexification of some smooth real algebraic curve Xj, i.e., X = Xg xg C
(see [16, Chapter II, Exercise 4.7]). Alternatively, (X, .S) is a complex algebraic curve with a real struc-
ture (see [39, I.1]), where S is a semi-linear automorphism in the sense of [16, Chapter II, Exercise

4.7) which induces the antiholomorphic involution o on ¢.

3.1.1. Algebraic approach. First order deformation of the complex algebraic curve X is canonically
identified with the complex vector space Extbx (Qx,Ox), where Qx is the sheaf of Kéhler differentials
on X. The obstruction lies in Ext?gx (Qx,0x) = 0. Similarly, the first order deformation of the real
algebraic curve Xy is identified with the real vector space ExtéXO(Q Xo: Ox,), and the obstruction

vanishes. We have

Ext}QX (Qx,0x) = Ext%QXO (QXO, OXO) Qr C
since X = Xy xg C. The semi-linear automorphism S induces a complex conjugation
S : Exty, (2x,0x) — Exty, (Qx, Ox).

The fixed locus Ext%gx (Qx, Ox)° gives the first order deformation of (X,S) as a complex algebraic

. . . . 1
curve with a real structure, and is naturally isomorphic to Extp (Q2x,,0x,)-
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More explicitly, X can be covered by complex affine curves which is a complete intersection of
hypersurfaces defined by polynomials with real coefficients. Deformation of X are given by varying
the coefficients (in C). Deformation of (X, S) is given by varying the coefficients in R. The above
polynomials with real coefficients also define the real algebraic curve Xy, and varying the coefficients
in R gives the deformation of Xy. The complex conjugation of coefficients corresponds to the above
complex conjugation S on Extbx (Qx,0x).

X is a smooth algebraic variety, thus Extéx (Qx, Ox) is isomorphic to the sheaf cohomology group
H'(X,0x), where O is the tangent sheaf of X, and

Exty, (Qx,0x) & H*(X,0x) = 0.
Similarly, we have
Exto, (x5, Ox,) 2 HY(X,0x,), Extd, (Qx,, Ox,) = H*(X,0x,) =0.
We now return to the original bordered Riemann surface .

Definition 3.1. Let Ox; be the sheaf of local holomorphic functions on 3 with real boundary values.
Let Qs be a sheaf of Ox-modules, together with an R derivation d : Oy — Qx, which satisfy the
following universal property: for any sheaf of Ox-modules F, and for any R derivation d : Os, — F,
there exists a unique Os-module homomorphism f : Qs — F such that d = fod. We call Qy, the
sheaf of Kahler differentials on 3.

Let Oy, = Homoy, (s, Ox) = Q4, be the dual of Qs in the category of sheaves of Ox-modules.

Note that 2y and Oy, are locally free sheaves of Ox-modules of rank 1. Analytically, Qs is the
sheaf of local holomorphic 1-forms on 3 whose restriction to 0% are real 1-forms, and Oy is the sheaf

of holomorphic vector fields with boundary values in Tyy. There are natural isomorphisms
EXt%Qg (Q%J? OZ) = EXthXO (Q}(m OXo)v H1(27 ®Z> = Hi(X(J? ®X0)

for 4 > 0. Since the first order deformations of the bordered Riemann surface X, of the symmetric
Riemann surface (3¢, o), and of the real algebraic curve X are identified, the first order deformation

of X is canonically identified with
EXt}QE (QE, Oy) = Hl(E, Ox),

and the obstruction lies in

Extd, (Qs,0x) = H(X,05) = 0.

3.1.2. Analytic approach. We first give the definitions of a differentiable family of compact symmetric
Riemann surfaces and a differentiable family of bordered Riemann surfaces, which are modifications
of [23, Definition 4.1].

Definition 3.2. Suppose given a compact symmetric Riemann surface (My,oy) for each point t of a

domain B of R™. {(M;,0.)|t € B} is called a differentiable family of symmetric Riemann surfaces if
DOI: http://dx.doi.org/10.30504/jims .2020.104185
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there are a differentiable manifold M, a surjective C*° map 7 : M — B and a C* map 0 : M — M
such that

(1) The rank of the Jacobian matriz of ™ is equal to m at every point of M.

(2) For eacht € B, 7 1(t) is a compact connected subset of M.

(3) m1(t) = M.

(4) There are a locally finite open covering {U; | i € I} of M and C* functions z; : U; — C such
that

{(t N7 ), zilyyrm1n)) | € LU N7 (t) # 6}
is an analytic atlas for M.

(5) moo =m, and 0|14y = o1 : My — My is an antiholomorphic involution.

Definition 3.3. Suppose given a bordered Riemann surface My for each pointt of a domain B of R™.
{M; | t € B} is called a differentiable family of bordered Riemann surfaces if there are a differentiable
manifold with boundary M and a surjective C*° map m: M — B such that
(1) The rank of the Jacobian matriz of m is equal to m at every point of M.
(2)
(3) 7 1(t) = M.
(4) There are a locally finite open covering {U; | i € I} of M and C* functions z; : U; — Cy such
that

For each t € B, 7 1(t) is a compact connected subset of M.

{(Uz N W_l(t), Zi‘uimﬁfl(t)) |ieI,UN 7T_1(t) # ¢}
is an analytic atlas for M.

The complex double ¢ of a bordered Riemann surface ¥ is a complex manifold of dimension 1.

Infinitesimal deformation of X ¢ can be identified with
HY (e, Ts,) = H'(X,0x),
and the obstruction lies in
H*(S¢,Tx.) = H*(X,0x) = 0.

(See [23].) The differential do of ¢ is an antiholomorphic involution on the holomorphic line bundle

Ts. — X¢ which covers o : ¥¢ — X¢. do induces a complex conjugation
&:HY (¢, Ts,) — HY (Z¢, Ts,)

which is identified with the action of S on Ext%QX (Qx,Ox) under the isomorphism
H'(S¢, Ts,) = Exty (Qx, Ox).

The pair (Tx,do) is the holomorphic complex double of the Riemann-Hilbert bundle (Tx, Tox) —
(3,0%), where a Riemann-Hilbert bundle and its holomorphic complex double are defined in [24,
Section 3.3.4]. There is an isomorphism (see [24, Section 3.4])

1 5~ 771
H (Y¢,Tx.)° = H (2,05, Ty, Toy).
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From the above discussion, we know that H!(X¢,Ts.)% gives the first order deformation of the sym-
metric Riemann surfaces (X¢, o). Given a differential family of symmetric Riemann surface (it, ot)
such that (2o, 00) = (3¢, 0), K; = ¥¢/(0y) is a family of Klein surfaces. Each K; is homeomorphic to
3., which is orientable, so it admits two analytic structures compatible with its dianalytic structure,
and one is the complex conjugate of the other. We get two differentiable families M;, M| = M; of
bordered Riemann surfaces, where M; is a deformation of ¥, and the other is a deformation of .
Therefore, H'(X, 0%, Tx, Tpx;) should give infinitesimal deformations of ¥.

Recall that an infinitesimal deformation of Y determines a Cech 1 cocycle in H 1(.,41, O¢) C
H 1(2@,TEC), where A is an analytic atlas of X¢, and O¢ is the sheaf of local holomorphic vector
fields on ¢ [23]. (The inclusion is an isomorphism if A is acyclic). Following argument similar to
that in [23], we now show that an infinitesimal deformation of ¥ determines a Cech 1 cocycle in
H'(A,©Oy), where A is an analytic atlas of ¥, and Oy, is the sheaf of local holomorphic vector fields
on Ty, with boundary values in Tys.

Let {M; | t € B} be a differentiable family of bordered Riemann surfaces, My = ¥. We use the

notation in Definition 3.3. Then
A= {(UZ, qb,) = (1/[Z N 7'('_1(0), Zi|lxl¢ﬂ7r—1(t)) | 1€ 1,U;N 71'_1(75) #+ qb}
is an analytic atlas of ¥. Without loss of generality, we may assume that A is acyclic. We define

t-dependent transition functions f;; by z; = fi;j(25,t) = fir(2x,t). Then f;;(z;,t) € Rif z; € R by part
4 of Definition 3.3.

zi = fie(ze,t) = fij(fin(zr,t),1)

it _ afijafjk+afij
ot 62]- ot ot

Multiplying by % and noting that %J;” = gj?, we have
i J J

Ofik 0 _Ofjk 9 Ofij 0
ot 8zl ot sz ot 8ZZ '
Let (x;,yi) be real coordinates defined by z; = z; + iy;, then the boundary is defined by {y; = 0},

and the tangent line to the boundary is spanned by 8%1_. Under the isomorphism Ty, — Tg’l given by

: 0 B o .0 ok 9 S .
v (v —iJv)/2, we have 57 — 5~ and g ig. So O = 5t o 2 defines a Cech 1 cochain in
C'(A, ©x,) which satisfies the cocycle condition 6;, = 6;; + 0.

By exactly the same argument as in [23] we see that another system of coordinates will give rise to

a Cech 1 cocycle @' = 0 + S, where « is a Cech 0 cochain. Therefore, the infinitesimal deformation
of ¥ is given by
H'(A,05) = H' (2,05, T, Tys).

3.2. Nodal bordered Riemann surfaces. To compactify the moduli of bordered Riemann surfaces,
we will allow nodal singularities. The complex double of a bordered Riemann surface is a complex

algebraic curve with real structure. The stable compactification of moduli of such curves parametrizes
DOI: http://dx.doi.org/10.30504/jims.2020.104185
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stable complex algebraic curves with real structure [36,41], or equivalently, stable compact symmetric
Riemann surfaces. Naively, the quotient of a stable compact symmetric Riemann surface by its
antiholomorphic involution will give rise to a “stable bordered Riemann surface”. We will make this
idea precise in this section. This leads to the moduli space M(g’ n) of stable bordered Riemann surfaces
of type (g, h), and the moduli space M(g,h),(n,?ﬁ) of stable marked bordered Riemann surfaces of type
(g, h) with (n,m) marked points.

Let ¥ be a (smooth) bordered Riemann surface of type (g,h). Note that if ¢ : ¥ — ¥ is an
automorphism (Definition 2.14), then its complex double ([2, Section 3.3.2]) ¢c : Xc — ¢ is an
automorphism of (¢, o) (Definition 2.7). This gives an inclusion Aut(X) C Aut(Xc, o). It is easy to

see that the following are equivalent:

e Y is stable, i.e., Aut(X) is finite.

e Y. is stable.

e The genus g = 2g + h — 1 of X is greater than one.

e The Euler characteristic x(X) =2 — 2g — h of ¥ is negative.

We start with § = 2. Let My be the moduli of stable complex algebraic curves of genus 2. The

strata of Mo are shown in Figure 1.

FIGURE 1. strata of Ms. The dual graph and the underlying topological surface of a
prestable curve are shown. In the dual graph of the curve C, each vertex corresponds
to an irreducible component of C', labeled by the genus of the normalization, while
each edge corresponds to a node of C, whose two end points correspond to the two

irreducible components which intersect at this node.

If g =2, (g,h) can be (0,3) (Figure 2) or (1,1) (Figure 3).
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Definition 3.4. Let (x,y) be coordinates on C?, and A(x,y) =

J. Iranian Math. Soc. Vol. 1, No. 1 (2020) 5-95
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FIGURE 2. strata of M(()’g). Each stable bordered Riemann surface above represents a
topological type, and the number above each surface is the number of the associated
strata. The strata associated to the same topological type are related by relabelling
the three boundary circles. There are one 3-dimensional stratum, nine 2-dimensional
strata, twenty-one 1-dimensional strata, and fourteen O-dimensional strata. We will see
in Example 4.7 that M(O’g) can be identified with the associahedron K5 defined by J.
Stasheff [10].

(Z,9) be the complex conjugation. A

node on a bordered Riemann surface is a singularity isomorphic to one of the following:

nodes.

0,0) € {zy = 0} (interior node)
0,0) € {22 +y?> = 0} /A (boundary node of type E)
,0) € {z? — y? = 0}/A (boundary node of type H)

A nodal bordered Riemann surface is a singular bordered Riemann surface whose singularities are

A type E boundary node on a bordered Riemann surface corresponds to a boundary component

shrinking to a point, while a type H boundary node corresponds to a boundary component intersecting

itself or another boundary component. The boundary of a nodal Riemann surface is a union of points

and circles, where one circle might intersect other circles in finitely many points.
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()

FIGURE 3. strata of M )

The notion of morphisms and complex doubles can be easily extended to nodal bordered Riemann
surfaces. The complex double of a nodal bordered Riemann surface is a nodal compact symmetric

Riemann surface.

Example 3.5. Consider C. = {X?-Y?+eZ? =0} C P2, where [X,Y, Z] are homogeneous coordinates
on P2, and e € R. C. is invariant under the standard complex conjugation A([X,Y,Z]) = [X,Y, Z] on
P2, so o, = Alc, is an antiholomorphic involution on C.. For e # 0, (Ce,0.) is a symmetric Riemann
surface of type (0,1,0), and C¢/{oc) is the disc, which is a bordered Riemann surface. Cy has two
irreducible components {X +Y = 0} and {X —Y = 0} which are projective lines, and the intersection
point [0,0,1] of the two lines is a node on Cy. Both lines are invariant under the antiholomorphic
involution og. Co/{og) is a nodal bordered Riemann surface: it is the union of two discs whose

intersection is a boundary node of type H.

Example 3.6. Consider C. = {X%2 + Y2 + ¢Z? = 0} C P?, where ¢ € R. C. is invariant under the
complex conjugation A on P2, so 0. = Alc, is an antiholomorphic involution on C.. Set ¥, = C./(c.).
Fore >0, (C¢,0¢) is a symmetric Riemann surface of type (0,0, 1), and . is the real projective plane;
for e <0, (Ce,0¢) is a symmetric Riemann surface of type (0,1,0), and X, is the disc. Cy has two
irreducible components {X ++/—1Y = 0} and {X — /=1Y = 0} which are projective lines, and their
intersection point [0,0,1] is a node on Cy. The antiholomorphic involution oy interchanges the two
irreducible components of Co and leaves the node invariant, thus Yo = P, which is a smooth Riemann
surface without boundary. However, we would like to view it as a disc whose boundary shrinks to a

point which is a boundary node of type FE.
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Definition 3.7. Let ¥ be a nodal bordered Riemann surface. The antiholomorphic involution o on
its complex double X¢ can be lifted to & : 2/35 — X/I(\c, where X/I(\c is the normalization of ¢ (viewed as

a complex algebraic curve). The normalization of ¥ = X¢/(0) is defined by 3 = i?c/(&).

From the above definition, the complex double of the normalization is the normalization of the
complex double, i.e., f]c = i\c.
Let ¥ be a smooth bordered Riemann surfaces of type (g, h). The following are possible degenera-
tions of ¥ whose only singularity is a boundary node.
E. One boundary component shrinks to a point. The normalization is a smooth bordered Riemann

surface of type (g, h — 1) (Figure 4).

degeneration normalization
s ™~ Y ~

O LD D0 L O
™~ P4 / 5 s ' i / 8
et W s BN aag Wb N s WP sy

NP AN TN

Tl
L (g.h) = (1,2)
(g,h) = (1,3)

FIGURE 4. boundary node of type E

H1. Two boundary components intersect at one point. The normalization is a smooth bordered
Riemann surface of type (g, h—1), and the two preimages of the node are on the same boundary

component (Figure 5).

degeneration normalization
O OO (T
\ / | ( |
S \ / l‘\\ o /"'
N /N /
— S L
o s

(g, h) =(1,2)

FIGURE 5. boundary node of type H1

H2. One boundary component intersects itself, and the normalization of the surface is connected.
The normalization is a smooth bordered Riemann surface of type (¢ — 1,k + 1), and the two
preimages of the node are on different boundary components (Figure 6).

H3. One boundary component intersects itself, and the normalization of the surface is disconnected.

The normalization is a disjoint union of two smooth bordered Riemann surfaces of types (g1, h1)
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degeneration normalization

-y /C__')\‘ E<: \_ j(f__'); Q\ﬁ'__')\i /C__?

\ [ﬁ" / \- ‘(\) / e"‘l _ |
\_4_ . X ,) [7)/ \'_,;;3

(0.7) = (1.3) G {ned

FIGURE 6. boundary node of type H2

and (g2, he) such that g = g1 + g2 and h = hy + ha — 1, and each connected component contains

one of the two preimages of the node (Figure 7).

degeneration normalization

-~
N1
f f

W

g, .’ — (13) - ((jl ]?1 — (1 2) k(_g-'g.hg) — (02)

Ty
A

FIGURE 7. boundary node of type H3

Definition 3.8. A prestable bordered Riemann surface is either a smooth bordered Riemann surface
or a nodal bordered Riemann surface.
Let X be a prestable bordered Riemann surface, ¥ be its normalization. Let 6‘1, ey C’,,, 21, ceey S

be the connected components of f], where C; is a smooth Riemann surface of genus §;, and Sy is a
smooth bordered Riemann surface of type (g, hi). Let 0 be the number of connecting interior nodes

(Figure 8), and ép,dm1,0m2,0m3 be the numbers of boundary nodes described in F,H1, H2, H3,

respectively.
The topological type (g, h) of ¥ is given by

= g1t FGta+-+9+06+0mH2
h = hi+--+hys+0g+d0g1 — g2 — O3
It is now straightforward to extend the notion of marked bordered Riemann surfaces to prestable

bordered Riemann surfaces.
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/__\/ ™

Ny |, (g Rp=1{2,1)
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____ connecting interior node disconnecting interior node
| |
>/ / — ) | \ T / \<:;:>/)| |

FIGURE 8. connecting and disconnecting nodes

Definition 3.9. Let h be a positive integer, g,n be nonnegative integers, and m = (m!,.. .,mh) be

an h-uple of nonnegative integers. A prestable marked bordered Riemann surface of type (g, h) with
(n,m) marked points is an (h + 3)-uple
(Z,B;p;d’s. .., q")
whose components are described as follows.
e X is a prestable bordered Riemann surface of type (g, h).
e B = (B',...,B"), where 0% = U?Zl B, and each B' is an immersed circle. The circles
B, ..., B" may intersect each other at boundary nodes, and become h disjoint embedded circles
under smoothing of all boundary nodes.

e p=(p1,...,Pn) is an n-uple of distinct smooth points in %°.

o q =(q},....q ;) is an m'-uple of distinct smooth points on B'.

Definition 3.10. A morphism between prestable marked bordered Riemann surfaces of type (g, h) with
(n,m) marked points

(=,B:p;ay....q") = (&, B5p(d)' ., (@)")
is an isomorphism of prestable bordered Riemann surfaces ¢ : ¥ — ¥ such that ¢(B') = (B')" for
i=1,....h, ¢(p;) = p; forj=1,...,n, and o(qt) = (¢)i for k =1,...,m'. A prestable marked
bordered Riemann surfaces of type (g, h) with (n,m) marked points is stable if its automorphism group

is finite.

Remark 3.11. The category of prestable marked bordered Riemann surfaces of type (g, h) with (n,m)

marked points is a groupoid since every morphism in Definition 3.10 is an isomorphism.

Example 3.12. Consider the case (g,h) = (0,2),n =0,m = (1,0) (annuli with one boundary marked
point). The moduli space M(O,Q)(O,(l,o)) is an interval [0, 1]. There are three strata: t € (0,1),t =0,t =1

(Figure 9).
DO http://dx.doi.org/10.30504/jims . 2020. 104185


http://dx.doi.org/10.30504/jims.2020.104185

J. Iranian Math. Soc. Vol. 1, No. 1 (2020) 5-95 C.-C. Melissa Liu 23

(AN

I \\' I

L N S P
%

™,
7N A

\
. 11

\__/ .

E | =1

——

FIGURE 9. strata of M(OQ)(O,(I,O))

Example 3.13. Consider the case (g,h) = (0,2),n = 0,7 = (2,0) (annuli with two boundary marked
points on the same boundary circle). The moduli space M((]’Q)(O’(Q’O)) is a pentagon. There are eleven

strata (Figure 10).

Example 3.14. Consider the case (g,h) = (0,2),n = 0,m = (1,1) (annuli with one marked point
on each boundary circle). The moduli space M ( 9y0,(1,1)) @ a disc {z € C | |z| < 1}. There are four
strata: 0 < |z| <1, |z|=1but z#1, z=1, z=0 (Figure 11).

3.3. Deformation theory for prestable bordered Riemann surfaces. The algebraic approach
of deformation theory for smooth bordered Riemann surfaces in Section 3.1 can be easily extended to
nodal bordered Riemann surfaces. We will also consider marked points.

Let (2, B;p;q!,...,q") be a marked prestable bordered Riemann surface of type (g, h) with (n, )
marked points. We want to study its infinitesimal deformation. The ordering of the boundary circles
is irrelevant to the infinitesimal deformation, so in this section we will ignore it and write (X; p;q),
where

q:(q1,---,Qm):(q%,---,qunlyq%,---,qgn%---7Q{L,---,ngh),
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FIGURE 10. strata of M(072)(07(2’0))
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and m =m! 4+ - +mh

The complex double (X¢, o) of ¥ is a nodal complex algebraic curve X which is the complexification
of some real algebraic curve Xy, i.e., X = Xy xg C. Alternatively, (X,5) is a complex algebraic curve
with a real structure, where S is a semi-linear automorphism which induces the antiholomorphic
involution o on X¢.

Algebraically, the complex double of (X;p;q) is a nodal complex algebraic curve with (2n + m)

marked points (X, x), where

X = (1:17' . -;x2n+m) = (p17"'7pnvﬁla"'>]5naQ17' ;Qm)

Here we identify ¥ with the image under the inclusion i : ¥ — ¢, and denote o(p) by p.
Let
Dx =x1+ -+ Zoptm
be the divisor in X associated to x. The set of first order deformation of the pointed complex algebraic

curve (X, x) is canonically identified with the complex vector space
Exty, (Qx(Dx), Ox),

and the obstruction lies in
Ethf)X (Qx(Dx), Ox)
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FIGURE 11. strata of H(O,Z)(O,(l,l))

We claim that Ext%X(Q x(Dx),0x) = 0. Three terms in the local to global spectrum sequence
contribute to Ext%x (Qx(Dx),Ox):

HO(X, Ext?gx (QX(DX)J OX))7

Hl(X, 5.21315}9)( (Qx(Dx), O)()),
H*(X,Ext)  (Qx(Dx), Ox)).

The curve X has only nodal singularities, hence
Exty  (Qx(Dx),Ox) =0,
thus

H(X,Exty (Ux(Dx), Ox)) =

The sheaf Ea:t}gx(QX (Dx), Ox) is supported on nodes, so

HY(X,Extp, (Qx(Dx),0x)) =0
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Finally,
H*(X,Exty (Qx(Dx), Ox)) =0

since X is one dimensional. In this way we get the desired vanishing.

The semi-linear automorphism S induces a complex conjugation
S : Exty (2x(Dx), Ox) = Exty, (Qx(Dx), Ox).

The fixed locus Extéx(QX(Dx),OX)S gives the first order deformation of (X,x,S) as a pointed
complex algebraic curve with a real structure.

We will study the group ExtéX(Q x(Dx),Ox) and the action of S on it more closely. Let us first
introduce some notation.

Let C4,...,C, be the irreducible components of ¥ which are (possibly nodal) Riemann surfaces,
and let X1, ..., 3,/ be the remaining irreducible components of ¥, which are (possibly nodal) bordered

Riemann surfaces. Then the irreducible components of X are

C,...,Cy, C1,...,Cy, (1), (Z0)c.

Let C; denote the normalization of Ci,i=1,...,v, and let fli/ denote the normalization of X/,
i =1,...,7. Then

~

Chyo Gy S0, S,

are the connected components of f), the normalization of X, and

Chyeos G Chye Gy (B0 (B0)e

are the connected components of X , the normalization of X.

Let r1,...,m, € ¥° be interior nodes of 3, and s1,...,s;, € 0¥ be boundary nodes of ¥. Then X
has 2lp + 11 nodes r1,...,71, T1,...,T1y, S1,-..,5]-

Let p; € 3 be the preimage of p; under the normalization map 7 : X > X,7=1,...,n. Define
ﬁj, ;o similarly. Let 7, 7,4+ be the preimages of ro,a = 1,...,ly, and define 8./, 5;, ;o similarly.

Consider X with marked points

X:(plv"'7pna ﬁla"'apna qiy---549m, T1,---,72]y, fl?"'af2l07 517"'752l1)7

which can be written as a disjoint union of pointed curves
where

p" = (p1,0h,), B =01, 0,), d

A

- o Z‘/ AO ,L‘/ 7;/ kel
=1 v =1V P, €55 AL Oy, € 0%y, and

v v v
Zﬁi—l—Zni:n—i—Qlo, Zmi:m—i—Qll.
=1 i’ =1 =1
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From the local to global spectrum sequence, we have an exact sequence
0 — HYX,Extd, (Qx(Dx),Ox)) = Extp, (Qx(Dx), Ox)
— HY(X,Exty (Ax(Dx),0x)) = 0,

where
Sact%x (Qx(Dx),Ox) = HomoX (Qx(Dx), Ox) = Q_lx(Dx)v

We have the following elementary fact:

Lemma 3.15.
Q% (Dx)"Y = m.Tx(—Dx),
where ©: X — X is the normalization map, and Dy is the divisor corresponding to the marked points

x in X.

Proof. The equality obviously holds for smooth points. It suffices to show that Q) = .1y for
Y = SpecC|z, y]/(zy), which follows by a local calculation. O

The map 7 : X — X is an affine morphism, so by [16, Chapter III, Exercise 4.1] we have

v v

H' (X, Extdh (Qx (Dx), 0x)) = H (X, m.T¢(~Dg)) = W & W) & P W}
=1 =1

where the vector spaces
Wi = H'(Ci,Tg, (~Dy:)), Wi = H'(Cyi, Ty, (—Dy1)),
W(/ = Hl((ii/)(c, T(ill)c(_Dzll))

7

correspond to deformations of pointed curves (Cj,y?), (CZ, 59, (Zi)c, 2" ), respectively.
Another local calculation shows that

lo ll

HO(X, Exth, (Qx(Dx),Ox)) = P Va & Vo) @ P VL

a=1 o=
where
Vo=T; X ® T%MX, Vo=T: X T;

FZO +a

X, V=T X® T oo
correspond to smoothing of the nodes r,, 7o, So in X, respectively.

Now the action of S on Extéx (Qx(Dx), Ox) is clear: it acts on W; @ W; and V,, © V,, by (a,b) —
(b,a), and it acts on W}, and V!, by a — a. The real vector space W{,S corresponds to deformation of

the pointed symmetric Riemann surface ((f)i/)c, zt o). We also have Wi’,s >~ W, where
Wi = B (S0, 050, Ty (—f — - — ol Tys (—a — - —dis,)

corresponds to deformation of the pointed bordered Riemann surface (ii/, p", qi').

The action of S on V, can be understood by studying local models
{z2 +4*=0}/A  (type E),
{a? —y?=0}/A  (type H) ,
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where the antiholomorphic involution is A(x,y) = (Z,%). The deformation of {z? 4+ y? = 0} is given
by {22 £ y?> = €}, where € € C is small. A acts on deformation by € + €, so the deformation of
({z% £ y* = 0}, A) is given by ({22 £ 9? = €}, A), where € € R is small. {2? £9?> = ¢}/4, e € R
small gives a deformation of the boundary nodes, and there is a topological transition from € > 0 to
€ < 0 (Figure 12, 13, 14, 15). € € C corresponds to V,, € € R corresponds to VC:,S =Vy,and e >0

corresponds to Voj,r .
OO L LD

crosscap

(g, h. k) = (4,3,0) (§,h, k) = (4,2,1)

FIGURE 12. type E

=0 =0

1
FN /«ﬂ\ /c\—
(3, h, k) = (4,3.0) (g9, h, k) = (4,2,1)
/\___N;\. IKC___/ ?)D\

A\ Wi
>i/~> L:““‘I;'

Mobius strip

__1\/
_f\ o

FiGure 13. type H1

Above discussion can be summarized as follows.

(1) The infinitesimal deformation of the pointed complex algebraic curve (X, x) is given by

Exty, (Qx(Dx), Ox) = PW; @ Wi) & P W) & P(Va @ Vo) ® EP Vi

i=1 i'=1 a=1 a'=1
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(4 3,0) = (g.h, k) = (4,3,1)

N\ N 2

FIGURE 14. type H2

FiGure 15. type H3

(2) The infinitesimal deformation of the pointed complex algebraic curve with a real structure
(X,x,9) is given by

v

v/ lo I
Ext, (Qx (Dx), Ox)° = PW; & Wi)* & PW,° & P(Va & V)’ & P V"
i=1 i'=1 a=1 «a

(3) The infinitesimal deformation of the pointed prestable bordered Riemann surface (¥;p;q) is
given by

v v lo l
PwiePwre@Pv.e PV
=1 /=1 a=1 ao’'=1
4. Moduli of bordered Riemann surfaces

For stable complex algebraic curves, the moduli of complex structures can be identified with the
moduli of hyperbolic structures. Under this identification, analytic methods are applicable to the
study of moduli of stable curves. In [1], Abikoff constructed a topology on M, the moduli of stable
complex algebraic curves of genus g with n marked points, and showed that Mg,n is compact and

Hausdorff in this topology. Similarly, Seppélé [30] constructed a topology for the moduli space of
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stable real algebraic curves of a given genus g > 1, and showed that the moduli space is compact and
Hausdorff in the topology. In this section, we describe how these results can be modified to study

stable bordered Riemann surfaces.

4.1. Various moduli spaces and their relationships. Let
(£,B;p;a’s. .., q")

be a marked stable bordered Riemann surface of type (g, h) with (n,m) marked points. The moduli
of the ordering of the circles B!,..., B" is given by the permutation group of h elements. Let (X¢, o)
be the complex double of ¥, and let

X = ($1,...,1‘2n+m) = (plv"' s Prs D1y - - 7]5n,q1,~--,Qm)

(X¢,0,%) be a stable symmetric Riemann surface of genus § = 2g + h — 1 with (n, m) marked points.
Removing z1,...,z; from X¢, where n = 2n 4+ m, we obtain (S,0), a stable symmetric Riemann
surface of genus g with 7 punctures. Let S’ be the complement of nodes in S. There is a one to one
correspondence between connected components of S’ and irreducible components of S. Each connected
component of S’ is a smooth punctured Riemann surface. The stability condition is equivalent to the
statement that each connected component of S’ has negative Euler characteristic. Therefore, there is
a unique complete hyperbolic metric in the conformal class of Riemannian metrics on S’ determined
by the complex structure.

Let Mg’ﬁ be the moduli of stable compact Riemann surfaces of genus g with 7 marked points, or
equivalently, the moduli of stable complex algebraic curves of genus § with 77 marked points. Let Pg,ﬁ
be the moduli of stable oriented hyperbolic surfaces of genus ¢ with 7 punctures. From the above
discussion we know that there is a surjective map 7 : Mg — Pgﬁ. 7 is generically ! to one since the
marked points are ordered, while the punctures are not. The fiber over a point in Pgﬁ represented by
the surface S consists of less than 72! points if and only if there is an automorphism of S permuting
its punctures.

Let Mﬂg}:(mm) be the moduli of stable symmetric compact Riemann surface of genus g with (n, m)
points (see Definition 2.8), and let M%%,h,k),(n,m
surface of type (g, h, k) (see Section 2.3) with (n, m) marked points. Note that M%%,O,k),(n,m) is empty if
m > 0. Mg,h,k),(n,m) are disjoint subsets of Mﬂ;(n’m),
defined later) cover Mﬂgj(

) be the moduli of smooth symmetric compact Riemann

and their closures Hg,h,k),( ) (in the topology

n,m
n,m)-
There is an involution A : Mg — Mg, given by
[(2, Tlyeo- ,xﬁ)] — [(i, U(.’L‘n_H), R ,U(afgn), a(xl), R ,a(a:n), U($2n+1), R ,U($2n+m))]
where o : ¥ — 3 is the canonical anti-holomorphic map from ¥ to its complex conjugate . Let M;ﬁ
denote the fixed locus of A. Then there is a surjective map Mﬂi(nym) — M?,m given by forgetting the
symmetry ¢. This map is generically injective. It fails to be injective exactly when the automorphism

group of (3, x) is larger than that of (3, o, x).
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Let Pg%ﬁ be the moduli of stable symmetric oriented hyperbolic surfaces of genus g with n punctures,
and let P(%’h’k)’ﬁ the moduli of smooth symmeitric oriented hyperbolic_surfaces of type (g, h, k) with
N punctures. P(HE hok)i A€ disjoint subsets of Pg%ﬁ, and their closures P(HE hok) i (in the topology to be
defined later) cover ]35&.

There is an involution A’ : P; 5 — P; s, given by [S] = [S]. There is a surjective map Pg%ﬁ — Pg“}%,
given by forgetting the symmetry o. This map is generically injective. It fails to be injective exactly
when the automorphism group of S is larger than that of (S, 0).

We have the following commutative diagrams:

_ A — R A
gn — Mga 3,(nsm) » Mg

ﬁl frl le ”Al

5 A5 pR — s pA

Pg,ﬁ — Pg,ﬁ Pg,(n,m) Pg,n

where the generic fiber of m® consists of 2"n!m! points. The factor 2" corresponds to the permutation
of the two points in each of the n conjugate pairs. The factor n! corresponds to the permutation of
the n conjugate pairs. The factor m corresponds to the permutation of the m marked points fixed by
the symmetry. Similarly, the generic fiber of 74 consists of 2"n!m/! points. For a generic point in ]5;}%,
its preimage under 7 consists of 72! points, but only 2™n!m! lie in the fixed locus of A.

Neither 7% nor 74

is surjective because the number of punctures fixed by the symmetry can be any
integer between 0 and 7, not only m.
We are interested in the moduli space M(g7h)7(nﬁ) of stable bordered Riemann surfaces of type

(g9, h) with (n,m) marked points (see Definition 3.9, Definition 3.10). There is a finite to one map

M(g,h),(n,ﬁi) — M;l}i(mm) given by complex double, so there is a finite to one map M(g,h),(n,ﬁz’) —
]5(% hoya C PéRfﬁ. We will first study P; 7 and Pg?ﬁ, following [1,30].

4.2. Decomposition into pairs of pants. A pair of pants P is a sphere from which three disjoint
closed discs (or points) have been removed. It is the interior a stable bordered Riemann surface of
type (0,3). There is a unique hyperbolic structure compatible with the complex structure of P such
that the boundary curves are geodesics. Conversely, given a hyperbolic structure on P such that
the boundary curves are geodesics, the conformal structure is determined up to conformal or anti-
conformal equivalence by the lengths [y, lo, and I3 of the three boundary curves ([I, Chapter II (3.1),
Theorem)).

4.2.1. Riemann surfaces with punctures. A Riemann surface S of genus § with # punctures can be
decomposed into pairs of pants. More precisely, there are 3g — 3 + n disjoint curves aq,...,a35-314
on Y, each of which is either a closed geodesic (in the hyperbolic metric) or a node, such that the
complement of U?ﬁ I3+ﬁai is a disjoint union of 2§ — 247 pairs of pants Py, ..., Py_2417. A boundary
component of the closure of a pair of pants in this decomposition is either a decomposing curve or a
puncture. We call

P={P,P,...,Poj 24i}
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a geodesic decomposition of S into pairs of pants.

Suppose that there exists an anti-holomorphic involution o : S — S. Then (S,0) is a stable
symmetric Riemann surface of genus g with 7 punctures, and ¢ is an isometry of the hyperbolic
metric. Let

P=A{P1,P,,...,P5 21}

be a geodesic decomposition of S into pairs of pants. Then

o(P) ={o(P1),0(P2),...,0(Pag-2+)}

is another geodesic decomposition of S into pairs of pants. P is said to be o-invariant if o(P) = P.
The argument in [30, Section 4], combined with [I, Chapter II (3.3), Lemma 3], shows that

Theorem 4.1. Let (S,0) be a stable symmetric Riemann surface of genus g with n punctures. There
exists a o-invariant geodesic decomposition of 3 into pairs of pants such that the decomposing curves

are simple closed geodesics of length less than C(g,n), where C(g,n) is a constant depending only on

g, n.

4.2.2. Riemann surfaces with boundary and punctures. Let (¥, B;p) be a stable bordered Riemann
surface of type (g, h) with (n,0) marked points, and suppose that ¥ has no boundary nodes. Let S be
the complement of marked points in ¥, then S is a surface of type (g, h,n) in the sense of [1], namely,
S is obtained by removing h open discs and n points from a compact (possibly nodal) Riemann surface
of genus g, where the discs and points are all disjoint. .S is stable in the sense that its automorphism
group is finite. Let S’ be the complement of nodes in S. Each connected component of S is a
smooth Riemann surface with boundary or punctures. The stability condition on S is equivalent to
the statement that each connected component of S’ has negative Euler characteristic, so there exists a
unique hyperbolic metric on S in the conformal class determined by the complex structure such that
the boundary circles are geodesics.

Let S be a stable surface of type (g,h,n). The S can be decomposed into pairs of pants. More

precisely, there are 3g + h — 3 + n disjoint curves ai,...,a3g4p—34n on S, each of which is either a
closed geodesic (in the hyperbolic metric) or a node, such that the complement of U?ﬁ‘fh_%nozi is
a disjoint union of 2g + h — 2 + n pairs of pants P,..., Pogyp—24n. A boundary component of the

closure of a pairs of pants in this decomposition is a decomposing curve, a boundary component or a

puncture. We call
P={P,P,...,Pyipn_o4n}

a geodesic decomposition of S into pairs of pants. We have the following result ([1, Chapter II (3.3),

Lemma 3]):

Theorem 4.2. Let S be a stable surface of type (g,h,n). There is a geodesic decomposition of S
into pairs of pants such that the decomposition curves are simple closed geodesic with length less than
C(g,h,n,Ly,...,Ly), where C(g,h,n,Ly,...,Lp) is a constant depending only on g, h, n, and the

lengths of the h border curves Li,..., Lp.
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We will see later that the moduli of stable surfaces of type (g, h,n) is of (real) dimension 6g + 3h —
642n, and L1,..., L, are among the 6g+ 3h — 6+ 2n real parameters. These are not good coordinates
for compactness since L1, ..., Ly can be arbitrarily large. Actually, the length of some border curve
tends to infinity as S acquires a type H boundary node. To deal with boundary nodes and boundary
marked points, we go to the complex double, where the local coordinates of the moduli can be chosen
to be bounded.

4.3. Fenchel-Nielsen coordinates.

Definition 4.3. Let S be a stable symmetric Riemann surface of genus g with i punctures. A geodesic

pants decomposition P is oriented if

(1) The pairs of pants in P is ordered.
(2) The boundary components of each pair of pants in P is ordered.

(3) Any decomposing curve which is not a node is oriented.

Remark 4.4. The orientability of a geodesic decomposition of a surface of type (g, h,n) can be defined

similarly, with the additional assumption that the boundary components are ordered.

Let P be a pair of pants with hyperbolic structure with ordered boundary components a1, as, as.

The base points & on oy, i = 1,2, 3, are shown in Figure 16. In Figure 16, -1 2 is the geodesic which

FIGURE 16. a pair of pants

realizes the distance between aq, as, etc.

If P is oriented, then each boundary curve of a pair of pants in P has a base point. Each decomposing
curve has two distinguished points since it appears twice as a boundary of some pair of pants in P.
The orderings in (1) and (2) of Definition 4.3 determine an ordering of the decomposing curves a;,
j=1,...,3¢g — 3+ n and an ordering on the two distinguished points 5},532 on each decomposing
curve. We define [;(P) to be the length of «;, and 7;(P) be the distance one travels from 5]1 to sz
along o, in the direction determined by part (3) in Definition 4.3. Set 6;(P) = 2%% if [; #0. We

havelj20,0§7j<lj,and0§9j<27r.
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Definition 4.5. Let S, S be two stable Riemann surfaces of genus § with i punctures. Let S’, S’ be
1-dimensional complex manifolds obtained from S, S by removing the nodes. A strong deformation

k:S — S is a continuous map such that

(1) If 7 is a node on S, then k(7) is a node on S.

(2) If r is a node on S, then k~'(r) is a node or an embedded circle on a connected component of
S’

(3) Klg-1(sry s £7HY) = S is a diffeomorphism.

There is a strong deformation x : S — S if and only if S can be obtained by deforming S as a

quasiprojective variety over C.

Remark 4.6. A strong deformation k : (S,5) — (S,0) between stable symmetric Riemann surfaces
can be defined similarly, with the additional assumption that 0 ok = kKo d. A strong deformation

between two surfaces of type (g, h,n) can also be defined similarly.

We now describe Fenchel-Nielsen coordinates for various categories of surfaces.

(1) Let S be a stable Riemann surface of genus g with 7 punctures. Let P be an oriented geodesic
decomposition of S into pairs of pants, and let oy, ae, ..., a3j—3+7 be the decomposing curves
of P. Suppose that there is a strong deformation  : S — S. Let @; be the closed geodesic
homotopic to k™ !(a;). There exists another strong deformation ' such that x'(d;) = «;, so

P is pulled back under ' to an oriented geodesic decomposition Pg.

[S] = (11(Ps),01(Ps), . .., l35-3+7(Ps), 035-3+7(Ps))

defines local coordinates (l,01,...,135-3+7,035—3+7) on Pg,,:b. Therefore, both Mgﬁ and Pgﬁ
are (6¢g — 6 + 2n) dimensional.

(2) Let (S,0) be a stable symmetric surface of genus g with n punctures, and let P be an oriented
geodesic decomposition of S into pairs of pants which is invariant under o. By considering
o-invariant decompositions into pants in a neighborhood of (S,0) in Pg%ﬁ we obtain local
coordinates (l1,61,...,135-3+#,035-3+r). However, these parameters are not independent. If
o(a;) = oy, i # j, then [; = [, and 0; = ¢+ 6; for some constant c. If o(a;) = «;, then 0; = 0.
Hence there are 3g — 3 + n independent parameters, and the dimension of Pgﬁ is3g—3+n.

(3) Let S be a stable surface of type (g, h,n), and let Ry,..., R be its border curves. Let P be
an oriented geodesic decomposition of S into pairs of pants, and let a1, ..., a3g41—34n be the
decomposing curves. We have local coordinates (11,61, ..., 139+h—34n:03g+h—3+n, L1, -, Lp),
where [; is the length of «;, 6; is the angle of gluing along «;, and L; is the length of the
border curve R;. Therefore, the dimension of the moduli of stable surfaces of type (g, h,n) is
6g +3h —6+2n = 39 — 3+ n, where g = 29 + h — 1, and n = 2n. This is consistent with
the previous paragraph since the complex double of S is a stable symmetric Riemann surface

with genus § = 2g + h — 1 and n = 2n punctures.
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(4) Let (X,B;p;q',...,q") be a stable marked bordered Riemann surface of type (g,h) with
(n,m) marked points. (X¢,o,x) be its complex double, and (S, o) be the symmetric Riemann
surface obtained from ¥ by removing the marked points, as in Section 4.1. Choose a o-invariant
geodesic decomposition of S into pants, we have local coordinates ({1,601, .., l35-3+7, 035—3+),

as described in (1), where

G=29+h—1, a=2n+m' +---+mh

3 —34+7=6g+3h—3+2n+m' +---+mh.

We have seen that half of the 2(6g+3h —6+2n+m! +-- -+ mh) parameters are independent,

so the dimension of M(g,h),(n,ﬁi) is
69 +3h—64+2n+m!+ .- +mh

In the following example, we describe the Fenchel-Nielsen coordinates of the moduli space M3 of

a pair of pants explicitly.

Example 4.7. The hexagon in Figure 17 is obtained by cutting the pair of pants in Figure 16 along

the geodesics y1,2,72,3,73,1- B1 is the geodesic which realizes the distance between 1 and 723, etc.

Let lly127l37l47l57l67l77l87l9 be twice the lengths Of 71772773772,3)73,1)71,27ﬂ17/627/837 respectively.

The degeneration l; = 0 corresponds to a real codimension one stratum V; of Moyg. Let Vi; = V;NV;
and Viji, = ViNV; N V. Mo’g can be identified with the associahedron Ky defined by J. Stasheff [10].
The configuration of the strata in Mo’g = K5 is shown in Figure 17. There is 1 three-dimensional

stratum. There are 9 two-dimensional strata:
Vi, Va, V3, Vi, Vs, Ve, V7, Vs, V.
There are 21 one-dimensional strata:
Vig, Vig, Vas, Vis, Ve, Vae, Via, Vas, Vae, Var, Vaz, Var, Vir, Vis, Vas, Vas, Ves, Vig, Vag, Vag, Vsg.
There are 14 zero-dimensional strata:

V123, Vase, Vasr, Vasz, Vaer, Vser, Viss, Vias, Vaes, Vaes, V129, Viag, Vasg, Visg.

There is a one-to-one correspondence between the 0-dimensional strata and Fenchel-Neilsen coor-

dinate charts of Moyg.’ the Fenchel-Neilsen coordinates near Vi, are l;, 1, [y

4.4. Compactness and Hausdorffness. We first define a topology on M(g,h),(n,’rﬁ)v following [I,
Chapter II (3.4)], and [36, Section 5]. We will call it the Fenchel-Nielsen topology.

Definition 4.8. A strong deformation between two stable marked bordered Riemann surfaces (i, E; P;
a',...,q" and (,B;p;a',...,q") of type (g,h) with (n,m) marked points is a continuous map
K: ZN] — X such that
(1) w(B') = B', &(@}) = a4, £(B;) = pj-
(2) If 7 is an interior node on X, then r(F) is an interior node on X.
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3) If 5 is a boundary node of type E (H) on 3, then k(3) is a boundary node of type E (H) on X.

If s is a boundary node of type E, then k~1(r) is a boundary node of type E or a border circle.

6) If s is a boundary node of type H, then k= 1(s) is a boundary node or type H or an arc with ends

be a strong deformation. Let (S, 0), (S,0) be the symmetric Riemann surfaces obtained by removing

marked points from X¢, X¢, respectively. Define k¢ : Sc =S¢ by

H(c(Z)Z{ K(2) if ze X

Goroo(z) ifzeX

Let & denote the restriction of k¢ to S. Then & : (S,5) — (S, 0) is a strong deformation.

Given €,0 > 0 and

p= [(Ea B; p; qlv s qh)] € M(g,h),(n,ﬁi),

we will define a neighborhood U(e, d, p) of p in M(%h),(n,ﬁ). Let (S,0) be the symmetric Riemann

surface obtained by removing marked points from Y¢. Let

p=1EBp:a',....a"] € Myn) nm,

and (5’ ,@) be the associated symmetric Riemann surface. Then p € M(g,h),(n,rﬁ) if

(1) There exists a o-invariant oriented geodesic decomposition of S into pairs of pants.

DOTI: http://dx.doi.org/10.30504/jims.2020.104185


http://dx.doi.org/10.30504/jims.2020.104185

J. Iranian Math. Soc. Vol. 1, No. 1 (2020) 5-95 C.-C. Melissa Liu 37
(2) There exists a strong deformation
(YR Gl 0 R h
ﬁ'(E7B7p7q 7"'7q )%(E,B,I)’q 7"'7q )

in the sense of Definition 4.8. So we have a strong deformation % : S — S as above.
(3) Let 1;,6; and [;,0; be the Fenchel-Nielsen coordinates for P and &#*(P), respectively. Set d =
6g + 3h — 6 + 2n + m. We have |l; —l~j| <eforj=1,...,d, and ]9j—§j| <difl; > 0.

{U<67 57 p) ‘ 67 5 > 0’ p 6 M(g,h),(n,rﬁ)}

form a basis of the Fenchel-Nielsen topology.

U(e, 6, p) can be described more precisely. Set z; = [;e¥% then up to permutation and complex

conjugation of some z; we have

O(21, 225 -+ 3 22d1 -1, 22dy s 22d1 415 - - - s 2d) = (22, 21, - - -, 22dy» 22d1—1> 22dy+1s - - - » 2d)

so the fixed locus of o consists of points of the form

(22,2’2, - ,ngl,Zle,xl, - ,$d2),

where 2dy +dy = d, 22,24,...,224, € C, and z1,...,24, € R. The coordinates take values in the fixed
locus of o, and z; are nonnegative on M(gﬁ)’(nﬁ) because negative values correspond to nonorientable
surfaces, as we have seen in Section 3.3. We conclude that U (e, d, p) is homeomorphic to U /T, where
U is an open subset of C% x [0,00)%, and T is the automorphism group of 7. The transition functions
between charts are real analytic [16, Appendix], so Fenchel-Nielsen coordinates give M(g,h),(n,'fﬁ) the
structure of an orbifold with corners. The topology determined by the structure of an orbifold with
corners coincides with Fenchel-Nielsen topology. Therefore, we may equip M(g’h)’(mm) with a metric
which induces Fenchel-Nielsen topology. In particular, the topology is Hausdorff, and compactness is
equivalent to sequential compactness. A straightforward generalization of the argument in [36, Section

6] shows that M(g,h),(n,'fﬁ) is sequentially compact in Fenchel-Nielsen topology. Therefore,
Theorem 4.9. M(g,h),(n,r?i) 1s Hausdorff and compact in the Fenchel-Nielsen topology.

4.5. Orientation. H(g,h),(n,?ﬁ) is an orbifold with corners, so we may ask if it is orientable as an

orbifold. By Stashefl’s results in [10], we have

Theorem 4.10. M(071)7(07(m)) has (m — 1)! isomorphic connected components, which correspond to
the cyclic ordering of the m boundary marked points. Each connected component of M(071)7(07(m)) is

homeomorphic to R™™3.

Lemma 4.11. Suppose that (g,h,n) # (0,1,0), and m* > 0. If M(%h%(nﬁ) is orientable, then

M (g b, (n,(m1,....mi41,....mhy) @S orientable.

(n,(m
? b
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[a5]

03 (8]

(85]

FIGURE 18. Q(g,h),n is nonorientable

Proof. Assume that M(g’h)’(ny(ml’.”’miy'”’mh)) is orientable. Consider the map

(4.1) F o Mgy, (ny(ml,.omi+1,...mh)) = Mg ) (nm)

given by forgetting the last boundary marked point on the i-th boundary circle. Under our assumption,
the fiber of F over [(X,B;p;q',...,q")] is a union of m® intervals and inherits the orientation of B’.

Therefore, M(g’h%(n7(ml ..... mi+1,..,mh))) is orientable. O

Lemma 4.12. Suppose that (g,h,n) # (0,1,0), and m* = 0. If M(g7h)7(n’(m17“.7mi+1’m,mh))) is ori-

entable, then M(%h),(nJ‘n‘) is orientable.

Proof. Assume that M(g’h)’(nv(ml7.“’mi+17m7mh))) is orientable. Let 7" be the tangent bundle ofﬂ(gm’(n’m),
which is an orbibundle over M g ) (n,m). To show that My () is orientable, it suffices to show
that the restriction of T to every loop in Mg p) (n,m) is orientable. Let N(gp) nm) be the interior
of M(%h%(n?m). More precisely, Ny p) (nm) corresponds to surfaces with no boundary nodes. Since
every loop in M(g,h),(n,ﬁi) is homotopic to a loop in Ny p) (nm), it suffices to show that Ny pn) (n.m) 18
orientable.

Suppose that p = [(X,B;p;q',...,q")] € N(g.h),(nm)- Then B is an embedded circle in ¥, oriented
as in Remark 2.13, and the fiber of the map F in (4.1) over p can be identified with B. Thus
Ngn),(n,m) 18 orientable. O

It is shown in [20] that
Theorem 4.13. Suppose that (g, h,n) # (0,1,0). Then M(g,h),(n,(l,...,l)) is a complex orbifold.

Theorem 4.10, Lemma 4.11, Lemma 4.12, and Theorem 4.13 imply that

Theorem 4.14. M 4 1) (n,m) 1S orientable.

Let Q(g,h)’n be the moduli space of stable bordered Riemann surfaces of type (g, h) with n interior
points. There is an hA! to one map M( a0 Q(g,h),n, given by forgetting the ordering of boundary
components. Therefore, Qg 1) is nonorientable.

For example, consider p € M(172)7(070) represented by the surface as shown in Figure 18. The local

coordinates are (I1,61,l2,02,13,14), where [; is the length of «; for j = 1,...,4, and 6y, 0 are gluing
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angles for aq, ao, respectively. There is an automorphism ¢ of order 2 of p which rotates Figure 18 by
180°. ¢(a1) = g, ¢(a3) = au, and a(ly,01,12,02,13,14) = (l2, —02,11, —01,14,13), which is orientation
reversing.

In general, an automorphism induces permutation of d; decomposing curves and permutation of
dy bordered curves. The former corresponds to permutation of pairs (I;,6;), 7 = 1,...,d;, which is
orientation preserving. The later corresponds to permutation of (lg4,+1,- - ., ld,+d,) Which is orientation
preserving if and only if it is an even permutation. When we consider M(g,h),(n,ﬁ)’ automorphisms

permuting border curves are not allowed.

5. Moduli Space of stable maps

5.1. Prestable and stable maps. Let (X,w) be a compact symplectic manifold, and let L be a

Lagrangian submanifold. Let J be an w-tame almost complex structure.

Definition 5.1. A prestable map is a continuous map u : (X,0%) — (X, L) such that Joda = duoj,
where ¥ is a prestable bordered Riemann surface, &t = woT, T : $ = ¥ is the normalization map
(Definition 3.7).

Definition 5.2. A prestable map of type (g,h) with (n,m) marked points consists of a prestable
marked bordered Riemann surface of type (g, h) with (n,m) marked points (X,B;p:;q',...,q") and a
prestable map u : (3,0%) — (X, L).

Definition 5.3. A morphism between prestable maps of type (g, h) with (n,m) marked points
(2,Bipiq’s.. .. q"u) = (5B p(d)' - (d) )

is an isomorphism
¢: (S,B;pid's....q") = (T, Bp5(d) - (d)")

between prestable marked bordered Riemann surfaces of type (g, h) with (n,m) points such that u =

u' o ¢.

Definition 5.4. A prestable map of type (g, h) with (n,m) marked points is stable if its automorphism

group is finite.

5.2. C* topology. Let 8 € Hy(X,L;Z), 7 = (v',...,v") € Hi(L; Z)®" be such that v, + -+, =
0B, where 0 : Hy(X, L;Z) — H1(L;Z) is the connecting map in the long exact sequence for relative
homology groups. Let h be a positive integer, g,n be nonnegative integers, 7 = (m!,...,m") be an

h-uple of nonnegative integers, and p be an integer. Given the above data, define

M (g 1), (nm) (X, L | 8,7, 1)

to be the moduli space of isomorphism classes of stable maps of type (g, h) with (n,7) marked points

R | h.
(E7B7p7q7"'7q ’u)
DOTI: http://dx.doi.org/10.30504/jims.2020.104185


http://dx.doi.org/10.30504/jims.2020.104185

40 J. Iranian Math. Soc. Vol. 1, No. 1 (2020) 5-95 C.-C. Melissa Liu

such that u.[X] = 8, us[BY] = 4% for i = 1,...,h, and pu(u*TX,u*TL) = pu. Here u(u*TX,u*TL) is
the Maslov index defined in [24, Definition 3.3.7, Definition 3.7.2]. From now on, we assume that L
is oriented, so pu(u*TX,u*TL) is even, and we may restrict ourselves to even pu. We will also assume
that v* is nontrivial when m* = 0, so the domain cannot have boundary nodes of type E.

Let M(g,h),(n,m)(X , L) be the moduli space of isomorphism classes of stable maps of type (g, h) with
(n,m) marked points. Then M (g p) inm) (X, L | B,7, 1) are disjoint subsets of My py (n.7)(X, L) for
different (53,9, u).

Let ¥ be a prestable bordered Riemann surface, and let 7 : 3 — ¥ be the normalization. Let
w: (3,0%) — (X, L) be a continuous map such that & = uo 7 : (2,0%) — (X, L) is C® w.r.t. gy on

X and some Hermitian metric kA on f], [ > 1. Define

awzw

where (x,y) are local isothermal coordinates on 3, and g(z,y)dz A dy is the volume form for the

2104

ot 2 Joa 0a\?
% y - <8:v’8y> g(m,y)dm/\dy,

metric h. If u is an embedding, a(u) is the area of u(X) w.r.t. go. If u is a prestable map, then
a(u) = § || du || 2= (w.[%]) N [w], where

I du ||%2=/ (
>

(ux[2]) N [w] only depends on the relative homology class u.[X] € Ha(X, L;Z), so we have a function
a: M(g,h),(n,rﬁ) (X, L) — [0,00), which takes the constant value 5N [w] on M(g,h),(n,m)(Xv L| 5,7, ).
With the above definition, M(g,h),(n,’rﬁ) (X, L | B,7,p) is a set. We will equip it with the structure

.12
ot

ox

ou

+8y

2
) g(z,y)dz A dy.

of a topological space, and show that it is sequentially compact and Hausdorff in this topology. This
topology was introduced by Gromov [15].

We say two stable maps are close if the complex structures on the domain are close, and the maps
are close. To measure the closeness, we use metrics on the domain and on the target. For the target
X, J is an w-tame complex structure, so go(X,Y) = 3(w(X, JY) +w(Y, JX)) is a Riemannian metric
on X such that J is an isometry. For the domain, by a Hermitian metric h on a prestable bordered
Riemann surface ¥ we mean a Hermitian metric on A on 2, the normalization of .

We now introduce some notation. Let 7 : £ — ¥ be the normalization map. Given a node r € X
and a small positive number ¢, let Be(r) = 7(B(r1) U Be(r2)), where 771(r) = {r1,m2}, and Be(ra)
is the geodesic ball of radius € for a = 1,2. Let € be sufficiently small so that B.(r) are disjoint for

7 € Ysing, Where Ygj,s denotes the set of nodes on X. Set N(X) = UreEsmg B (r), K (X) = X = N(%).

Definition 5.5 (C™ topology). Let p = (X,B;p;ql,...,q"; u) be a prestable map of type (g,h)
with (n,m) marked points. For a Hermitian metric h on ¥ and €1,...,e4 > 0, a neighborhood

U(p,h,€1,...,€4) of uin M(g,h),(n,'rﬁ) (X, L) in the C* topology is defined as follows. A prestable map
p=(Z,B5pi(d) ..., (d)5 )

belongs to U(p, h,€1,...,€4) if
DOI: http://dx.doi.org/10.30504/jims.2020. 104185


http://dx.doi.org/10.30504/jims.2020.104185

J. Iranian Math. Soc. Vol. 1, No. 1 (2020) 5-95 C.-C. Melissa Liu 41

(1) There is a strong deformation
£ (2B () (@) = (2, B;pidl, .. d")
such that k=1 is defined on K., ().
(2) || 7— (&= H 5 oo ()., (2)) < €2, where j, j' are complex structures on X, Y/, respectively.

(3) [lu—u ok~ ook, (2))< €3-
(4) la(u) — a(u’)| < €.

(1) says that ¥’ can be obtained by deforming 3, or equivalently, > is in the same or a higher
stratum in ]\Aj(gﬁ)’(nﬁ), the moduli space of prestable marked bordered Riemann surfaces of type (g, h)

with (n,m) marked points. (2) says that
(2,B;p;id's...,q"), (¥, B5p5 (). (d)")

are close in the C*° topology (Definition 5.6). (3) says that the maps u, u’ are C* close away from

the nodes. Finally (4) implies that a : Mg ) (n7)(X, L) = [0,00) is a continuous function.

(2,B;pid'y...,d%w), (X,B5p(d). .., (d) )
represent the same point in M(g,h),(n,'fﬁ) (X, L) if and only if there is a Hermitian metric A on ¥ such

that

(1) There is a homeomorphism
(XL B () (@) = (2 Bipid. . g)

which induces a diffeomorphism PIES 35
(2) 15— (15" [lcee(z)= 0, where j, j are complex structures on X, 3, respectively.
(3) lu—u ok flooe(s)= 0.
(4) la(u) = a(u’)| =0.
This shows that the C* topology is actually a topology on the moduli space M(g,h),(n,rﬁ) (X,L).
M (g 1y, (n,m) (X, L | 8,9, 1) is a closed subspace of M (4 ) (nm)(X, L) and is equipped with the subspace
topology.

When X is a point, we get the C'*° topology of M(%h),(n’m).

Definition 5.6. Let A = (£,B;p;q',...,q") be a stable (prestable) bordered Riemann surface of
type (g, h) with (n,m) marked points. For a Hermitian metric h on ¥ and €1,e3 > 0, a neighborhood
Ul(p, h,e€1,€2) of uin M(%h)’(nﬁ) in the C* topology is defined as follows. A stable (prestable) bordered
Riemann surface X' = (X', B';p’; (d)!, ..., (d")?) belongs to U(p, h, €1, €2) if

(1) There is a strong deformation k : N — X\ such that k= is defined on K., (2).

(2) || 7 — (k= H 5 oo (5, (2)) < €2, where j, j' are complex structures on X, ¥/, respectively.
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5.3. Compactness and Hausdorffness. The following result is the main theorem of this section.
Theorem 5.7. M(g,h),(n,m) (X, L | B,4,n) is Hausdorff and sequentially compact in the C* topology.

The Hausdorffness can be proven as in the case of curves without boundary, see e.g. [37, Proposition

3.8]. The compactness is a consequence of the following theorem.

Theorem 5.8 (Gromov Compactness Theorem). Let {p;} be a sequence in Mg p) (nm)(X, L) such
that a(p;) < C for alll € N. Then there is a subsequence of {p;} convergent in the C* topology.

The proof of Gromov compactness theorem [15, 1.5] for J-holomorphic curves without boundary
was carried out in details in [34,47]. The case with boundary was proved in [17] (see also [19,20]).
In [17], the moduli space is compactified by the moduli space of cusp curves, or prestable maps of this
paper. We will describe how the argument in [17] proves Theorem 5.8.

The C*° topology can be equivalently defined as follows.
Definition 5.9 (C* Topology). A sequence

pr = (Z,Bipsal, ... d)w)

converges to p = (3,B;p;a',...,q%u) in the C> topology if for each e1,...,eq > 0, there is an
integer N such that for 1 > N,

(1) There is a strong deformation r; : 5 — ¥ such that k; ' is defined on K. ().

2) (17— (s )3 llose k., (29 < €2-

3) lu—wuo /{l_l HCoo(Kel(E))< €3.

(4) |a(u) — a(w)| < €4.

Recall that M(g,h),(n,’rﬁ) denotes the moduli space of prestable bordered Riemann surfaces of type
(g,h) with (n,m) marked points. There is a map F : M (g p) (nm) (X, L | 8,9, 1) = ]\7(97,1)7(”7,%), given
by forgetting the map. ]\Af(gjh),(n,m) has infinitely many strata since one can keep on going to lower
and lower strata by adding non-stable components — spheres and discs.

We claim that the image of F' is covered by only finitely many strata, or equivalently,
Lemma 5.10. The domains in M(g,h)7(n77ﬁ) (X,L| 8,79, 1) have only finitely many topological types.

Proof. There is a map J\Aj(gvh),(mm) — M(g,h),(n,fﬁ)’ given by contracting non-stable components. Since
a stable bordered Riemann surfaces of type (g,h) with (n,m) points can have only finitely many
possible topological types, it suffices to get an upper bound for the number of non-stable irreducible
components. The restriction of a stable map to a non-stable irreducible component is nonconstant, so
there is a lower bound € > 0 for the area of the restriction of the map to each non-stable component
by [17, Lemma 4.3, Lemma 4.5]. Therefore, the number of non-stable irreducible components cannot
exceed (BN [w])/e. O

Let {p;} be a sequence in M(g,h),(nﬁz) (X, L) such that a(p) < C for all | € N. By Lemma 5.10, there

is a subsequence of {p;} such that the domains are of the same topological type. By normalization
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we obtain several sequences of stable maps with smooth domains of the same topological type and
with uniform area bound. Note that each node gives rise to two marked points on the normalization.
It suffices to show that each sequence has a subsequence convergent in the C° topology. Therefore,
we may assume that the domain is a smooth marked bordered Riemann surface or a smooth curve
with marked points. In this case, it is proven in [17] that there is a subsequence which converges to
a prestable map in the C* topology. However, it is straightforward to check that the limit produced

in [17] is actually a stable map.

6. Construction of Kuranishi structure

6.1. Kuranishi structure with corners. We first quote the following definition from [10, A2.1.1-
A2.1.4], which is a slight modification of [9, Definition 5.1].

Definition 6.1 (Kuranishi neighborhood). Let M be a Hausdorff topological space. A Kuranishi
neighborhood (with corners) of p € M is a 5-uple (V,,, E,,T'p, ¥p, sp) such that

(1) Vj, is a smooth manifold (with corners), and E, is a smooth vector bundle on it.

2

(2) Ty is a finite group which acts smoothly on E, — V).
(3) sp is a I'p-equivariant continuous section of E,.
(4) ¥

4 51(0) = M is a continuous map which induces a homeomorphism from s,1(0)/T) to a

nezghborhood of pin M.
We call E, the obstruction bundle and s, the Kuranishi map.

The following equivalence relation is weaker than the one in [9, Definition 5.2], so the resulting

equivalence class is larger.

Definition 6.2. Let M be a Hausdorff topological space. Two Kuranishi neighborhoods (with corners)
Vip, E1p: Tip, Y1p, s1p) and (Vap, Eo 5, To p, 102 p, s2.p) of p € M are equivalent if

(1) dimV; p — rankFE; , = dim V5, — rankEs , = d.

(2) There is another Kuranishi neighborhood (with corners) (Vy, Ep, L'y, ¥y, sp) of p such that dim V,,—
rankF), = d.

(3) There are homomorphisms h; : I'; , = T'), fori=1,2.

(4) Fori=1,2, there is a I'; p-invariant open neighborhood V; of 1/)2_7231 (p), an h;-equivariant embed-
ding ¢; : Vi =V, and an h;-equivariant embedding of vector bundles ¢; : E; plv, — E, which
Covers @;.

(5) b; o Sip=8po¢; fori=12.

(6) Yip=1ppo; fori=1,2.

In this case, we write (Vip, E1p,T1p, V1p,51p) ~ (Vaps E2p, Lo p, 25, 52.p)
The following definition is a combination of [10, A2.1.5-A2.1.11] and [9, Definition 5.3].

Definition 6.3 (Kuranishi structure). Let M be a Hausdorff topological space. A Kuranishi structure

(with corners) on M assigns a Kuranishi neighborhood (or a Kuranishi neighborhood with corners) (V),
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L'y, ¥p, sp) to each p € M and a 4-uple (qu,quq,qﬁpq,hpq) to each pair (p,q) where p € M,q €
Yp(s,1(0)) such that

1

2

pq s an open subset of Vy containing 1, L(q).
pg 18 a homomorphism L'y — I'p.

3 ¢pq Vg — Vi is an hpq-equivariant embedding.

5 (Z) o sq = 5p 0 Ppq-
6) g = Vp © bpg-
7) Ifr e ¢q( L0) NV}y), then ngbpq o gZ;qr = QASPT in a neighborhood of 1,1 (r).

LV

(2) h

(3)

(4) ¢pq : E. \qu — E, is an hpq-equivariant embedding of vector bundles which covers ¢pq.

(5)

(6)

(1) If

(8) dim Vj,—rank E, is independent of p and is called the virtual dimension of the Kuranishi structure

(with corners).

(Vz,,q,quq,qbpq,hpq) is called a transition function from (Vy, Ey, Ty, g, s¢) to (Vp, Ep, T'p, ¥p, sp).

Remark 6.4. Let M be a Hausdorff space with a Kuranishi structure with corners

K= {(Vp»EpanvavSp) :p €M, (V}qva’pqaﬁbma hpq) 1 q € tﬁp(S;l(O))}

of virtual dimension d. Let OM = UpeM@Z)p(S;l(O) N IVy), where 0V}, is the union of corners in V).
Then

K = {(8%7 Eplov, Ty, by, sp) - p € OM, (0Vg, bpgs bpgs hpg) : 4 € ¢p(3§1(0) N 8Vp)}

is a Kuranishi structure with corners of virtual dimension d —1 on OM.

Definition 6.5. Let M be a Hausdorff topological space. Two Kuranishi structures

Ki = {(Vl,val,vava¢l,pv Sip) i p €M, (Vl,pqvﬁglmq’@bl,pqv hipg) 1 q € wlm(sié(o))}
and
Ko = {(lev Eop, Do, thop, s2p) 1 p € M, (Vapg, ¢§2,pq’ $2,p9, h2,pq) : G € ¢2,p(5ié(0))}
on M are equivalent if there is another Kuranishi structure
K= {(‘/b?Evap?wpvsp) ipe M, (V}?qﬂ;pqvqﬁpw hpq) 1 q € wp(s;;l(o))}
on M such that for allp € M, (Vi p, E1p,T1p, V10, 51p)s Vop, E2p,T2p, V2, 82,p), and (Vp, Ep, Ty, 1y,

sp) satisfy the relation described in Definition 6.2. In this case, we write ICq ~ ICs.

Let (Vy, Ep, Ty, 1p, sp) be a Kuranishi neighborhood (with corners) of p. If s, intersects the zero
section of F, transversally, then M, = s, 1(0) is a smooth submanifold (with corners) of V,, of dimension

dim V,, — rankE,, and there is an exact sequence of smooth vector bundles
~ ds
0— TMp — T%’MP = EP‘MP

- - d
over Mp. In particular, M) is equivalent to the two term complex [T'Vp|y; = B, §1,) @s an element

of the Grothendieck group KO(M,).
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Both TV, and E, are I'j-equivariant vector bundles over V},, so TV, /T, E, are orbibundles over the
orbifold (with corners) U, = V,/I',. We call TU, = TV,,/I", the tangent bundle of the orbifold (with
corners) Uy, and TM,, = TM,/T, is the tangent bundle of the orbifold (with corners) M, = M,/T,.

In general, Mp might be singular, so TMp does not exist. Nevertheless, Mp is a topological space,
and KO(M,) makes sense. We define

Vir 77 ds v
TN, = [TVl % Byl ) € KO(L,)
to be the virtual tangent bundle of Mp, and
vir ds
"My, = [TUP‘Mp — (Ep/rp)‘Mp]

to be the virtual tangent bundle of M,,. We have TV X, = T'M, and T"* M,, = TM,, when s, intersects
the zero section transversally. The transition functions (Vj, quq, ®pqs hpq) in Definition 6.3 enable us
to glue TVirMp to obtain the wvirtual tangent bundle TV M of the Kuranishi structure on M.

det TV, @ (det E,) ! glue to a real line orbibundle det(TV* M), the orientation bundle of the Kuran-
ishi structure (with corners). It is a real line bundle if the action of each I'y on det TV, @ (det E,) ! is
orientation preserving. We say a Kuranishi structure is orientable if its orientation bundle is a trivial
real line bundle. If £ and K’ are equivalent Kuranishi structures (with corners), then K is orientable
if and only if K’ is orientable.

In the ordinary Gromov-Witten theory, there is an algebraic approach to define Gromov-Witten
invariants when the target is a smooth projective variety [7]. In the algebraic approach, the moduli
of stable maps is a Deligne-Mumford stack, which is locally étale covered by affine schemes. In

Definition 6.3, s, 1(0) is the analogue of an affine scheme — an affine scheme is the zero locus of

-1
p

The moduli space of stable maps admits a perfect obstruction theory, which is an element in the

polynomials, while s7*(0) is the zero locus of smooth functions.
derived category locally isomorphic to a two term complex of vector bundles [E_; — Ep]. Given a
perfect obstruction theory, the wvirtual dimension is defined to be rank Ey — rank 1, and a virtual
fundamental class of the virtual dimension can be constructed. The two term complex [TV, ¥, s
Ep|yz,] is the analogue of [EY — EY4].

A Kuranishi structure can be viewed as the analytic counterpart of a Deligne-Mumford stack to-

gether with a perfect obstruction theory. We will show that
Theorem 6.6. My 1) (nm)(X, L | 8,7, 1) has a Kuranishi structure of virtual dimension
p+ (N =3)(2-29—h)+2n+m' +- +mh

where 2N is the dimension of X. The Kuranishi structure is orientable if L is spin or if h =1 and L

is relatively spin, i.e., L is orientable and wo(TL) = ol for some a € H*(X,Zs).

6.2. Stable W*P? maps. Let (X,w) be a compact symplectic manifold together with an w-tame
almost complex structure J, and let L be a compact Lagrangian submanifold of X as before. To

construct a Kuranishi structure on M(g,h),(n,m) (X,L | 8,79,u), we need to enlarge the category of
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stable maps. We first specify metrics on the target (Section 6.2.1) and on the domain (Section 6.2.2)
which enables us to define norms on relevant Banach spaces. The definition of stable W*P? maps is

given in Section 6.2.3. The virtual dimension in Theorem 6.6 is computed in Section 6.2.4.

6.2.1. Metric on the target. Let gy be the Riemannian metric on X defined by go(v, w) = $(w(v, Jw)+

w(w, Jv)). We will modify gy to obtain a Riemannian metric g; such that L is totally geodesic w.r.t.

g1.

Lemma 6.7. Given a Riemannian vector bundle (V, h) over a compact Riemannian manifold (M, g),
there is a Riemannian metric g on the total space of V' such that

(1) For any x € M, the restriction of g to the fiber V,, over x is h(x).

(2) The zero section ig : (M, g) — (V,g) is an isometric embedding.

(3) io(M) is totally geodesic in (V,§).

Proof. Let w: V — M be the canonical projection. Choose a connection on V' which is compatible
with h. This gives a decomposition TV = 7*V & H, where H = 7*TM. Let x € M, w € V,, so
that (z,w) € V. Given & € T(z,w)V, there is a unique decomposition § = &, + &, where §, € TV,
and &, € H. Define a quadratic form Q on T(, )V by Q(&,8) = h(x)(&v, &) + 9(x) (e (En), m(&n))-
Then @ determines an inner product g(z,w) on T(; ,,)V. g is a Riemannian metric on V' which clearly
satisfies (1) and (2).

For (3), let xg,x1 € ig(M) be close enough such that there is a unique length minimizing geodesic
v :10,1] — (V, @) such that v(0) = zg, (1) = x;. It suffices to show that this geodesic lies in ig(M).
We have

() = /97(7’ V)t

1
_ /0 (7o) (Vo 7l) + g(m 0 7) (w0 7Y, (w0 )))dt

1
> /Ognow (07, (mor)))dt

1
= / (ipomony), (ipomory))dt

— Uligomon),

o

The equality holds since « is length minimizing. Hence v, =0, and vy =igomo~v:[0,1] — L. O
The Riemannian metric gg on X gives an orthogonal decomposition
TX|,=TL® Nyx,

where N7,/ x is the normal bundle of L in X. Let exp? denote the exponential map TX — X determined
by go. For R > 0, let Br(T'X) denote the ball bundle of radius R in T'X. There exists R > 0 such that
exp’ maps Br(N, /x) diffeomorphically to its image in X. For r < R, let N;(L) denote the image

of B, (N, x) under exp’. We have a diffeomorphism G : Nr(L) — BRr(Np,x) which is the inverse of
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exp | Br(Ny,x)" Then we could construct a Riemannian metric g on N,y as in Lemma 6.7. Let x be
a smooth cut-off function defined on X such that y =1 on N% (L) and x =0 on X — N% (L). Define
91 =xG*g+ (1 —x)go on Nr(L). Then g1 = go on Ngr(L) — N%(L), so g1 extends to a Riemannian
metric on X such that g1 = go on X — Nr(L) and on T'X ..

X is compact, so there exists some constant Cy > 0 such that Cj 1go < g1 < Cygg. The C°
topology (Definition 5.5) defined by g¢; is equivalent to that defined by gg. From now on, all the

parallel transports, exponential maps, and norms are defined by ¢; instead of gy.

6.2.2. Metric on the domain. Let A = [(£,B;p;a’,...,d")] € M(gp),(nm), and let Mg p) inmy (X, L |
8,9, it)a denote the fiber of

F 2 M (g 1), ()X, L | 8,7, 1) = Mg 1y (nm)

over \. Choose a Hermitian metric h on Yc which is compact, flat near nodes, and invariant under
the antiholomorphic involution o : £¢ — X¢. Let h be the restriction of i to ¥. Then the border

curves of 3 are geodesics in the Riemannian metric determined by h. We further require that

(1) If s is an interior node, then there is an isometric holomorphic embedding B.(r) — C2%, where

C? is equipped with the standard metric, such that the image is {(x,y) € C? | zy = 0,]z| <

&yl <e}.
(2) If s is a boundary node of type H, then there is an isometric holomorphic embedding B¢(r) —
C?/A, where A(z,y) = (,7), such that the image is {(z,y) € C? | zy =0, |z| < ¢, |y| < €} /A.

(3) h is invariant under Aut p.

We call such a Hermitian metric an admissible metric.
6.2.3. W*P maps and C* maps.

Definition 6.8. Let ¥ be a prestable bordered Riemann surface. A continuous map u : (3,0%) —
(X, L) is a W5P map on X if i = uor : (£,9%) — (X, L) is of class W*P in the sense of [31, Appendix

B|, where T : 3 — X s the normalization map.
In the above definition, we assume that kp > 2, so the embedding W*?  C° is compact.

Definition 6.9. A prestable WP map of type (g, h) with (n,m) marked points consists of a prestable
marked bordered Riemann surface of type (g, h) with (n,m) marked points (X,B;p;q',...,q") and a
prestable W5P map u : (3,0%) — (X, L).

Definition 6.10. A morphism between prestable W*P maps of type (g, h) with (n,m) marked points
(Z,B;pid’, ..., q"u) = (3,Bp5(d), ..., (d)" )

is an tsomorphism
¢:(Z,B;pia',....q") = (X, B;p(d) ..., (@)")

between prestable bordered Riemann surfaces of type (g, h) with (n,m) points such that u = u' o ¢.
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Definition 6.11. A prestable WP map of type (g,h) with (n,m) marked points is stable if its

automorphism group is finite.

C' maps and stable C! maps are defined similarly.

Let W(k b B, (X L|B,9,u),C ( ,L| 3,7, 1) be the moduli space of isomorphism classes
of stable W, Cl maps of type (g, ) Wlth (n,m) marked points satisfying the topological conditions
as in the definition of M (g0, () (X L | 8,9, 1), respectively. There are maps

k7 R N —~
FP W(gzl;l) (n, )(X> L | 67'77#) — M(g,h),(n,ﬁi)

and
1. Al - v
C" 2 Clg ) iy (X L | By, 1) = Mgy (i)
given by forgetting the map. Recall that forgetting the map also gives

F = Mg nmy (X, L | 8,9, 18) = Mg ) (min)-

Given \ € M(g,h),(m,n)? let M(g,h),(nﬂﬁ)(X’L | Ba’?a /‘L)A, W@ﬁb),(n,ﬁ)(X’L | 5777 M))\a C(g h),(n, (X L |

B,7, 1) denote the fiber of F', F*P F! over A, respectively. From now on, we will write

M, = M(g,h),(n,rﬁ) (X) L ’ /67:};7 N)A

k, k, 5
WX = Wighy oo (Ko L1 BT 1)

Cﬁ\ = Cé%h)’(n,m)()g[/ | /675;7/1'))\

for convenience.
Let exp denote the exponential map of the Riemannian metric g; on X, and let h be an admissible

metric on Y. For a stable W*? map u on A and € > 0, define
U (u, €) = {exp, (w) | w € WHP(S,05,u*TX, (ulgs)* TL), || w [lyss< €},

where WHP(S, 0%, u*T X, (u|ss)*TL) will be defined in Section 6.2.4, and the norms are defined by
g1, h. Similarly, for a stable C* map u on X and € > 0, define

U'(u,€) = {exp, (w) | w € C'(S,0%5,u*TX, (ulon) TL), || w [|c1< €},

where CH(X, 0%, u*TX, (u|ss)*TL) will be defined in Section 6.2.4. Note that exp,(w)|ss C L since
L is totally geodesic w.r.t. g;. Then

{U"P(u,€) | uis a stable W*? map on X, e > 0}
generate the W5P topology on W)lf P while
{U'(u,€) | uis a stable C' map on \, e > 0}

generate the C! topology on Cﬁ\.
Define

WEP(u, €) = {w € WHP(S, 08, w'TX, (ulos) TL) | || w |yprn< €}
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and
Cl(u,e) = {w € CB, 0%, u*TX, (ulps)*TL) | | w||ci< €}
For sufficiently small € > 0, w — exp, (w) gives

UPP(u,€) = WHP(u, €) /Aut(\, u)

and

Ul(u, €) = Cl(u, €)/Aut(\, u).
Therefore, Wf P and C’lA are Banach orbifolds. They are Banach manifolds if Aut) is trivial. M) is
contained in both Wf P and C} since stable maps are C*° ([17, Theorem 2.1]).

6.2.4. Virtual dimension. Let p = [(X,B;p;q',...,q"u)] € My. Let C1,...,C, be irreducible com-
ponents of ¥ which are (possibly nodal) Riemann surfaces, and let ¥,...,%,, be the remaining
irreducible components of ¥, which are (possibly nodal) bordered Riemann surfaces. Let C; denote
the normalization of C; for i = 1,...,v, let i],-z denote the normalization of ¥; for ¢/ =1,...,7/, and

7:3 — ¥ be the normalization map.

Let r1,...,7, € X° be interior nodes of 3}, and s1,...,s;, € 9% be boundary nodes of . Let p; € )y
be the preimage of p; under p for j = 1,...,n, ¢ be the preimage of ¢;; under 7 for j' =1,...,m,
Tas Tly+a D€ the preimages of r, under p for o =1,...,1lp, and 5/, 3, 4o+ be the preimages of s,/ under
Tforad =1,...,1.

Set & =wuo7r. Then @ : (3,0%) — (X, L) is J-holomorphic. For [ > 1, let
Cl(2, 0%, 4*TX, (1] 5)*TL)
denote the vector space of C' sections of 4*TX with boundary values in (i|ys)*TL. Then

oz, ai, W*TX, (4],5)*TL)

V/

=1

Let CY(%, 0%, u* T X, (u\@g)*TL) be the kernel of

lo I
CH2,0%, 4" T X, (il y5)'TL) — P T, X P T, L
a=1 a’'=1
s+ ({8(70) = 50y 4a) Yo {5(80r) = ()b )
and set
CY(2, A"y @ u'TX)
v

= PG A @ (il ) TX) o @ (B, A Sy @ (dlg, ) TX)
=1 =1

I/l

The linearization of 0 sx at the map u gives rise to operators

CH(C, (], "TX) = C'HCi, A Gy @ (0, ) TX), i=1,...,v,
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CH(Sy, 0%y, (g, )*TX, (dlys )" TL) — C'7 1Sy, AY' Sy @ (afg ) TX) i’ =1,...,V,

il

and give the operator
Dy : CY(2,05,u*TX, (ulpg)*TL) — C' (2, A%Y @ w'TX)
Similarly, we have the operator
Dy : WFP(S, 0%, ' T X, (ulps)*TL) — WFLP(2, AMS @ u*TX).
The following proposition is proved by a straightforward computations.

Proposition 6.12. Let V be a connection on TX. Then

1

Dy(§) = - (V&odu+ JoVEoduoj+VeJoduoj+T( du)+ JT(, duo j))

N |

where T'(v,w) = Vyw — Vv — [v,w] is the torsion of V.

Lemma 6.13. Let X be a smooth bordered Riemann surface of type (g,h), and u : (X,0%) — (X, L)
be a J-holomorphic map. Then

Dy : C®(%,0%,u*TX, (ulpx)*TL) — C®(2,A"'Y @ u*TX)
is a Fredholm operator of index p+ N(2—2g—h), where p = p(u*TX, (ulgn)*TL), and 2N = dimg X .
Proof. Let V be the Levi-Civita connection. V is torsion-free, hence by Proposition 6.12,

(V€odu+ JoVEoduoj+VeJoduoj).

N =

Dy (§) =
We have D, = D" + R, where
D" = %(Vfodu%— JoVE&oduoj)
RE) = =3Veloduoj

D" defines a holomorphic structure on w*T'X such that D” = §. By [24, Theorem 3.4.2], D" is a
Fredholm operator of index u+ N(2—2g—h). R is a compact operator, so D,, = D" 4+ R is Fredholm
of index pu+ N(2 —2g — h). O

Proposition 6.14. Let u: (X,0%) — (X, L) be a prestable map. Then
Dy : C®(%,0%,u*TX, (ulpx)*TL) — C®(2, A"'Y @ u*TX)
is a Fredholm operator of index p+ N(1— g), where p = pu(u*TX, (ulgx)*TL), and g is the arithmetic

genus of Xc.
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Proof. We use the above notation. Set
CO — %%
Cl = %%

(3,05, w*TX, (ulox)*TL)
(%,
G} = C®(Ci (ilg,)'TX)
(Ci
(2
(5

AMY @ u*TX)

Cl = C®(Ci, A% Ci® (i) TX)
Cp = C®(8y,0%, (il )'TX, (ilyg, ) TL)
Cy = C®(Sy, A3y @ (alg )TX)
where i = 1,...,v,4 =1,...,1/. The linearization of d;x gives rise to Fredholm operators D; : C? —
Clfori=1,...,vand Dy : CY) — C} for i’ =1...,v/. We have the following commutative diagram:
0 o DL Py, C) — DL T XOoPL_ T, L — 0
o | d I
0 ol ®_, Clod@)_ C) — 0 — 0

where D = @Y_, D; ® @"_, Dy, and the rows are exact. So D, is Fredholm.

Given a Fredholm operator D, let Ind(D) denote the virtual real vector space
Ker(D) — Coker(D),
whose dimension
dim Ind(D) = dim Ker(D) — dim Coker(D)

is the Fredholm index of D. With the above notation, we have

/

dim Ind(D Z dim Ind(D;) + Z dim Ind(D;/) — 2Nly — Nl;.
=1

Suppose that C; is of genus ¢;, and 3 is of type (gir, hi). We have
dimInd(D;) = 2deg((iil¢ ) TX) + 2N (1 — gi),
dimInd(Dy) = ,u((ﬂ|2i,)*TX, (maii,)*TL) + N(2—2gy — hy),

where the second equality follows from Proposition 6.13. X¢ has 2lg + [ nodes and 2v + v/ irreducible

components
Cl: .. '7CV7 6_'17 SRR C_1117 (EI)C; ceey (ZV’)Cv

where the genus of (f],/)(c is gir = 29y + hy — 1, so the arithmetic genus of X¢ is

V/

14
g o= 2> G+ gpt2do+h—2w—1+1
=1 i'=1

= 23 @ -+ Y20 +hi —2) + 200+ 11 + 1
: et
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by [18, (3.1)]. Finally,

l/l

j= u(wTX, (ulos) TL) =23 deg((ile,)'TX + Y pllils, ) TX. (ilyg)TL).

i=1 i'=1 !
We conclude that
dimInd(D,,) = p(u*'TX, (ulgs)*TL) + N(1 — g).

Remark 6.15. Corollary 6.14 remains true for
Dy : WEP(S,0%, u*TX, (u|os)*TL) — WFIP(2, AMY @ w*TX)

Dy : CY(2,05,u*TX, (ulpg)*TL) — C' (2, A%Y @ w'TX)

Set £° = C°(X,AMY @ u*TX) for u € C5°. The £ fit together to form a Banach orbibundle
EY — CF°. There is a section s; : CF° — £3°, defined by u 5J’EU , and M) is the zero locus of
s7. If A has no nontrivial automorphism, then C5° is a Banach manifold, and £3° — C§° is a Banach
bundle. In this case, if M) is nonempty and D, is surjective for all u € M), then M) is a smooth
manifold of dimension p+ N (2 —2g — h) by the implicit function theorem. We call y+ N (2 —2g —h)
the virtual dimension of M. In general, M) is singular, and the actual dimension of M) can be larger
than the virtual dimension.

The dimension of M(g,h),(n,ﬁi) is 6g + 3h — 6 + 2n +m! 4 --- + m”, so the expected (or virtual)
dimension of M(g’h)7(n,7ﬁ) (X,L|B,9,p)is

p+(N=3)(2-29—h)+2n+m' +---+mh,

which is the virtual dimension of the Kuranishi structure on M(g’h)’(mm) (X, L|B,9,n).

Similarly, we have
l l el l
(C/')\_>C>\’ SJ.C’/\—>5)\,
k,p k,p . kp k.p
EA *)W/\ s SJ.W)\ 4)5)\’
and M), is the zero locus of s; in the above spaces.

6.3. Deformation of the domain. Let

p=[(2,B;p;d',...,q"u)]

be a point in My p) (nm) (X, L | 8,7, ). We have seen in Section 3.3 that the infinitesimal deformation

of the domain
A=[(Z,B;p;q’,...,q")]

is given by
H

p,domain — @ Wz S @ Wi’ S @ Va S @ Va—’/—,
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where

W, = Hl(CA’Z-,TC,Z_(—Dyi ),

Wy = H'Sw, 0%, Tg (—pf = =1, ) Tos (=61 — - = d,);
V., = T,A,ai@T%Mi)g(C,
Vo = T3,050Ts , 08 =R,

12

v [0,00) C Vi

are defined as in Section 3.3. f/oj? is only a semigroup, while the others are vector spaces. Set

v v
Hp,deform = @ VVZ ©® @ Wi/
=1 =1

lo
Hp,interior = @ Va
a=1
_ 1t 7+
Hp,boundary = ‘/1 X X ‘/ll
Hp,smooth = Hp,interior X Hp,boundary

Then H), geform corresponds to tangent directions of the stratum to which A belongs, while H, ¢00th
corresponds to normal directions to this stratum. Hpnterior corresponds to smoothing of interior
nodes, and H poundary corresponds to smoothing of boundary nodes.

Let (Aut \)o denote the identity component of Aut A. (Aut \)g is a normal subgroup of Aut A, and
the quotient Aut’A = Aut A/(Aut )y is a finite group. Aut A acts on Hp deform, and (Aut\)y acts
trivially, so Aut’\ acts on H, geform-

We choose an admissible metric h on ¥ in the sense of Section 6.2.2. Let ¢; be a small positive
number, and define N, (¥), K, (X) as in the paragraph right before Definition 5.5. Then N, (X),
K., () are invariant under Autp. We may choose a subspace H of the space of smooth Beltrami
differentials such that the elements in H vanish on N, (¥), and the natural map H— H p,deform 18 an
isomorphism. We may further assume that H is invariant under the action of Aut’p, so that Aut/p
acts on H and the isomorphism H—> H p,deform 1S Aut’p-equivariant. From now on, we will identify H

with Hp,deform-

6.3.1. Deformation within the stratum. Let j(£) be the complex structure on ¥ determined by £ € H,
and let ¢ o) be the prestable bordered Riemann surface corresponding to (3,5(£)). In particular,
j(0) is the original complex structure j on X, and X o) = 2. Set

Aeoo) = (Seo0):Bipsal,....q").
Let K000 © Zie,0,0) = 4 be the identity map. Then

(1) K(£,0,0) © A£,0,0) — Als astrong deformation in the sense of Definition 4.8. k(¢ 0,0) : L(£,0,0) = X
is a homeomorphism.

2) = (Kihgy) 3(6) on Ny (%),
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3) 17— </<c(_£0’0)) J(&) llo=(r., (2))< Cl€], where [¢] is the Weil-Petersson norm of the Beltrami

differential £.

Note that any two norms on H), geform are equivalent since H), geform is finite dimensional. Let
Bs, C Hp deform be the ball of radius d2 > 0 centered at the origin. From the above discussion, we see
that there is a family of prestable bordered Riemann surfaces of type (g, h) with (n,7:) marked points

{Ne0,0) | € € Bs,}. More precisely, we have
(m:C — Bgz;s;tl,...,th),

where s = (s1,...,8,), t' = (£, ... ,tini), and a contraction x : C — X. Diffeomorphically, C = Bs, x %,
7 is the projection to the first factor, x is the projection of the second factor, s;, t}; : Bs, — C are
constant sections corresponding to marked points p;, qli, respectively. Holomorphically, 7r_1(§) =
2(€,0,0)-

Let wp be the volume form on 3 determined by h. Then wp is a Kahler form. Let h( ) be the
Hermitian metric on ¥ o) determined by “?5,0,0)‘*’0 and j(§). Then ) is an isometry near the
boundary and nodes, so Iy o) is an admissible metric on 3¢ g )-

There is a map i : Bs, — Mg p) (nsm), given by & = A o0). Given e > 0, there exists d2 > 0
such that i(Bs,) C U(, €1, €2), where U(\, €1, €2) is the neighborhood of X in M(g,h),(nm’i) in the C*

=

topology defined in Definition 5.6. i(Bs,) is a neighborhood of A in the stratum of My s (n.m) to
which A belongs.

6.3.2. Smoothing of interior nodes. Let s be an interior node of ¥, and let i : B, (s) — C? be a
holomorphic isometry such that i(Be, (s)) = {(x,y) € C? | 2y = 0,|z| < €1, |y| < e1}. Let 51,50 € &
be the preimages of s under 7 : PIES 3} Up to permutation of sq, s9, there exist unique e; € Tsli,
es € T, such that (io7).(e1) = (1,0) € C2, and (io7).(e2) = (0,1) € C2.

Given v € Tslf] ® Tszﬁl, we have v = te; ® ey for some t € C. Suppose that t = r2e'®, where
0 <r < 5. Let ¥ be the bordered Riemann surface obtained from X by replacing

Beo={(z,y) € C* |2y = 0,]z| < e1,[y| < er}
with
Bey = {(x,y) € C* |zy =t |2 <1, Jy| < e}
More precisely, B, ; is obtained by identifying
c=re?c{zeCllzl=r}c{zeC|r<|z <e}

with
¢ .
527’62(‘;3_9)6{316@\ lz|=r} C{yeC|r<|yl <el

There is a strong deformation
r2
— < ‘$| <€ p— Beho

t
(o)
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given by

t 212 .
Kt (x, x) = (X(|;| )x,()) ifr <|z| <e
2 r’
(0 x(| & )%) if —<|z|<r
€1
where x : R — [0, 1] is a smooth function such that
(1) 0<x'(s) < 1.
(2) x(s) =0 for s <1.
(3) x(s) >0 for s > 1.
(4) x(s) =1 for s > 4.

Lemma 6.16. Let f,g be smooth functions on C such that f(0) = ¢(0). Let F be the continuous
function on {z € C | g < |z| < e1} defined by

Then F' is smooth.

Proof. The lemma follows from

(1) Both hi(z |f} =g <X(‘ G 2)£> are smooth for g <|z| < €.

z

(2) The derlvatlves of hy of any order vanish when |z| = r, and the same is true for hs.

O

Let A(r, R) denote the annulus {(u,v) € R? | 72 < u? 4+ v? < R?}, and let (r, R) denote its interior.
Let Dg denote the closed disc {(u,v) € R? | u? +v? < R?}.

Lemma 6.17. Let f, g, F be defined as in Lemma 6.16. Define h : (g, €1) = C by h(u,v) = F(u+iv).
Then
?la;)lh! = max{max|f|,max|g|, }

max |Vh|
A(5,2r)

IN

Qﬁmax{max\f'],élm&ﬂg/’}’
D27" DQT‘
where |Vh|? = |hy|? + |hy|?.

Proof. We have

FOEE) (u+iv))  if r2 <u? + 0% < €,

t

h(“?”) = 2 I
9<X(m)m) if :—% <u? 40?2 <r?

thus
h| = .
sup |h| max{me;:df],mz;rx]g\}

A% 2r)
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We also have
FOCCEEE) (u 4 i) (x (522 28 o (242 i£72 < u? 402 < eg,
hy(u,v) = T2 5 )

2
g/(X(u2+vz ) ujiv)(xl(uélvz ) (ugivlé)z uiiv - X(uzrﬂp ) (u+tiv)2) 1f T <u? +0v? <r?

and hy(u,v) = 0 for u? + v? = r2, hence

sup |hy| < max{9max|f\ 36max\g |.}
A(52r) Doy Do

Similarly,

sup |hy| < max{9max]f\ 36max\g |.}
A(5,2r)

g

In particular, let (f(z),g(y)) = (z,0),(0,y). We see that k; is smooth as a map to C2. x; is a
diffeomorphism when |z| # r, and x; *(0,0) = {(z,L) ] |z| =r}. Choose a Hermitian metric h¢ on
B, + such that it is induced by inclusion in C? on B, and k; is an isometry outside B3, ;.

We now have a family of prestable bordered Riemann surfaces of type (g,h) with (n,m) marked

points
_ | h
)\t — (Etanpaq yeer )
together with a family of admissible metrics hy on ¥; such that

(1) There are strong deformations k¢ : Ay — A such that on K3,.(X), where 7 = /||, ;! is defined
and is an isometry.
(2) j= (m;l)*jt on K3,(X), where j; is the complex structure on %;.
Let De2 g = {ter®es | [t] < /9} C Ty, 2 ®T,,%. The map Degjg — M(g,h),(n,'rﬁ) given by tej ®ey —
At defines a parametrized curve in M (g,h),(n,17) whose tangent line at Ao = A is T512®T52f] C Hp interior-
Let n = (v1,...,v,) € Hpinterior, where vy € Vi, = Tmi@’TnOMi- Applying the above construction

to each interior node on ¢ ), we obtain

Aeno) = Cen0 Bipid' o a).
Given 0 < dy,...,dy, < €2/9, let D(dy,...,d;) denote the polydisc Dy, x ... x Ddzo in Hp interior,
where D, is the disc of radius d, centered at the origin in V,,. We have a family

(m:C— Bs, x D(dl,...,dlo);s;tl,...,th)

of prestable bordered Riemann surfaces of type (g,h) with (n,7) marked points together with a
family of admissible metrics hy ;. 0) on X¢ ;) 0). There is a contraction  : C — X whose restriction to

a7l n) = A(g.n0) 18 a strong deformation kg . 0) : Ae,n,0) — A such that
(1) Ii(;n’()) is defined on K \F( ), and Fe g 0) © F(£,00) Is an isometry on K, \/m(z(&O,O))‘
@) 17 = (ridh)) 36 leweamn= 5= (5iae) I lowr, < CIEl, where j(€n) is

the complex structure on ¢, o).
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6.3.3. Smoothing of boundary nodes. Let s be a boundary node of ¥, and let i : B, (s) — C? be a

holomorphic isometry such that
i(Be,(5)) = {(z,y) € C* | 2y = 0, |z| < €1,]y| < e1,Imz > 0,Imy < 0},

Let s1,s2 € 3 be the preimages of s under 7 : DI 3 Up to permutation of si, so, there exist
unique ey € Ty, 3, ey € Ty, Y such that (i o7).(e1) = (1,0) € C2, and (i o 7).(e2) = (0,1) € C2.

Given v € Tslaf] ®T328f), we have v = te; ® e for some t € R. We construct A; as in Section 6.3.2.
We have seen in Section 3.3 that there is topological transition when ¢ changes sign. We may assume
that A\ € ]\Af(g’h),(n,ﬁ) for t > 0.

Let ' = (v],... ,vgo) € H,boundary; Where v/, € Vojf Applying the above construction to each
ey a0d Ag . Given 0 < dy, ..., d) < €2/9,let D'(dy, ...,
dy,) = [0,d}) x ... x [0,d) ) C Vi x...x V. We have a universal family

boundary node on ¥, o), we obtain 3

(r:C— Bs, x D(dy,...,d;,) x D'(dy, ..., 21);s;t1,...,th)

of prestable bordered Riemann surfaces of type (g,h) with (n,7) marked points together with a
family of admissible metrics h¢ , ) on ¢, ). There is a contraction x : C — X whose restriction
to 7 1(&,m,1) is a strong deformation ke, ) ¢ gy — A such that

(1) lﬁ(_é%n’n/) is defined on K, |n\+|n’|(2)’ and K(_;nm’) 0K (¢,0,0) 18 an isometry on K, \n|+\n’\(2(5’070)>'

@) 115 = (5@ 7 e < CIEl

If we embed ¢ in a complex projective space PV, then K(¢may) © T is smooth as a map to PV,

where 7 : f](gmml) — X is the normalization map.

&nm’)
Given €1,eo > 0, choose d2 as before. Suppose that both max{\/|da| | @« = 1,...,lp} and

max{\/|d,|| &' =1,...,11} are less than &. Then the image of the map

it Bs, x D(dy, ... dy) x D'(d},....d},) — Mg p) n)

given by (£,7,1') = Ay lies in the neighborhood U(A, €1, €2) of A in the C*° topology.

6.3.4. Action of the automorphism group. We write Dy for D(ds, . ..,d;,) and Dy, for D'(dy, ..., d; ).
In this section, we study the action of Aut A on Bj, x Dy x D/, and the universal family over it.

We first consider deformation within the stratum. Let 7s, : Cs, — Bs, be the universal family,
so that 7r5_21(§) = A\¢g,o0,0)- Aut\ acts on By, by j(¢-§) = (¢=1)*5(€). Therefore, it acts on the the

universal family. Given ¢ € Aut A, we have the following commutative diagram:

052 L C52

oo l l”éz

¢
Bs, —— B;s,
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1 NN

FIGURE 19. ¥ = ¥

N2 ST IS A

LAY AT

Z(t,o) E(O,t)
FIGURE 20. X,y and X

¢ 1 Ne0,0) = Age00) IS an isomorphism. In particular, if ¢ € (Aut\)o, then ¢ : Bs, — Bs, is the

identity map, and we have the following commutative diagram:

6
A€0,0) T A0,

“(mml l"‘(g,o,O)

A2
We now consider smoothing of nodes. Let s, g 4 : Csy,a,0 — Bs, X Dg x D!, be the universal family,
so that W(S_Q}d,d/ (&m1") = Nemay)- Aut X acts on Dg x Dy by ¢ - (tey ® ez) = tp.eq ® duez. Given

¢ € Aut A\, we have the following commutative diagram

¢
Cos.d — Coy.d.a
Tso,d,d’ l J/ﬂéz,d,d’
¢

Bs, x Dg x D!, —— By, x Dgq x DY,

¢ Nema') = N@€.¢n,oy) 18 an isomorphism. For example, the prestable bordered Riemann surface
> in Figure 19 has two interior nodes. The smoothing of the two interior nodes is parametrized by
n = (m,m2). Let ¥, ,,,) be the corresponding bordered Riemann surfaces obtained by smoothing the
two interior nodes on 3.

Y. has an automorphism ¢ of order two which rotates Figure 19 by 180°. It acts on n by ¢-(n1,12) =

(m2,m1) and gives an isomorphism X, ..y — ¥y, n,) by rotating 180°. The case 72 = 0 is shown in

72,711
Figure 20.
6.4. Local Charts. Let

R | h.
p:[(E7B7p7q7"'?q ’u)]
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be a point in M(g,h),(n,'fﬁ) (X,L|B,79,u), as at the beginning of Section 6.3. Consider
Dy : WY (2,05, w*T X, (u|ox)*TL) — LP(Z,A%'Y @ u*TX)

for a large integer p. LP(3, A% Y@u*TX) is a complex vector space, but WP (X, 0%, u*TX, (u|sx)*TL)
is only a real vector space. Aut p acts on both WHP(X, 0%, u*T X, (ulss)*TL) and LP (X, A*' YLou*TX),

and D, is Aut p-equivariant.

Lemma 6.18. Let Im D,, denote the image of D,. We can choose a subspace E, of LP(Z, A%y ®
w*TX) such that

(1) ImD, + E, = LP(S,A"'S @ u*TX).

(2) E, is finite dimensional.

(3) Elements in E, are smooth sections supported in K¢, (X).
(4) E, is a complex subspace of LP(X,AMY @ u*TX).
()

5) E, is Aut p-invariant.

Proof. We claim that given o € LP(3, A%'Y @ u*TX), there exists g € WHP(Z, 08, u*T X, (u|os)*TL)
such that o = a — D, g has support in K, (). Actually, there exists ¢’ defined on N, (X) such that
D,g = a on Ny, (X). Let x be a smooth function on ¥ which is 1 on N, () and 0 on Ky, (). Let
g =xg on Ny, (X), and 0 on Ky, (X). Then o = a — D,g is supported in K, ().

By Corollary 6.14, we get a finite dimensional subspace E’ of LP(X,A%'Y ® v*TX) such that
ImD, ® E' = LP(2,A%'Y ® vw*TX). We may assume that £’ consists of smooth sections since any
section in LP(3, A»'YX ® u*TX) can be approximated by sections in C* (2, A®'Y ®u*TX). The above
claim shows that we may assume that all sections in E have compact support in K, (X). Let E, be

the smallest Aut p-invariant complex subspace which contains E’. Then E, satisfies (1)—(5). O

Let F, = LP(%, A0’12®U*TX)QE:‘, where EpL is the orthogonal complement of E, in L*(X, A®'Y®
u*TX). Then F, is a closed subspace of L?(3, A% S@u*T X), thus a Banach subspace of LP(, A% ¥®
wTX). F, 2 LP(S,A"Y @ u*TX)/E,. Let

T LP(S, A" S @u'TX) - F,

be the L2-orthogonal projection. By (1) wo D, is surjective. Multiplication by i preserves the L? inner
product, and (4) implies that F), is a complex vector space. The action of Aut p also preserves the L?
inner product, thus (5) implies that Aut p acts on F),, and moD,, : WP (2, 0%, u*TX, (ulps)*TL) — F,
is Aut p-equivariant.
Set Hj, map = Ker(m o D,). We have
dim H, map = pt+ N(1 — g) + dim E,,

where p = p(u*TX, (ulgn)*TL), 2N = dimg X, and ¢ is the arithmetic genus of ¥¢ as before.

The infinitesimal deformation of the domain is given by

v v
Hp,aut = @ Ui S @ Ui’y
=1 i’ =1
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where
Ui = HO(Ch T (i~ —ab)
O = HO(S0, 080, Ty, (—p} — =y ). Tps, (—af — ... =)

-/

U; = 0 if and only (CA'i,xil, -+, L ) is stable, and Uy = 0 if and only if (f]i/, (pzf, e ,p%,,), (qf,...,

ng

qﬁ;i, )) is stable.

Put A = (3, B;p;q', ..., qh) as before. Then H), .y is the tangent space to Aut A at the identity
map. u is nonconstant on unstable components, so ¢ € Aut A — w0 ¢! induces an inclusion of vector

spaces H aut C Hpmap. Let H ,’J,map be the L?-orthogonal complement of H paut i Hpmap. Set
Hp = Hp,domain x H ,maps

! !
Hp - Hp,domain X Hp,map'

With the above definitions, we are ready to state the main theorem of this section.
Theorem 6.19. Let H(g,h)y(n’m)(X,L | B,7,1) be equipped with the C*° topology. There are a
neighborhood V; of 0 in Hj such that Autp acts on V,, an Aut p-equivariant map s, : V, — E,
such that s,(0) = 0, and a continuous map 1, : 5;1(0) — M(g’h)’(n’m)(X,L | B8,9,p) such that

il(O)/Autp - M(g,h),(n,ﬁz)(X7L | 8,9, 1) gives a homeomorphism onto a neighborhood of p in
M(g7h)7(n7ﬁ’b)(X,L ‘ 67 ’77 :u‘)

(VF{, E,, Autp,1,,s,) is a Kuranishi neighborhood of p.

6.4.1. Pregluing: construction of approximate solutions. In this section, we will modify u near nodes

to obtain approximate J-holomorphic maps

Upy - (2(0777’77/), 82(0777777/)) — (X, L),

where the notation X, was introduced in Section 6.3.1, 6.3.2, 6.3.3 and will be used repeatedly
in the rest of Section 6.4.

We first consider a neighborhood of an interior node. We will follow the construction in [31,
Appendix A] closely. Recall that

Bel,t = {(x;y) € c? | xy =t, ‘ZC| < €1, ’y| < 61}'

t
Bel,t = { <.fL', >
T

2
where |t| = r?. We assume that r < .

When t # 0, we have

2
{L‘EC,<|IL‘|<€1},
€1

Let B, = {z € C | |z| < e1}. Two nonconstant J-holomorphic maps f,g : B, — X such that

f(0) = g(0) = p determine a stable map u : B¢, o — X defined by u(z,0) = f(z), u(0,y) = g(y).
DO http://dx.doi.org/10.30504/jims . 2020. 104185
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Suppose that the images of f, g are contained in the geodesic ball B, (x) with respect to g;, where 7
is the injectivity radius of (M, ¢g1). We define u; : B, + — X by

w (=) =ew, (0 (52 0 060+ () @) (1))

where x1 : C — [0, 1] is a smooth cutoff function such that

) 1, if|z|>2
A =
X 0, iflz]<1

Vxi| < 2

Then
u(0,t)=g(L) if= <zl < \[

z z

ut<z,t>= p 1fr\f§]z]§\f,
uw(z,0) = f(z) if 2y/r <|z| <er.

Define f;,g¢ : B, — X by

) = espy (30 (52 ) (om0
) = exp, (v () (exp) o0

flz) if2yr<|z|<e
p if [z < V7
gly) if2yr <l|z[ <e
9(y) = .
P if x| < /1
ft, g+ determine a map v; : B, o — X defined by v(z,0) = fi(z), v(0,y) = g:(y). Define Fy, F :
Be, — X by fi(x) = exp,(Fi(z)), f(z) = exp,(F(z)). Then F;(0) = F'(0) = 0, and

<

Then
fe(x) =

Lemma 6.20.

1
H Ft - F HWl‘p(Bel)S Cmax IVF”I“P7
By r
where C is a universal constant, and By ; = {z € C | |z] < 2\/r}.

Proof. Fy(z) — F(z) =0 for |z| > 24/r, and for |z| < 2./r,

R - F@) = [0 () - DF@I < 1P| < (s TPl

‘JW (Jr) Fr+x () v

—\F(m)| + |VF(z)| < 5max |VF|
VT Bavr
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The desired estimate is obtained by integrating over By /, and noting that r < 1. O

We embed (X, g1) isometrically in R! for some large I. Maps to X can be viewed as maps to R!, so

we may subtract one map from another, and define their L'? norms.

Corollary 6.21.

1
e = llwies,,)< Clmax [Vul)re,

where C' depends on the C*° norms of exp |B?"1(NL/X) and its inverse.

Lemma 6.22.
— 1
H a]ut ”LPS CT;

where C depends on the C* norm of u, the C' norm of J, the C™ norms of eXP|Br1(NL/X) and its

inverse.
Proof. For r < |z| < €1, we have

uy <Z, i) = fi(2),

thus dyus(z) = 0 for |z| > /r. For r < |z| < /7, we have
_ t _ _
s (2.2) = 008l2) =l = D))

Let z = x + iy, then

20;(fe — f) (8853)
of
= (7+J(ft)a—y—%— (f)@

P of P o
= %(ft*f)ﬂL(J(ft)*J(f))*+J(f)@(ft*f)Jr(J(ft)*J(f))afy(ft*f)

dy
s (52)
Cr(1+sup [J| +sup [VJ[|fy = FDIV(fe = )| + Casup VI fe = fIIV f]

C3(1 4+ sup |[J| + sup [V J|sup |V f|[2])|[V(fi — f)| + Cysup |[VJ|sup |V f||z| sup |V f|
Cs|V(fy — )| + Cslz|

INIA

IN

Similarly,

9(fi - f) ((fy) ] < G5V (fy — )] + Col

The case § < |z| < 7 can be estimated similarly. Therefore,
5 1 1
| Oyue |Lr< Cr(|| V(ve — ) ||po +v/r77) < Cre

where C' depends on the C'' norms of v and of J, C* norms of exp! | Bry( and its inverse. OJ
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We next consider boundary nodes. For t € [0, 00), define

B:E’t = {(z,y) € C? | zy = t, |z| < €1, |y| < e1,Imz > 0,Imy < 0}.
Then for t =12 > 0,
2
xe(C,r— < |z <61,Imx20}

2

-

B, = T, —
et " x €1

Let B = {z € C | |z] < e;,Imz > 0}. Let I, = B} NR, and I,; = B}, N R xR. Two
nonconstant J-holomorphic maps f,g : (Bf,I,) — (X, L) such that f(0) = g(0) = p determine a
stable map w : (B;,O,Iel,o) — (X, L) defined by u(z,0) = f(z), u(0,y) = ¢g(y). One can construct
u s (B 4, I i) = (X, L) and v, : (B, I, 0) — (X, L) as before.

61,0’

Applying the above construction to each node, we obtain

Upy! - (E(Omml), 82(0’,7777/)) — (X, L)
Upy ¢ (2,08) = (X, L)

Lemma 6.22 implies

Lemma 6.23.
_ 1
| gty e < C(|In| + |n']) 2

where C' depends on the C' norms of u and J, C* norms of exp |BT1 (NL/X) and its inverse.

The linearization of 0 s at the stable WP map Uy 18

Dy, s WY (2,05, 0] /TX, (vgylon) TL) = LP(S,A%' S @} TX).

> un,n

Lemma 6.24.

lim || D

(nm)—0 ' =l D ||

Proof. We have a bundle isomorphism
P() : ('LL*TX, (u‘ag)*TL) — (’U:;’n/TX, (Un,n"aE)*TL)

given by parallel transport along the unique length minimizing geodesic from wu(z) to vy, (2). This
also gives

P NS @uTX - A'S e, TX
and

Pl=moPioi: A @u'TX 5 NPT @ U;W,TX,
where i : A'Y @ u*TX — A'Y ® w*TX is the inclusion, and 7 : A’ ® v;k] yIX = ALY ® v; T X

is the projection. Py, P{ induces

Pl o WH(S,058, ) TX, (v ox) TL) = WHP(2,08,u*TX, (ulgs) TL)

z LP(S A" @ u*TX) — LP(S, A S @ o) TX).

Powa:
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Define
. _—
D7/7777’ =BpaoDuoly g
WhP(S, 0%, vf  TX, (Uyylox)*TL) = LP(S, A% S @ vf | TX),
then

li D! =l D || -
oo | Do 1112

From Lemma 6.12, we see that

I (D,

IN

v = D0 | < Coll = vy llcoll Vo [l + | w lleall du — v ||z

IN

Cs || u=vpay lwrell w llws

H DU”IJI/ - D:7»77/ || S Cg || u — 1}77777/ ||W1’p
which tends to 0 as (n,7") — (0,0). 0

6.4.2. Gluing: construction of exact solutions. The goal of this section is to construct a local parametri-
zation of solutions to mod ;v = 0 near the approximate J-holomorphic map Uy constructed in Section
6.4.1. The main result in this Section is Proposition 6.32.

Let Bs, x D(d,...,d;,) x D'(dj,...,d}) be the neighborhood of the origin in H,domain as in
Section 6.3.3. We write Dy for D(ds, ..., dy,), and Dy, for D'(d},...,d; ), as in Section 6.3.4. We have

seen that there is a family of prestable bordered Riemann surfaces
(m:C — Bs, x Dg x Dg/;s;tl,...,th)

of type (g,h) with (n,m) marked points, together with a family of admissible metrics, such that
771(0) = . There is a map C — ¥ whose restriction to each fiber of 7 is a smooth strong deformation
Rena) P Memay) = A .

Let B be the image of the map i : Bs, X Dg x Dy — Mg p) (nm) given by (§,1,7") = Neym)-
Then B is a neighborhood of X in the C'*° topology. Using the family of admissible metrics, we define
Wp = UyxepW, /. Let Mp = My p) (nm) (X, L| B,7, 1) N Wpg. Then p € Mp.

We have a Cartesian diagram

WB—>WB

| 5

Bs, x DgxD\y=B —— B

B

Let S: B — W5 be given by (§,1,1") = g,y

We first extend E, C LP(3, A% @ u*TX) to a trivial bundle over S({0} x Dy x D},). Recall
that elements in E, are supported on K (X). Since v,,, = u on K (X), E, can be viewed as a
subspace E, ,: of LP(E, A%y ® v;km,TX). Let ),/ be the L?-orthogonal complement of E,,y in
LP(E, A" Y @) TX), and let

. TP 0,1 *
Ty L (E, APY® Unm/TX) — an/
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be the L?-orthogonal projection. Then for sufficiently small n,7’,

Ty © Dy Wl’p(E,ﬁE,v;m,TX, (Vparlos) TL) — Fyy

is a surjection. Let H(,,n = Ker(m,y o Dy ), and let H (J;] ;) be its L?-orthogonal complement in

Whp(s, 0%, Uy T X, (Uny|ox)*T'L). Then we have an isomorphism

.l
Ty’ © Dvnm/ : HWJI/ — F77ﬂ7'

whose inverse is
R . n
Qnm’ By — Hnm"
‘We have

Quay =0 Qn,n’ C By — Wl’p(z’az’ U;m’TXv (”nm’|32)*TL)

where

it Hy oy = WS, 05,05 0 TX, (v |ox) TL)

is the inclusion. @, ,/ is a right inverse of m, ,/ o Dvw,.

By Lemma 6.24, we may choose d,d’ sufficiently small such that @, , exists and || @,/ [|[< M for
all (n,n') € Dq x D/, where M is a constant.

We now extend E — S({0} x Dy x D’,) to a neighborhood U of S(B) in W5. Put o/ = A )
where f 1 (S(en.m) 08 nm) = (X, L) is a stable WP map such that

sup  di(upy (2), f(2))
e’

Enn’

is less than the injectivity radius of gi, where d; is the geodesic distance of g;.

We have a bundle isomorphism
Py (u;m,TX, (u,m]ag(&,w,))*TL) = (f'TX, (f|3g(£mm,))*TL)

given by the parallel transport along the unique length minimizing geodesic from w,,/(z) to f(2),

which gives

. 1 * 1 *
Pro A B qy) @ty TX = A3y @ fTX

Pl=moPioi: A", h@ui TX = A"Se, o [ TX

where i : AO’IE(&,W/) ® u:‘] 77,TX — A12(57n7,’7/) ® u;’; 77,TX is the inclusion, and AIE(&,M/) ®fFTX —
AOJE(&nm/) ® f*I'X is the projection. We have

P LP(3%

Let £, = PE, = E,. Then we have a trivial bundle £ — Up together with a trivialization ® : £ =
UB X Ep.
Let F,; be the L?-orthogonal complement of E, in L? (3¢

0,1 * 0,1 *
AT B e mar) @ty TX) = LP (X ), A By @ [TTX).

Enm') &nm')

),AOJZ( " & f*TX), and let

Enn’ &nm

T+ LP (X ) Ao’lz(&n,n’) ® fTX) = Fy
be the L?-orthogonal projection.
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We will use @,,,/, the right inverse of m,,/ o DUM/, to construct an approximate right inverse
/ _ . . . .
Q(E,n,n’) of e nm) © D(E,W?’)vun,n” where ¢, 1y = T\ ety syt )? and D(émm’),un,n/ is the linearization

of Oy ey A Un . We will use the cutoff function constructed in [31, A.1]. The construction in this

n’)
section works for WP but not for general W,

Lemma 6.25. For any r € (0,1), there is a smooth cutoff function x, : C — [0, 1] such that

Xe(2) = { Ui <y

0 iflz]>r

47
Xr < -
|z|<r HOgT”

Proof. We will follow the proof of [31, Lemma A.1.1]. We first define a cutoff function of class W2
by

1 for |z| < ryr
BT(Z) = 2 <li)ogg‘i| - 1) for T\/; < |Z| <r
0 for |z| > r
Then we have
2
\% =
VO = o

for ry/r <|z| <r, so
4

V5, (2)]? = .
/r\/?§2|§r‘ Bri2)l | log 7|

To obtain a smooth function x,., take the convolution with ¢n(z) = N2¢(Nz) where N is large and

¢ : C — R is a smooth function with support in the unit ball and mean value 1. O
Let p > 2 be fixed as before.

Lemma 6.26. For every r € (0,1), there exists a smooth cutoff function x, : C — [0,1] as in Lemma
6.25 such that

1
1 (VX )w o< C || w [lwo [logr|o ™
for any w € W1P(C) with w(0) = 0.

Proof. This follows from the proof of [31, Lemma A.1.2]. O

We now look at the local model of an interior node. Let u : B¢, o — X be a stable map, and

construct smooth maps u; : Be, ; — X, v; : Be, o — X as before. We now define linear maps
et LP(Be, 1, A" B,y @ ujTX) — LP(Be, 0, A% Be, o @ v TX)
gt : WHP(Be, 0,0 TX) — WP (B, 4, ui TX)
Given s € LP(Be, +, A" B, + ® u}TX), we define

0,1 *
€t(8) € Lp(BEhO, A Bel,O X vy TX)
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by
Ly ifr <zl <
as)(a,0) = S0 T slelsa
0 if |[x] <7
s(ty) ifr<|yl <e
a0y =4 ) Tr=lisa
0 if |y <r

The above definition is valid since
( t) v (0,4) T <2 <
u | z,— | = 1
z v(2,0)  ifr<|z|<e

Given w € WHP(By, o,v;TX), we define

gi(w) € Wl’p(Bel7t, u; TX)

if /r<|z|<e
(1= xr(£)(w(0, 2) —w(0,0)) if r < [2] < /r
(1 —xr(2))(w(z,0) —w(0,0)) ifryr<|z|<r

if 2 < e <ryr

S
£

g
=

g

Q
o~
—
g
N—
VRS
}\2
N |+
N———
I
g
~~ Y~/
= n
N+ v+ © O

+ +

Lemma 6.27. If s € LP(B., 1, A%' B, s @ u;TX), w € WYP(B, 0,v;TX) satisfy Dy, w = e;(s), then
1_q 1
I Duyge(w) = s [|Lr < C | w lwre ([log 77"+ [ w [lwr r7)
Proof. We have

Du, 0 gi(w) (z, t) B { Dy, w(z,0) = e(s)(2,0) = s(z, L) for V7 < |2] < e,

2) | Dow(0,L) = er(s)(0,1) = s(2, L) for & < [z] <y

We first consider the case r < |z| < /r. We have
t
Dy, o) (2,2

Dyyw(z,0) + D(1— x, (z)xw(o,t) ~ w(0,0))

z

= (2))Da(0.4) = Dy(0.0)

z

v ()]

Dyw(z,0) = e(s)(z0) = sz

where D is a derivation, thus

D (Hi=a

z

We also have

Dyw(0,%) = et(s)(o,é):o,
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and
| Dy, w(0,0)] < C2 || vy [lwre [w(0,0)]
< Cofl vt lwrwll w llco
< G|l v lwrwll w [[wrw

Let hg be the metric on A(r,+/r) given by A(r,/r) C C, and hy be the metric on A(r,/r) given by
the embedding z € A(r,/r) = (z,1) € C2. Then

(10 ) )

so hg < hi1 < 2hg. To estimate the L'"? norm defined by any metric which is an interpolation of hg

and hq, it suffices to calculate in hyg.

t t )
/ | Dy, © gt(w)(2, —) _3(27,)|p3d2/\d5
r<|z|<yr z z0 2

D 2p
< Cf/ Y (L 2 Llazndz
<]zl <r z 2[) 2

+Cu || e gyl w Gy 7

t
Jeper ™ ()
rlel <V 2

2p—4 .

Yy 1 _

-/ Vo) P10, ) — w00 () Lay ag
r/r<y|<r r 2

p

w(0, 2) — w(0,0)

where

2p .

P t T 1
2y — P Z z
|w(0, z) w(0,0)] (\z\) 2clz/\dz

7 _
— / V() Pl (0, ) — w(0,0)PLdy A dp
r/F<y|<r 2

< Gs || wlfy, [logr|P

We finally consider the case ry/r < |z| <. Let y = £, then r < |y| < /7, and

atw) (22) = atw) (L)

= w0+ (D

Q’O) - w(07 0)),

which is the same as the case r < |z| < /r. So we conclude that
1 1
| Duyge(w) = 5 [|o< C [l w llwro ([logrle ™+ || [l 77)
since vy converges to u in W1 norm. Il

We next look at the local model of a boundary node. Let u : (B:LO,IELO) — (X, L) be a stable

map, and construct smooth maps u; : (BY ;, Ie,+) — (X, L), vt : (B o, I, 0) — (X, L) as before. We

€1, €1,00
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define linear maps
1o LP(BE ,AY B,y @ ufTX) — LP(B , A" B, o @ v{TX)

€1,t?
i WHYP(BE o1 0,0 TX, (vil1,, o) TL) = W'(BY Iy o, ui TX, (s, ,)*TL)

€1,07
in exactly the same way as for B, ;, B¢, 0. Then we have
Lemma 6.28. If s € LP(B ;, A% B, ;, @ w;TX), w € WHP(B e 00 L0, i TX, (vi]1, o)*TL) satisfy

€1,t?
Dy, w = e (s), then

1 1
| Duygi(w) = 5 [l22< C | w [lwro ([logrle ™+ || o 77).

We now apply above construction to each node to obtain linear maps
) 0,1 0,1 *
enn - LP(E(O n, 77/)7[\ 2(0:77»77/) & u;"m,TX) — LP(E, A" Y® U"]W/TX)
Ina' - Whe(s, 82»”17 v TX, (vnrlos) TL)
1, * *
- W p(z(om,n’)’82(0,77,77’)’“77,77’TX’ (“n7n”32(o,n,n/)) TL)
Let
Ql(Omm’) = Yoy © Qnay © Ty © (677 7 ’Fn o ) :

1, *
Eyy = WP (E0.0.), 0 (0m.) o T (. ’32(0 ) TL).

The operator norm of Q’(O ') has a uniform bound independent of 7,7’ since the operator norm of
@y, has a uniform bound independent of 7,7'. We now show that Q’(O ') is an approximate right

inverse Of 7T(07n’n/) (¢] Z)(O’nm/)’u77 "

Proposition 6.29.
1
| (7@n) © Domar s e © Qoimary ) 5 = 5 o< CLog(nl + /DI ~) | s [l
where C' depends on || u ||yy1p.

Proof. Let p(n,1') = (Ao y), Unay)- Given s € Fy, o, let

s1 = 71—77777/0677,7]()61:’7]777
t1 = 6,7777/(5) — 81 € Eﬁﬂ?'
w = Qny(s1) € W (S,05, v}/ TX, (vyylox)*TL),

then
Ty © Do, oW = 51 = enay (s) — t1.
thus Dy, w = €,,(s) + t2 for some t € E,,y. There is a unique t € E,, ) such that e, (t) = to.
We have
Dy w=ey,y(s+1),

M
DOTI: http://dx.doi.org/10.30504/jims.2020.104185


http://dx.doi.org/10.30504/jims.2020.104185

70 J. Iranian Math. Soc. Vol. 1, No. 1 (2020) 5-95 C.-C. Melissa Liu
hence by Lemma 6.27, 6.28,
H D(O,W,n/),un,n, © gnn’ (’UJ) - (S + t) HLp( - ( 51(2)))

1_ 1
< Cullwllwe (Nog(inl + NI~ + (nl + 1n'l)>)

where C) depends on || u ||y1.p.
We have

/
T © Dommn)u,,y © Qs =5 = Tonm) (D(Om,n’),un,n/ 0 Gnay (w) = (s + t)>

| wllwie = | Qn,n’ O Ty © en,n’(s) e

A

< Co|| myy oeny(s) llee

< Cs |l sl

Therefore,
| 7(0,.5.) © D(O,nm’),un,n/ ° Q/(om,n')s ”Lp< (N (E))>
< i (Rog(nl + DI~ + (il + 1) ) Il s 1o
< Csllog(nl + DI~ 1 s 1z -
O
Let

Py L2 (S iemmys A Sig ) ® Uy TX) = LP(B(emar)s AP 0 ) ® Uy TX)
be the map determined by the bundle isomorphism P o : AO’IZ(&,MI) — AOJE(OJ}’”/), where 7 :
MOy — AE(

projection. Let

emm) = AIE(O,TW,) is the inclusion, and P : AIZ(OMTII) — AO’IZ(OW,n,) is the

/ .
Q(g,n,n/) = Gnay © Quay © Ty © ngy © (P(e ) ‘F(g - n/>) :

1, *
F(&n,n’) - W p(z(fﬂm’)’ az(&mm ) nn’TX (uﬂn ‘52(5 ) TL)

where F{ = F()\@m’n,)’um,). We have

Enm’)

Proposition 6.30.
1
I (7 emm) © Dienny, o © Qlemary ) 5= 8 len< CUEN+ [log([nl +10'DI» ) || s l|w
nn (Emm’)

Proof. We identify
W (S(e ), O8(E o), Unay TX, (unarlosie , )" TL)
with
Wl’p(E(O,nvn’w 0% 0.,y Uy T (U |82<0 ))*TL)’
and embed the spaces
LP (S (e )y A e my @ g TX)
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and
LP (30,1, A S0,y © 1y y TX)
into
LP(S(0,n,): A S0n,) @ tiy y TX).
We extend the domain of Q ) to L (E(Ommx),AO’lE(o,n,n/) ® u:‘m,TX), and that of Ql(émm’) to

LP((0,..0)» A E(Oj,m) ® up TX). In other words, we have

/ / /
Q(O,n,n’) = Yoy © Qny © Ty © €yt Q(g,n,n') = Q(O,n,n’) CPEmm)-
With the above convention, we have
/
(W(S,nm’) © D(E,n,n’)mwl © Q(fﬂm’)) 575
/
(™(ema) © De ),y — TOma) © D(O,n,n/%un,n/) © Qlgnm)S

/
+ (W(07n777l) °© D(07777nl)7u77,n/ © Q(O,T],n’)) p(f»ﬁﬂ?)s - p(fvﬂﬂ?)s
+PEnns =5
where

I 7 emmy © Diemm)u,,y — TOma) © Poan)u,,, 1< C1IEl,

H Penm — Id ||§ C2|£|7 and || Ql(gmml) ||S C3|£| for all (5777,77) € B52 X Dd X Dllil

We also have

I (77(01717 © D)., © Q0.m) ) Pienms = Peams
1

Ca (1og(nl + 1/DIZ ™) 1| Dienmys Il

1_
Cy (|1og(nl + [n'DI» ) 15 ll»

where Cjy is the constant C in Proposition 6.30. Therefore,

IN

IN

H (71-(5777777/) © D(fﬂ%’]/),unm/ © Ql(f,’f],n’)) §—8 HLP
1_
< (C1C3 + Cy + Co)(1€] + [og(Inl + In'DI» ) Il s 2o -

O

Corollary 6.31. There exist 63, d1,...,dy,d},...,d; > 0 such that for every (§,m,1') € Bs,x Dgx Dy
there is a right inverse Q¢ ) of T(e ) © Digna)u, ,, such that the operator norm | Qe IS C

for some constant C'.
Proof. By Proposition 6.29, there exist d2,d1,...,dy,d}, ..., d;l > 0 sufficiently small such that

1
H (71-(5777:7]') ° D(ﬁ:ﬁ,ﬁ/)vumn/ o Ql(i,n,n’)) §—S5 ||LpS 5 H S HLP *

for any (¢,1,7) € Bs, x Dg x Dl
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/

Let A¢ . = Temm) © Dign)uy 0 © Q(&Jm’) — I, where I is the identity map. Then || A¢ || < %,
80 I + Ag .y is invertible and || (I 4+ Agp ) ™! [|< 2. Let Qe iy = Qlepay © L+ Ag )1, then
Q(¢,n,n) has the desired properties. (]

Let 82, d1,...,diy,dy, ..., dj, be chosen as in Corollary 6.31. Then (g , o D is surjective

for (¢,m,1) € Bs, x Dgq x D!,. We will construct a linear isomorphism

5777777/)7“7],7]/

gy + Ker(mo Dy) — Ker(m(e ) © D(Smm’),un,nr)'
Given w € WHP(X,08, u*T X, (u|ox)*TL), we cut it off near nodes to obtain
920777777’) (w) € Wl’p(z(omm’)’ X0, gy TX (U low)"T'L).-

We first look at the local model of an interior node. Let u : B¢, o — X be a stable map. We have
constructed smooth maps u; : B¢, + — X for small ¢ € C such that

w(0,1) if 2 <z < B,

t
s <>= p if 1y < |2 < VT,
u(z,0) if 2¢/r < |z| < €1.

where p = u(0,0).
Let r = 4/|t| as before, and set s = (47")%. For w € WYP(B,, 0, u*TX, (ulop., )" TL), define
wy € WP (B, 4, w*T X, (uelop,, ,)*TL) by

" ( t) [ @ xaD)w(0, ) + xa (D) P()w(0,0) i 5 < 2| <
' (1= xs(2))w(2,0) + xs(2) P(2)w(0,0)  ifr < |z < e
where y; is the cutoff function in Lemma 6.25, and P(z) is the parallel transport along the unique

length minimizing geodesic from p to u(z, é) We have

t op 2 _2 5

. w(0, %) if o <z <2753

wy (Z’z) =4 P(z)w(0,0) if =~ 1§ |z| < 24/1
w(z,0) if (4r)s <lz| < e

We apply above construction to each interior node and similar construction to each boundary node

to obtain a linear map

920777,77') WP (S, 0%, u'TX, (ulps) TL) — Wl’p(z(omm’% O% 0,7yt T X, (“’7"7/’52(0,7;,776)*11[’)’

which can also be viewed as a map

Yemm) : WP (8,08, w* T X, (ulog)*TL) = WP (S(e )

OB g marys Uy TX (i |52(s,n,n’> )'TL).

The restriction of 925 ) O Ker(moD,,) is injective by the unique continuity theorem ([2]). Lemma 6.26

implies the following estimate for w € Ker(mw o D,,):

19
0ty e < CUEN +log(nl + 7> ™) | w lwrs -
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Let

/

i(ﬁv’lﬂ?') = (Id - Q(fﬂ?ﬂ?') © Tr(ﬁﬂ?ﬂ?') °© D(&T],ﬁ'),un,y,/) °© g(f,"]ﬂ’]’)
Then i(¢ ;) : Ker(m o Dy) — Ker (e .y © D(

is actually a linear isomorphism since

57,7777/)7%7”,) is injective for (&, 7n,n') sufficiently small. Tt

dim Ker (¢ ) © Dy ,) =IndD, + dim E, = dim Ker(7 o D,,).

Emm’) sty

We are now ready to find exact solutions near the approximate solution .

Proposition 6.32. There exist d2,dy, ... ,dy,,d}, ... ,d21,61, €2 > 0 sufficiently small such that for all
(§,m,m') € Bs, x Dg x Da, if

w € Ker(m(g ) © D( | w |lwrr< e,

fvﬁ,ﬂ'),un,n/ )7

then there exrists a unique
0,1
h(§7 T]? 77/7 w) E LP(E(&WW')’ Az(ﬁ,n,n/) ® u;klvanX)
such that
7T(§7n,77’) © a]vz(g,n,n/) eXpunyn/ (w + Q({,n,n’)h(fa 7, 77/7 w)) =0

and

H h(€7n7n/7w) HLPS €2.

Proof. We assume that (£,7,7") € Bs, X Dg x D), and || w ||y1»< €1, where 02, d = (dy,...,dy,),
d' = (dy,...,dy,), and €1 will be determined later.
We will use Newton’s method to find h(&,n,n',w) as in [31, Theorem 3.3.4]. For convenience, we
write v for uy ., Q for Qg ), and 0 for (iy,g(é’w,); we set hg = 0, and set
hpy1 = hp — Py omodexp,(w + Qhy,)
where P, is the parallel transport along the geodesic ¢ € [0,1] — exp,((1 — t)(w + Qhy)). Let D,

denote the linearization of 5‘]72(5%",) at v, = exp,(w + Qhy), and write m, for m vn)- We have

Aty
P omodexp,(w+ Qhpi1)
= Pyiiomodexp,(w+ Qhy — Qo P, omodexp,(w+ Qhy))
= P,omodexp,(w+ Qhy)
—P, oy 0Dy o (dexp,)(w + Qhy)(Q o P, oo dexp,(w+ Qhy))
+R(m o dexp,(w + Qhy)),

where

I R(m 0 9 exp, ((w + Qhn) |Lr < C1 || wo Dexp,(w + Qhn)) IIzs,

| Pn oy o Dpo(dexp,)(w+ Qhy) =m0 Dig o [|< Co|w] + [Qhnl).
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Therefore,

I w0 dexp,(w+ Qhns1) l|Le
< Cs ([ wlleo + I Qhn llco + || w0 dexpy(w + Qhn) ||ze) || 7 0 Dexp,(w + Qhn) [l -

We also have
n—1

hy, = — ZP’“ o o dexp,(w+ Qhg),
k=0

thus
| o dexp,(w + Qhni1) || Lr
n
<C3 <|| w lwie + Y || w0 dexp, (w + Qhy) ||LP> | 8 exp,(w 4 Qhy) ||zr -
k=0

Let a,, =|| 7o dexp,(w + Qhy) ||zr> 0 and b =|| w ||yy1»> 0, and arrange that

ant1 < Cs (b-l- Z%) an

k=0
We will show that if ag,b < ﬁ then an41 < %an. We prove this by induction. For n = 0, we have
1 1 1 1
< Cs(b <C3| — + — = —ag < —ap.
a1 < 3( +a0)a0_ 3(603+603>a0 3(10_2(10

Now suppose that ap+1 < ap forn =0,1,...,m. Then

m—+1

Z ap < 2ao,
k=0

thus

1 1 1
am+y2 < C3(b+ 2ap)amy1 < C3 (603 + 3C3> U1 = 5 0me1.

Let D = D(ﬁﬂ?ﬂ?/) ;- Then

’uﬂv"?

modexp,w = modv+mo Dw+ R(w),

where || R(w) ||z»< Cy || w ||co|| w |lw1.e, and ™o Dw = 0. The proof of Lemma 6.23 can be modified
to show that

_ 1
| 7080 ll1s< Cs (161 + (Il + /)% ) .
Therefore,

a = | modexp,w
1
Cs (I&l+ (Inl + 7' ) + C | w |31,

1
Cs (82 + (d] + |d']) ) + Cie,
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which is less than ﬁ for sufficiently small d2,d,d’,e1. b =|| w |1, < €1, which is in turn less than
ﬁ for small €. Hence if d9,d,d’, e, are sufficiently small, h, converges uniformly in LP norm, and
the limit h(&,n,n’, w) satisfies

7o dexp,(w + Qh(&,n,n,w)) =0,
1
| €m0 120 200 < 205(65 + (1d] + 1)) + 205c?

This proves the existence of h(&, 7,7, w).
We now show the uniqueness of h(&,n, 7', w). Write sq for h(£,n, 1, w), and suppose that sy satisfies

7o dexp,(w+ Qs2) =0

and
1
| 52 ||zp< 2C5(02 + (|d| + |d'|) 2 ) + 2Cge3.

Let P, P, denote the parallel transports along the geodesics

t € [0,1] = exp, (1 — t)(w + @s1)), exp, (1 — t)(w + @s2)),

respectively. Let D’ denote the linearization of 9 IS ey B v = exp,(w + Qs1), and let 7' denote

)

TN ey )" We have
0 = Pyomodexp,(w+ Qso)
= Pyomodexp,(w+ Qs + Q(s2 — 51))
= Piomodexp,(w+ Qs1)+ Pron’ oD o(dexp,)(w+ Qs1) o Q(s2 — s1)
+R(s2 — s1)
= Pron’ oD o(dexp,)(w+ Qs1) o Q(s2 — s1) + R(s2 — s1),
s1—s3=(Pron’ oD o(dexp,)(w+ Qs1) — 7o D) oQ(s2 — s1) + R(s2 — s1),
where
| PLon o D' o(dexp,) —mo D ||< Co(Jw| + |Qs1]),
and
I R(sa = s1) [lzo<|| 52 — 1 |75 -
Therefore,
[s1=s2 (e < Crlllwllwre + 1 st llze + | s2 [[2e) | 51— s2 [|zr
< Cr (e +4G5 (8 + (ld) +1d1)% ) +4Cse3) || 51 = 52 v,
where

Cr (61 +4C5 (82 + (1] + |d1)% ) +4Cod ) <

for sufficiently small ds,d, d’, 1. We conclude that s; = ss.

DN |

The proposition holds if d2,dy,. .., dy,d, ..., d;l,el, €9 > 0 are chosen such that

i\ L 9 1 1
< — < —
C5 <52 + (‘d| + |d |)2p> + 0661 = 6037 €1 > 603’
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Cy (61 +4Cs (52 + (|d] + |d']) ) + 40661)

l\D\H

and €3 = 2C5(d2 + (|d] + \d’|) v) + 2Cg€3. O

6.4.3. Kuranishi neighborhood. Let 82,d1, ..., dj,, d}, ... ,d;l > (0 be chosen as in Proposition 6.32. Let
Vpmap C Hpmap = Ker(m o D,,) be a neighborhood of the origin such that

| i nmw lwir<er forall w € V), map, (€,m,m) € Bs, X Dg x Dly.
Write B for Bs, x Dg x D!, as at the beginning of Section 6.4.2. Define a map
V:BXVymap — Wa
Emn'sw) = [Ny Wemm )]

where Wpg is defined as at the beginning of Section 6.4.2, and

Uenn w) = XPy, (ienm w0 + Qe (& 1.1 ie yyw)) -

Then

W(A(g,n,n/)vug,n,n/,w)) © aJvz(g,n,n/)u(&??ﬂ?'»w) = 0’

i & n,n,w) — 5(]72(57”’",)U(§mm/7w) defines a map s : B x Vpmap — E, such Lhat P(s71(0)) C
M (g 1), iy (X, L | 8,7, ). Actually, ¢(s7'(0)) contains a neighborhood of p in Mg ) onm) (X, L |
B,9, ). To see this, note that any p’ € M(g,h),(n,rﬁ) (X,L | B,%,un) which is sufficiently close to p in

the C*° topology can be written in the form

10/ = ()‘(f,n,n’)a eXpunyn/ (w))

where w € WHP(Sg ), 0%
Ker (¢ y.m) © Dy

s Uy T X (U gy |ag )*TL) is small. There exist unique wg €
Enn )t ,)and h € LP(E(@M) AY E(Snm)®“ ,/TX) such that w = wo + Q¢.n.n)
We may further assume that w is small enough such that wg = e ywi for some wq € V), map, and

| b ||z < €2. Since
5J’E(§a77777/> eXpun,n’ (w(] + Q(§777777/)h) = 07

we have h = h(§,n,n',wp) by the uniqueness part of Proposition 6.32. Hence p' = ¥(§,n,n',w1), and

s(&,n,n',wr) = 0.

Now assume that A is stable, so that Aut\ is finite, and V., = Vpmap- Then there is an

isomorphism ¢ © A, ) = Moo,y if and only if (&2,m2,m5) = (¢' - §1,¢" - m, ¢ - ny) for some
¢’ € Aut )\, and the action of ¢’ on the universal family restricts to ¢ on Aerm ) We may choose
B, V, map small enough such that if we p p ) = U(geg 6,7 ,w2) © @ fOr (§,m, n') € B, wi, w2 € V,map,
¢ € Aut A\, then ¢ € Aut p.

Given ¢ € Aut p and w € V), map, let (¢, ,nyw be the unique vector in V), map such that u o

Enn'w)
¢_1 = u(¢'§7¢'771¢'77'7¢(§,,]‘n/)w)‘ Then Aut P acts on B X V:o,map by ¢(£a m, 77/7 w) = (¢£a ¢'777 ¢'77,a ¢(§,n,n’)w)'
From the above discussion, (&1, n1,n7, w1) = (&2, m2,m, w2) if and only if (&2,m2,mh, w2) = ¢ -

(&1,m,m,w1) for some ¢ € Autp. Let V, be an Aut p-invariant neighborhood of the origin in B x
DOI: http://dx.doi.org/10.30504/jims .2020.104185
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Vomap C Hpdomain X Hpmap = H,. Let s, : V, — E, be the restriction of s. Then s, is Aut p-
equivariant. The restriction of 1) gives a continuous map 1, : s;l(O) — M(g,h),(n,fn’) (X,L | 8,7, 1)
such that sp_l(O)/Aut p— M(g,h),(n,ﬁi) (X, L | B,7,p) is injective. It is actually a homeomorphism onto
a neighborhood of p in M(g’h)’(n’m)(X,L | 8,7, ) since the C> and WP topologies are equivalent
on M(gﬁ)’(n’ﬁb)(X, L | 3,7, ). This completes the proof of Theorem 6.19 when the domain \ of p is
stable.

Remark 6.33. The section s in the above construction is only continuous, not smooth. It is not hard
to show that it is smooth within the stratum, but its dependence on 0,7 is not even C* (see Lemma
6.23). This is because the smooth structure of V,, is canonical within the stratum but dependent on our

particular gluing construction in the direction (n,n’) transversal to the stratum.

If A\ = (%,B;p;q',...,q") is not stable, we add minimal number of marked points to obtain a

stable marked bordered Riemann surface
A=(2B,pd,....q"

where p = (p1,. -, Pnaa), @ = (¢, .. ,qfn”rmi), DPntl,-- - Pniqn are additional interior marked points,

and qfn are additional marked points on B*. Note that when counting the above minimal

%
ip1r o Qi
number, an interior marked point counts twice, while a boundary marked point counts once. We have

20 +mt + " = dimg Hp aut.-

Let p = (\u) € M ) (i X L | 8,7, 1). Then Hp gomain = Hp,domain and Hpaue = 0. If

the additional marked points are chosen in K Wi (X), then the construction of A( also yields

&nm’)
deformation 5\(5,,7’77/) of \ for (&,m,1m') € Bs, x Dg x D!}y = B C Hj domain = Hpdomain. Both Aut A

and Aut p are subgroups of Aut, and Autj = Aut A N Autp. We may choose E; = E,, so that
Hpwmap = Hpmap, Hy = Hp.

There is a map

F M(g,h),(nJrﬂerﬁﬁ) (X’ L | '8”77 lu’) - M(g,h),(n,'fﬁ) (Xa L | 55’7’ :U’)

defined by forgetting pp+41,--.,Pnts, Gmtls-- - Gmim and then contracting non-stable components
which are mapped to points. We have F(p) = p. We will construct a multi-valued map A from a
neighborhood U, of p in M (g py (n.2)(X, L | 8,7, 1) to M (X,L|B,7,un) such that Fo A
is the identity map, and A(p) = p.

(g,h),(n+i, -+

The additional marked points are on unstable components, where u is not a constant. Let 2N be
the dimension of X as before. For j =n+1,...,n 4+ n, we may assume that there is a geodesic ball
in X centered at u(p;) such that its intersection with the image of u is an embedded holomorphic
disc D;, and w~!(D;) — Dj is a trivial cover. u~*(D;) might consist of more than one connected
components if u is not injective. Let B; C X be an embedded (2N — 2)-dimensional ball which is

the image of IV, under exp, where N, is a small ball centered at the origin in the orthogonal

p;)

complement of u(7},,3) in Ty, ) X. Then D; and B; intersect orthogonally at u(p;). We choose N,

(p;
sufficiently small such that B; intersects the image of u at a single point u(p;).
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Similarly, for j° = m? 4+ 1,...,m! + ', we may assume that there is a geodesic ball in X centered
at u(g;i) such that its intersection with the image of v is an embedded holomorphic half disc D;.Q, and
u_l(D;Ti) — D;Ti is a trivial cover. Let B;.i C L be an embedded (N — 1)-dimensional ball which is
the image of Néji under XPu(q,,): where Néﬂ, is a small ball centered at the origin in the orthogonal
complement of u, (qui(‘?E) in Tyy(q. L. Then I;; = D;; NL =[0,1] and B;.i intersect orthogonally in L

ji
at u(g;i). We choose N(;i sufficiently small such that B;.Z- intersects the image of u at a single point
J

u(gji).
In a small neighborhood of p in M(g,h)’(n,m)(X,L | B,9,u), intersecting with B; for j = n +
1,...,n+n and B;.i for j* =mi+1,...,m' + m’ determines additional marked points and gives the

desired multi-valued map A4 : U, — M( X,L | B,7,u) for some neighborhood of p in

ac g0, (nbagicrin)
M (g 1,y (X, L | B,7, ). A is single-valued if Aut p = Aut p. Let

Oy = {# = Bpi@) ... (@)5u) € F(U,) |
u'(pj) € Bjfor j=n+1,...,n+n, u(g;) € B;.i for j* :mi—kl,...,mi—i-mi},

and let 0,) be the connected component containing p. Then Up = A(U,), and the fiber of Up — U, is
finite.

Let W be the (real) codimension (27 4 ' 4 - - - + ") subspace of W'P(%, 0%, u*T X, (u|ss)*TL)
defined by

W= {w e WHP(S, 08, u*TX, (u|ss)*TL) . S
for j*=m'+1,...,m'+m

w(pj)ETu(pj)Bj forj=n+1,....n+n
’w(qu‘) € Tu(qu)B;z
Then H, oy N W = {0}, and

WP (2,05, w*TX, (ulgs) " TL) = Hyau ® W.

Let
by 1, * *
Wienm) = {w € W Clenu 0% ety TX, (uaylos,,, ) TD)
w(p;) € Ty Bj for j=n+1,....n+1n
w(gji) € Tu(qﬂ)Bg/ for j' =mi4+1,...,m' + ml} )
Then

1, * * . ~
w p(E(é,nm’)’ az(f,nm’)’ “nm’TXv (“n,n’laﬁ(g,n,n/)) TL) = Z(5777,77’)1L1f>’aut b W(&n,n’)
for (&,m,n') sufficiently small. Let
. 1, * * o
Demm) - w p(z(ﬁ,mn’)’ az(&mm’)’“nm’TXv (un,n’|82<g,n,n/)) TL) — W(é,nm’)

be the projection. We have m , ) oD(&nm/mM/ OP(enm) = T(Emm') OD(EaUﬂ?/)Mn,n/’ since i(¢ . n) Hpaut C

Ker(”(é,n,n’)OD(E,n,n’),un,n/ ). By replacing Q¢ ) With pe 5.5)0Q(¢,n,), We may assume that ImQ g,y )

C Wiemm)-
n.m')
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Let Hymap = Hpmap N W = H),
Ker (¢ 5./ © D(ﬁmm’)mn,n/) such that

map- We may modify the isomorphism i, ¢ Hpmap —

¢ ma) Hpmap = Ker(m(e ) © Dieyaryu, ) 0 Wiemar)-

For (5)7777’/711)) € B X Vﬁ,map = B X Vp7map7 define 1;(5, 77777/711)) = (5\(5777»77,)’ u(&ﬂlﬂ?’yw))' For w € W,
we have (e ) w + Qe )& 151y ie aryw) € Wigay), thus

Wenm w) = XPy, (iemayw + Queman P& m 0 viemar)) € Wiemar)

satisfies ue ) (Pj) € Bj for j=n+1,....n+ 0, and ue ;. w)(q5) € B}, forj=n+1,...,n+n.
Therefore, P(€,1,7,w) € U, if w € W, s(&,m,1',w) = 0, and &, 7,7/, w are sufficiently small.

Conversely, if (X, u) is a stable map near j in ﬁp, then X = A( for some (&,71,7') € B, and

&nm')
u = expy, (w) for some w € Wi, y. There exist unique wg € Ker(mg .,y o D(ﬁmm’),un,n/) N Wienm)
and h € LP(S¢ ), A% Se0,0) © uy »TX) such that w = wo + Q h. We have h = h(&,n,n,wp)

since

Enn’)

SJ’E(&UW’) expunm/ (w() + Q(&nm/)h) — O

— ;-1

Vi map N ]:Iﬁ,map. Then Aut p acts on B x Vﬁ,map. Let V,; be an Aut p invariant neighborhood of the

wy € I:I,;map. Then v = u(&,n,n,wy), and s(&n,n',w1) = 0. Let Vp,map =

origin in B x Vf,’map. It corresponds to a neighborhood Vﬁﬁ of the origin in B x H//),map under the
isomorphism H pmap = H Amap. We have the following commutative diagram

(s~1(0) N V5)/Autp ——s U,

l s

_ W
(s71(0)NV))/Autp —— U,

where 1 and ¢/ are injective. v’ is a homeomorphism onto its image.

6.5. Transition functions. For each p € M = M(g,h),(n,ﬁi) (X,L|B,7, ) and each choice of E,, we
have constructed a Kuranishi neighborhood (V/;’ E,, Autp,p,sp).

Remark 6.34. A different choice of E, yields a different, but equivalent Kuranishi neighborhood in
the sense of Definition 6.2. Actually, if By, B2, C LP(3, A% @ u*TX) are two different choices, set
E,=FEi,+ E>,. Then (V/;, E,, Autp,1,,s,) can serve as the (Vp, Ep,I'p, by, sp) in Definition 6.2.

In this section, we will modify the Kuranishi neighborhoods we constructed so that we can construct
transition functions between them. We will follow [9, Section 15] closely to which we refer the reader
for further details.

M is compact in C'*° topology, so there exist pi,...,p € M such that

(U = (s, (0) | i=1,....1}

is an open cover of M, and there is U; CC U/ such that {U; | ¢ = 1,...,1} is still an open cover of M.

M is compact and Hausdorff, so the closure K; of U; is compact for i = 1,...,1.
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Let E; — V; = V), be the obstruction bundle constructed from E,,. We may choose p; and E,,
such that if

p=(SBip;q',....q"u) €Ky n...NEK;,

and p ¢ K; if i # iy, then the subspace E, of LP(2, A%'S @ v*TX) spanned by (E;,),, ..., (Ei,), is
actually a direct sum E, = (E;,) o @@ (Ei), We use Ep to construct a Kuranishi neighborhood
(V,, E,, Aut p, ﬂp, 5,) as in Sections 6.4.2, 6.4.3. We shrink V, such that Q,Z;p(éfjl(O)) cU,n---NnU;, N
K;l M- mK](;lfk’ Wher~e {il,.. . ,’ik,jl,...,jl_k} = {1,... ,{}

Suppose that p' = ¥,(&§,n,7',w), where ({,n,7,w) € V,, 5,(§,n,1,w) = 0. Then Autp’ can be
identified with the stabilizer (Aut p)¢ .y w)
hyp : Aut p’ — Aut p. Without loss of generality, we may assume that p' € K1 N---N Ky, and p’ ¢ K;
fori=k+1,...,I. We have p € K1 N---N Kj. We may assume that p€ K1 N---N Ky, and p ¢ K;

for i = k' +1,...,1, where ¥’ > k. It follows from the construction that there is an Aut p’-invariant

of the action Autp on f/p. This gives a monomorphism

neighborhood Vs of 0 = w;l(p’ ) in f/pz such that we have the following commutative diagram:

- b, =~
Ep/ |Vpp’ L} Ep
v, ey

pp’ p

where ¢3pp, is induced by the inclusion F1 & --- ® Ep, — E1 @ --- @ Ep. Both ggpp/ and ¢,, are
hpp-equivariant embedding of codimension rankEyq + - - - + rank .

The Kuranishi neighborhoods (f/p,Ep,Aut p,qu, 5,) satisfy the properties listed in Definition 6.1,
and the transition functions (V,, qubpp/, Gpp'> hppr) satisfy the properties listed in Definition 6.3. From

now on, we will write (Vp’, E,, Autp,1,,s,) for the (Vp, E,,,Aut 05 zﬂp, 5,) we just constructed.

Remark 6.35. The (ﬁpp/,@)pr in the above construction are smooth when restricted to a stratum. It
s possible to refine the above modification of Kuranishi neighborhoods such that (ngp,’ Gpp are smooth
(see [9, Section 15]). Such a refinement is artificial since our smooth structure in directions transversal
to a stratum is not natural, as discussed in Remark 6.33. For simplicity of exposition, we will assume
the smoothness of ngpp/,qbpp/ in Section 7, though such an assumption is not absolutely necessary for

OUT PUTPOSES.

By Remark 6.34, the equivalence class of the Kuranishi structure constructed above is independent

of various choices in our construction.

6.6. Orientation. Recall that the orientation bundle of the Kuranishi structure is the real line orbi-
bundle obtained by gluing det(7'V}) x det(E,)~1. In our case,

—1
_1 )
(det(TV}) @ det(Ep) ™) e oy ) = det(IndDig ) ® det (Ind(Tg ey T, gmm))

where Ind(D) denotes the virtual real vector space Ker(D) — Coker(D), as in Section 6.2.4.
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Theorem 6.36. The Kuranishi structure constructed above is orientable if L is spin or if h =1 and

L is relatively spin, i.e., L is orientable and wo(TL) = a|r, for some a € H*(X,Zs).

To orient the index of the linearization DJ; of 7 at a stable map, we need the following general-

ization of [10, Proposition 21.3].

Lemma 6.37. Let (E, Er) — (X,0%) be a Riemann-Hilbert bundle over a prestable bordered Riemann
surface without boundary nodes 2, and let Eg be a totally real subbundle of E|ssx. Then an ordering

of the connected components of 0¥ and a trivialization of Er determine an orientation of Ind(E, Eg),
where Ind(E, ER) is defined as in [24, Definition 3.4.1].

Proof. Let B!, ..., B" be the ordered connected components of 9¥. An isomorphism Er = 9% x R"
is a collection of isomorphisms Eg|gi = B’ x R™. Let € > 0 be such that A; = B(B’,¢), the collar
neighborhood of B? in ¥ of radius € w.r.t. some admissible metric on ¥, are disjoint. By tensoring
with C, we have trivializations F|g = B x C". By deforming the Hermitian connection, we may
assume that the connection is flat on A = U?:l B(B', %e) and there are parallel sections sy, ..., s, on
E| 4 such that for x € 9%, s;(x) corresponds to (x,e;) under the isomorphism Er = 0% x R"™, where
e1,...e, are the standard basis of R"™.

The boundary of 4; = B(B', 1) is the disjoint union of two circles, B’ and (B’)". We shrink
(B")! to obtain a family of prestable bordered Riemann surfaces ¥, ¢t € [0,1], such that ¥; = X,
¥; are homeomorphic to ¥, and ¥y is obtained from ¥ by shrinking each (B’)’ to a point. o =
C UD'U...UDP"is a prestable bordered Riemann surface, where C' is a complex algebraic curve of
genus ¢, and D’ is a disc which intersects C' at an interior node on g, for i =1,...,h.

We extend (E, Er) to a family of Riemann-Hilbert bundles (E(t), Er(t)) — (2¢,0%;) such that
$1,...,sp extend to a neighborhood of U;cjo 1103t in Use[o,1) X+ and give a holomorphic trivialization
of E(t) in a collar neighborhood of 0%; and a trivialization of Eg(t). In particular, they are defined
on D C % to give an identification (E(0), Eg(0))|p, = (C*,R™).

We use the notation in [24, Section 3.4]. Ind(E(t), Er(t)) is a family of virtual real vector spaces
over [0, 1]. We have

Ind(E, Eg) = Ind(E(1), Er(1)) = Ind(E(0), Er(0)),

so it suffices to orient Ind(E(0), Er(0)). We have a long exact sequence

h
0 — H(Zo,0%0, E(0), E(O)r) - H(C,F) ® @ H(D,0D",C",R") 5 C"
=1

h
—  H'(3,0%0, E(0), E(O)r) — H'(C,F) & P H'(D',0D',C",R™) = 0
=1

where F' = E(0)|¢ is a holomorphic vector bundle of degree % w(E, Eg), and e is given by

h
H(C,F)®» @ H(D',0D",C",R") — C"
=1

(§0,&15 5 &n) = (&o(p1) — £1(0), ..., &o(pn) — €n(0))
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p; € C and 0 € D; are identified to form an interior node of ¥g. Fr =~ R" gives the orientation on
HO(D! 0D, C",R") ~ R" via the evaluation map. H'(D* D! C* R") = 0. H°(C,F), H'(C, F) and

C™ are complex vector spaces, thus canonically oriented. Therefore,
Ind(E(0), Er(0)) = H°(Xg, 0%, E(0), E(0)r) — H* (X0, %0, E(0), E(0)r)

is oriented. This orientation depends on the trivialization of Fr and the ordering of connected compo-
nents of 9%, since the trivialization of Eg determines the orientation on each H°(D? dD?,C", R") = R"

and the ordering of connected components of 9% determines the ordering of these h copies of R™. [

Proof of Theorem 6.36. It suffices to show that the orientation bundle is trivial when restricted to each
loop 7y : ST = Mgy (n,)(X, L | 8,7, 1), (t) = ps. From the construction of Kuranishi structure we
see that we may deform v to a family of smooth maps p; € V), such that the domains of p; are smooth
bordered Riemann surfaces. We first assume that these domains are stable. The tangent bundle of
M(g’h)’(mm) is orientable by Theorem 4.14, so it suffices to show that the index bundle Ind D9 is
orientable along the loop 7(t) = j;. Note that Aut p preserves the orientation of Ind D3 since it does
not permute boundary components of the domain.

Let @ : (X,0%) x S — (X, L) be given by ®(z,t) = us(z), where u; is the map for p;. Since the
connected components of 9% are ordered, by Lemma 6.37 it suffices to show that (®|yxyg1)*TL is
stably trivial.

We first assume that L is relatively spin, i.e, L is orientable and wq(TL) = «|r for some o €
H?(X,7s). Choose a cellular decomposition on X such that X N L = L®). There exists a real

orientable vector bundle of rank 2 over X3) such that wq(V) = |y € H*(X®),Z3). Then
wo((TL & V)| @) = 0 € H*(L®), Zy),

thus (TL @ V)|, () is spin, and so stably trivializable on L().

We write

(TL@ V)| e ®RF = RVTA+2,

Let ® be homotopic to ® such that ®(9% x S*) ¢ L3 Tt suffices to show that (®|gs4g1)*T'L is stably

trivial. We have

(Plosixst)TL @ (Blosyg1)V & RF = RNTFH2

(®|omxs1)*V — PV

! |

I, RixS'=8% x 8T —— ¥ x 8!
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We may view V as a complex line bundle. We need to show that (®|55g1)*V is trivial, or equiva-
lently, n; = (deg(i)|RiX51)*V =0fori¢=1,...,h. We have

> ni = deg(Plosys1)V

= (i.[0% x S1)) N e (2*V)
= 0(i.[2 x S')) N e (2*V)
= 0

Thus (®|g5xg1)*V is trivial if b = 1. For h > 1, we assume that L is spin, so that we may take

V = R?, the trivial bundle.

We finally consider unstable cases:

(1) (9,h) = (0,1), n =1, m = (0)

(2) (9,h) = (0,1), n =0, m = (1).

(3) (9,h) = (0,1), n =0, m = (2).

(4) (9,h) = (0,2), n =0, m = (0,0).

Cases (2) and (3) are treated in [10]. For (1) the domain is isomorphic to the unit disc with one

interior marked point at the origin, and the automorphism group U(1) = {€? | # € R} of the domain
can be oriented by %. For case (4), the domain is isomorphic to an annulus {z € C | 1 < |z| < r} for
some 7 € (1,00), which is oriented by %, and automorphism group U(1) of the domain is oriented as

above. O

7. Virtual fundamental chain

7.1. Construction of virtual fundamental chain. We follow the general setting in Section 6.1.

Definition 7.1. Let M be a Hausdorff space with a Kuranishi structure (with corners)

K= {(VpaEvapawvap) :p € M, (V}qu‘fgpqv‘ﬁpqa hpq) 1 q € wp(sgl(O))} .

A Hausdorff topological space W is an ambient space of K if

(1) M is a subspace of W.

(2) wp Vo = W, p(x) € M if and only if sp(xz) = 0.

(3) ¥y = Uy o dpa.

(4) There is a subset OW C W such that p(z) € OW if and only if x € OV, where OV}, is the union
of corners of V,,. We take OW =0 if K is a Kuranishi structure. We define OM = M N OW.

(5) Vp/T'y = W is injective.

Remark 7.2. If K and Ky are equivalent Kuranishi structures (with corners) in the sense of Definition
6.5, and they have the same ambient space W, we will implicitly assume that W is also an ambient

space for the K in Definition 6.5, and i p = p o ¢; : Vip — W in Definition 6.2.
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Example 7.3. W = W(lg’ph) (i) (X, L | B,7,n) is an ambient space of the Kuranishi structure with
corners on M = M(g,h),(n,ﬁi) (X,L | B,7,u) constructed in Section 6. W C W is the subset corre-

sponding to maps whose domain has at least one boundary node.

Now assume that M is a compact, Hausdorff topological space with an oriented Kuranishi structure
with corners K, and that K has an ambient space W. Let d be the virtual dimension of K. The
virtual fundamental chain we shall construct is a singular d-chain My, € Sq(W, Q) such that OMy , €
Si-1(0W,Q) C Su—1(W,Q), so it represents a relative singular d-cycle My, € Sq(W,0W, Q).

M is compact, so there exist finitely many p1,...,p; € M such that

o {U; = wp].(s;jl(())) | j=1,...,1} is an open cover of M.
e There exists a I'p -invariant neighborhood V; of zpp_jl(pj) in Vp, such that V; CC V), and
{U; = ij(s;jl(()) NVj)|j=1,...,1} is still an open cover of M.

Let 8; : Vp, — [0,1] be a smooth function with compact support such that 5; = 1 on the closure
of Vj. For any v = (v1,...,1;), where v; : Vp; — Ep; is a small continuous section, not necessarily
I'p,-equivariant, we construct a section v, : V}, — Ep]f/p for each p € X, where Vp is an I'p-invariant
neighborhood of w;l(p).

Given p € M, if p € Uj, then there is a I'j-invariant neighborhood V,,;, of ¢, 1(p) such that we have
the following commutative diagram:

Pp;p

Ep|ijp Epj
bo;p
Voo — Vp,
For any section s : V},, — Ep,, let gb;]_ps : Viip — Ep|vpj , be the unique section satisfying ggpjp o (;S;jps =
so qbpjp. Let V,, = mpEUJ/-‘/PjP‘ We define v, = ZpEUJ/- gb;‘,jp(ﬁjuj) V= EP|\7,,'
There exist p1,...,p; € M such that {U] = Q/Jﬁj(s;jl(O) N ij) | j =1,...,1} is an open cover of

~

M. We may choose v = (v1,...,v;) such that s5. + v, : V5, — Eﬁj‘f/ﬁj is smooth and intersects the
zero section transversally for j = 1,...,1. So MY = (sp, + vp,)”(0) is a d-dimensional submanifold

of ij, where d is the virtual dimension of the Kuranishi structure. The orientation of the Kuranishi
structure induces an orientation on M Jl’ CIf ij has corners, we may further require that M ]" intersect
all the corners of Vj, transversally, i.e., M} is a neat submanifold of Vj, in the sense of [17, Chapter
1, Section 4]. We call such v = {v}, : V,, — Ep]‘;p | p € M} a generic perturbation. Note that the
difference between two generic perturbations is smooth.

From our choice of v, we have
(7.1) o, (V2) 1, (V) = a6, (V) (140, (NT).
for any j,5' € {1,...,1}.

Choose a triangulation of Mj” so that it becomes a simplicial complex, and all its corners are
subcomplexes. By (7.1), we may assume that there is a compact subcomplex K; of M ]” such that

[ il (Nv
o Uiy, (K) = Ui v, (MY).
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e Forany j,j € {1,..., [}, q%?l (@Dpj( 5) N Vs, (K /)) is a subcomplex of the (d—1)-dimensional
simplicial complex 0K;.

Let {A;{a | a =1,...,N;} be the set of d-simplices in the triangulation of K;. Each A;{a has an
orientation induced by that of M /- The inclusion i : A;{a — Kj C f/ﬁj can be viewed as a singular
d-chain in Vj;;. We define

Nj
KY = ija €8a(Vp,i Z) C Sa(V3,3Q)

a=1
L

Mk, = Zﬁdfﬁj*K}/ESd(W;Q)
1 Dy

where |I's.| is the cardinality of I';.. It follows from our construction that OMk, € Sq—1(0W) C
Sq—1(W), so M, represents a singular relative d-cycle My, € Sq—1(W,0W;Q), which represents a
class [M;Ql,]rel € Hy(W,0W;Q).

Note that up to subdivision, My, € Sq(W;Q) depends on v = {v, : V;, — Ep\vp | p € M} but not
on the choice of py,...,p; € M.

Proposition 7.4. The class [M ' € Hy(W,0W;Q) is independent of the choice of v = {v, : Vp —
EP‘VP | p€ M}. So we may write [Mx]* for this class.

Proof. We first observe that a Kuranishi structure with corners K on M with ambient space W gives
rise to a Kuranishi structure with corners K x [0,1] on M X [0,1] with ambient space W x [0, 1].
To see this, consider (p,t) € M x [0,1]. Let (V},, E,,T'p,¢p, sp) be the Kuranishi neighborhood of p
assigned by the Kuranishi structure on M. Let V{,,) =V, x [0,1], and let m, : V(,,;y — V}, be the
projection to the first factor. Let Eq, ;) = m,Ep — V(,4), and let s, = mpsp : Vipyy = Epyy. We
define ¥, ) = ¥p x id : Vip ) =V, x [0, 1] = W x [0, 1], where id is the identity map on [0, 1]. Finally,
let T, act on [0,1] trivially. Then (Vi 1), Ep.t), Ips Y(p.t)s S(p)) is @ Kuranishi neighborhood of (p, ).
The transition functions can be constructed from those of the Kuranishi structure on M in an obvious
way.

Let v={v,:V, = Ep|‘7p lpe M}, v ={v,: v, — Ep|‘7p | p € M} be two choices of small generic

perturbation of K in the above construction. There exists a generic perturbation
w= At Vi = Epa | (p,1) € M x [0,1]}
of K x [0, 1] such that
'L.;,OIU/(IL%) = Vp . ‘/;) — Ep, i;7lﬂl(p7%) = V; . ‘/;7 — E‘p7

where dpy : Vp, =V, 1) =V} X [0,1] is the inclusion z — (, 7).
2
From the paragraph right before Proposition 7.4, we may use py, ..., p; in the construction of both
v and M"'. Let
— -1 Y
}/j = (S(ﬁjyé) + M(ﬁ],%)) (O) C ‘/ﬁj X [0, ].]
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Then
Y5 00V, % [0,1]) = i, (V) Ui, o (V1) U (Y5 1 (97, x [0,1]))
where
OV, x [0,1]) = ip; 1(Vp;) Uip, 0(Vp,) U (9V5, x [0,1])

is the union of corners of Vﬁj % [0,1]. This gives rise to a singular (d + 1)-chain B; in Vﬁj x [0, 1] such
that

0B; = (ip, 1)+ KY — (i, 0)«KY + Cj + Dj,

where (iﬁj;)*Kj”/ comes from iﬁjJ(Mj”l), (ip;,0)+ K} comes from ip, O(M ), Dj comes from Y ﬂ(@V X

[0,1]), and C; will get cancelled,

i
> (W, x id).Cj =0 € Sg(W x [0,1];Q).
7j=1

Let mj : Vi, x [0,1] — ‘A/ﬁ]. be the projection to the first factor. We have

d(nj,Bj) = K!' — KY + (m;).C; + (m;)..D;.

Let
B= Z T ¢pj*7rj*B € Sy1(W;Q),
pJ
and
J 1
= Z ‘F A.*T(j*Dj S Sd(6W,Q) C Sd(W; Q)
g=1 "
Then
0B = M]C,V/ — M/QV +D e Sd(W; Q)
since

]

>

7T]* = Z ’ wﬁj X ’Ld)*OJ = 0,

where m : W x [0,1] — W is the projection to the first factor. We have 0B = M ,» — My, €
Sy(W,0W;Q), therefore

[Mic " = [Myc, ™ € Hg(W,0W; Q).

g

Proposition 7.5. Let K1 and Ko be two equivalent Kuranishi structures with corners on a compact
Hausdorff topological space M. Let W be an ambient space of both K1 and Ko. Then [M;Cl]rel =

[MIC ]rel
5 .
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Proof. Let

Ki = {(Vl,paEl,paFLpa@bl,pa S1p) i p €M, (Vl,pqaﬁg’lmq’qbl,pqa hipg) 1 q € 7/’1,p(5i;;(0))}

Ky = {(VQ,pa Eop, Do, 2, 52) 1 p € M, (Vopg, 02,50, 2,00, h2,pg) + 4 € wQ,p(SZ_JI;(O))}

K = {(V}avEpanawp»Sp) :p €M, (qu»ggpq7¢pq,hpq) YIS 7/’10(5;1(0))}

be as in Definition 6.5. Let v; = {v;) : Vi, = Ei, | p € M} be a generic perturbation which can
be used to define a virtual fundamental chain My, ,, € Sg(W;Q), for i = 1,2. v; can be extended
to a generic perturbation p; = {pip : Vp, = E, | p € M} such that qﬁl o Vip = Mip© ¢;. We have
My, v, = Mxu, € Sq(W;Q). Thus

[Mic, ] = [Mic " = [Mic,u )™ = [Mic,]"™ € Ha(W,0W; Q).
O

Remark 7.6. Let M be a compact Hausdorff topological space with an oriented Kuranishi structure
IC, and let W be an ambient space of K. Then the above construction yields My, € Sq(W,Q) such
that OMy,, = 0 € Sq—1(W,Q), so it represents a class [Mx ] € Hqg(W;Q). The proof of Proposition
7.4 shows that this class is independent of the choice of v, so we may write [My] for this class. The
proof of Proposition 7.5 shows that if K' is another Kuranishi structure on M such that K' ~ K and
W is also an ambient space of K', then [My]| = [My/] € Hg(W;Q). Let i : M — W be the inclusion.
Then [Mx] = i.[M] € Hy(W;Q), where i,[M] is defined in [9, Section 6].

Example 7.7. Let X be a Calabi-Yau 3-fold, and let 8 € Hao(X;Z). Let My0(X, 3) denote the moduli
space of stable maps f from a genus-g prestable curve C to X such that f.[C] = B. Then M ,0(X, B) has
an oriented Kuranishi structure IC [9]. The virtual dimension of KC is 0 for any g > 0 and § € Ha(X;Z).
This Kuranishi structure has an ambient space ngﬁ(X ,B), the moduli space of stable WP maps from
a genus g prestable curve C to X such that f.[C] = B. Then [M,o(X, )] € HO(W;’é)(X,ﬂ);Q), and

deg[M,0(X, B)x] € Q is some Gromov-Witten invariant [9, Section 17].

Example 7.8. Let X be a Calabi- Yau 3-fold, L be a special Lagrangian submanifold. M(g,h),(n,rﬁ) (X, L |
B,7, 1) is empty for u # 0. The tangent bundle of L is trivial, so L is spin. We have constructed
an orientable Kuranishi structure with corners K on M = M(g,h),(oﬁ)(X’L | 8,%4,0). The equiv-
alence class of K is independent of choices in our construction. The virtual dimension of K is 0
for all g, h,B,7. The Kuranishi structure has an ambient space VW = whp (X,L | 5,7,0).

(9,0),(0,0)
(M € Ho(W,0W;Q) =0, so we cannot get a nontrivial number from [Myc]™.

Most enumerative predictions about holomorphic curves with Lagrangian boundary conditions con-
cern the special case in Example 7.8. Our goal is to give a rigorous mathematical definition of
these highly nontrivial enumerative numbers. From Example 7.8 we know that the relative cycle
[Myc]*! € Hy(W,0W;Q) is not the right object for our purpose. We want to remember the virtual

fundamental chain M, € Sq(W,Q) which contains more information. For example, when the virtual
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dimension d = 0, the 0-chain My, represents a class [My ,] € Ho(W;Q) since any 0-chain is a cycle.

Let v,/ be two perturbations. From the proof of Proposition 7.5,
0B = My, — My, + D,

where B € §;(W,Q), D € Sp(0W, Q). Thus [Mx,| depends on v. We want to impose extra constraint
on v such that if v and v/ both satisfy the constraint then the above D is zero. In particular, if v and
V' satisfy the same boundary conditions in the sense that Vp; = V:,/aj on 8%]. forall j =1,... ,f , then
D =0, so [Mx ] = [Mx,/] € Hy(W;Q), and deg[M ,] = deg[M /] € Q.

7.2. Sl.action.

Definition 7.9. Let M be a Hausdorff topological space, and let o : S* x M — M be a continuous S*

action. A Kuranishi structure with corners

K= {(VpaEvapa@Z’paSp) :p €M, (%qa‘lgpq"ﬁpqa hpg) 1 q € ¢p(5;1(0))} .

on M is p-equivariant on the boundary if the Kuranishi neighborhood (V,, E,, 'y, 1y, sp) of any p € OM
is g-equivariant in the sense that
(1) There is a free continuous S*-action on V,, which commutes with the action of T, and leaves
0V, invariant.
(2) E, =V, is an S'-equivariant vector bundle.
(3) sp: V, = E, is an St-equivariant section.
(4) ¥p : 5,1(0) = M is S'-equivariant, where S* acts on M by 6.

Remark 7.10. Let IC be as above, and let OK be the Kuranishi structure with corners on OM defined
in Remark 6.4. Then the quotients of the Kuranishi neighborhoods and transition functions of 0K by
the free S' action define a Kuranishi structure 0K /S of virtual dimension d —2 on OM/S*.

Remark 7.11. Let M be a Hausdorff topological space with a continuous S*-action ¢ : S* x M — M.
Then there exists an 0-equivariant Kuranishi structure with corners only if the action leaves OM

invariant and has no fized point on OM.

Definition 7.12. Let M be a Hausdorff topological space with a continuous S*-action o : S'x M — M.
Let

Ki = {(Vl,val,paFva¢l,pa S1p) i p €M, (Vl,pqvésl,pq’@bl,pqv hipg) 1 q € 1!)1,p(si}1,(0))}
and
Ky = {(VQ,pv Eop, Do, thap, s2p) 1 p € M, (Vapg, ‘732,1%1’ $2,p9, h2,pq) : G € 1/)2,17(52_,;1?(0))}

be two Kuranishi structures with corners on M which g-equivariant on the boundary. K1 and Ko are

are g-equivalent if
o There is another Kuranishi structure

K= {(%7Epvrp7¢p73p) :p €M, (quvquq’qﬁpq’ hpq) 1 q € 1/112(5;1(0))}
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on M which is p-equivariant on the boundary such that for allp € M, (Vip, E1p, T p, Y1, S1p),
(Vayp, B p, T p, 2p, S2.p), and (Vy, Ep, Ty, 1y, sp) satisfy the relation described in Definition 6.2.
e The ¢; and ngSZ in Definition 6.2 are S'-equivariant.

In this case, we write Ky L Ks.
Note that Ky 2 Ko = K1 ~ Ks.

Definition 7.13. Let M be a Hausdorff topological space with a continuous S'-action  : S'x M — M.
Let

K= {(Vp?Evap?wpvsp) 19 € M, (Vpgs Gpg> Ppgs ipg) : 4 € %(3;1(0))}
be a Kuranishi structure with corners on M which is g-equivariant on the boundary. An ambient space

W of K is ¢-equivariant if p extends to an action S* x W — W, and Yy Vp = W is S1-equivariant.

We now assume that M is a compact, Hausdorff topological space with a continuous S'-action
6:S"x M — M. Suppose that K is an oriented Kuranishi structure with corners of virtual dimension
zero on M. We further assume that K is g-equivariant on the boundary, and W is an g-equivariant
ambient space of K.

In this case, a generic perturbation v = {v, : V, = E, | p € M} of K is a perturbation such that
sp + vp intersects the zero section transversally at isolated points and is nowhere zero on V). Let p

denote the equivalent class of p € M in OM/S*. The virtual dimension of

0K/8' = {((Vﬁ:Eﬁarpﬂ;ﬁ?gﬁ 1D € OIM/SY, (Viog, bpg, Ppgs hpg) : G € 1/7;7(551(0))}
is —2, so a generic perturbation v = {7, : V; — Ej; | p € OM/S'} of 9K /S is a perturbation such that
5p + Up is nowhere zero for all p € OM/S!. Let Qp : 0V, — Vp = 8‘/;3/51 be the natural projection.
Then Q*v = {(Q*7), = QU : OV, — Elay, | p € OM} is a generic perturbation of JK. We call such
a perturbation an g-equivariant perturbation. A generic perturbation of 9K can always be extended

to a generic perturbation of X, so there exists a generic perturbation of K whose restriction to 9K is

¢-equivariant.

Proposition 7.14. Let M be a compact Hausdorff topological space with a continuous S'-action
0:8'x M — M. Let K be a Kuranishi structure with corners of virtual dimension 0 on M which is
o-equivariant on the boundary. Let W be a p-equivariant ambient space of K. Let v = {vp, : V, = E, |
p € M} be a generic perturbation such that v|px = {vplov, : OV, = Eplav, | p € OM} is o-equivariant.
Then [My ] € Ho(W;Q) does not depend on the perturbation v, so we may write [M,g] for this class.
If K’ 3 K, and W is also a 0-equivariant ambient space of K', then [Mfé,] = [M,g] € Hy(W:;Q).

Proof. Let
v=A{v,:V, = E,|pe M}, V':{l/;):Vp—)EﬂpEM}
be two generic perturbations of K such that v|gx = Q*v, V/|sx = Q*V/, where

v={p:Vy— Ey|pcoM/SY, ﬂ’:{%:%—>EZs|;§eaM/Sl}
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are perturbations for 9K/St such that 35 + v, 55 + 17]’5 are nowhere zero for all p € M /S!. There

exists a generic perturbation

b= A{keey  Vigr = Epgy | (1) € OM/S" x [0,1]}
such that

Z';,OH(@%) = ﬂp : ‘7;5 — Eﬁ, Z;;,lu(ﬁ,%) = 171/; : ‘75 — Eﬁ,
where iz : Vp — V(p’%) = V;;x [0, 1] is the inclusion = — (z,t). The virtual dimension of 9K /S x [0, 1]
is —1, so fi being generic simply means that 3(; ) + i(p,) is nonzero for all (p,t) € OM/S* x [0,1]. The
pullback Q*fi of fi is a generic perturbation of OIC x [0, 1] such that s, ;) + (Q*[i) () is nowhere zero
for any (p,t) € OM x [0,1]. We may extend Q* to a generic perturbation u of K x [0, 1] such that

-k _ . sk .
Zp,ol"b(p7%) - Vp . ‘/;) — Ep, Zp’]_/,b(p7%) — Vp . ‘/p — Ep

as in the proof of Proposition 7.4. We proceed as the proof of Proposition 7.4, and use the notation
there. Y} does not intersect 8‘7@. x [0,1], so D = 0, and the 1-chain B € §;(W;Q) satisfies

0B = MIC,I/’ - MIC,V € SO(W; Q)

Therefore we have [My /] = [Mx,,] € Hy(W;Q).

The last statement can be proved as Proposition 7.5. U

7.3. Invariants for an S'-equivariant pair. Let (X,w) be a compact symplectic manifold together
with an w-tame almost complex structure J, and L be a Lagrangian submanifold. We assume that L
is spin or that h = 1 and L is relative spin so that M = M(g,h),(n,n’i) (X,L | B,7,u) has an orientable
Kuranishi structure. We fix an orientation by choosing a stable trivialization of T'L or TL®V on the 2-
skeleton L(?) of L, where V is chosen as in the proof of Theorem 6.36. W = whe (X,L|B,79,n),

(g,h),(n,110)
is an ambient space of the Kuranishi structure on M.

Definition 7.15. An admissible S'-action on (X, L) is an S'-action o : S' x X — X such that

e o preserves J and L.

e The restriction of o to L is free.

We now assume that there is an admissible S'-action on (X, L). Givent = ¢ € S' let f; : X — X
be the J-holomorphic diffeomorphism given by z + ¢-2. We have an S! action ¢ : S' x W — W given
by (¢, [(A,w)]) ¥t [(A\,u)] = [(\, fr ou)]. The action preserves M C W since f; is J-holomorphic for
all t € S1.

If (X,B;p;q',...,q" u) represents a fixed point of the S'-action, then ¥ = CUD;U---U D}, where
C is a genus g prestable curve, and Dy, is a disc which intersects C' at an interior node for k = 1,..., h.
u(ODy,) is an orbit of the S-action on L. Let W' and M5" denote the fixed loci of the S-action on
W and M, respectively. Then MS =W A M, WS N oW =0, and M5 NOM = 0.

Theorem 7.16. Let (X, L) be as above. Then there exists an oriented Kuranishi structure I on M =
M(gﬁ)y(nﬂ) (X, L | B,7, 1) which is o-equivariant on the boundary. W = W(lg’ph) ( )(X, L|B,7,n) is

b n7m
a p-equivariant ambient space of K.
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Proof. Let

K= {(VﬁngpaAUt P d}p’sp) 1pE M? (Vpp’a épp’aqspp’,hpp/)ap, € wp(s_l(o))}

be a Kuranishi structure constructed as in Section 6. For p € dM, we will modify the Kuranishi
neighborhood of p such that (1)-(4) in Definition 7.9 hold.

Given p = (A\,u) € OM, let H, domains Hpmap = Ker(m o D) be defined as in Section 6. Recall
that ¢ € Aut A — wo ¢! induces an inclusion H paut C Hpmap. Similarly, ¢ € S — f, ow induces
an inclusion H, circle = 115" C Hpmap, where T1.S' = R is the tangent line of S! = {e? | 6 € R}
at 1 € S'. Note that H pircle C Hpaug if and only if p € M5 1, which is excluded since we consider

p € OM. We may choose H;}map such that Hp circle C H;’map and Hymap = Hpaut B H/’%map. Choose
" : ! ! "
a subspace Hj, ., in H), . such that H, ., = Hj circle ® H ), 1ap-

Let V. be a small neighborhood of 0 in H” and € > 0 be small. Then for sufficiently small

p,map p,map’
(&;m,m') € Bs, x Dg x D!, and v’ € H] there are unique w” € V' and 6 € (—¢,€) such that

p,map? p,map
U(g’nm/’w/) = feie e} U(gmmlﬂuu) = U(énm/’w//’eie),

where the notation is the same as in Section 6. Both Aut p and S act on Bs, x Dg x Dy x V). x S
such that Ugp.(e,mm' w''t) — W(Enn wit) © ¢_1 and ¢ - (fJIa U,,w/,,t) = (fan,ﬁl,w”,t/t) for ¢ € Aut P,
t' e St (&mn,n',w" t) € Bs, x Dg x D} x V) map X S1. Note that the action of Autp commutes with

that of S*. So we may choose a neighborhood V) of 0 in Bs, X Dg x D/ x V!, such that V x S*

is invariant under the action of Aut p. There is an S'-equivariant map
R O
&' w” 1) = (Mg wenmwn)]
(Vp” x S1)/Autp — W is injective if and only if S; = {1}, where S; is the stabilizer at p of the

Sl-action. In general, S; is a finite group because p € M is not a fixed point of the S'-action.
The automorphism of p € OM/S! is

Autp={¢ € Aut A |uo¢ = f; ou for some t € S},

and
S;:{teSl\uoqﬁ:ftouforsomegteAut)\}.

Aut p is a normal subgroup of Aut p, and we have an exact sequence
1 —>Autp—>Autﬁ—>S}) — 1.

The action of Aut p on V)’ x S! extends to Aut p, and (V' x S')/Aut p — W is injective.

Let g, : V' x St — V' be the projection to the first factor, and let E' — V' be the restriction
of~ th? obstructjon bundle over V. Let v, = V) xSt E, = oE — Vy, 3, = qy(splvy). Then
(V,, E,, Aut p,v,, 5,) is a Kuranishi neighborhood of p € OM in M which satisfies (1)-(4) in Defini-
tion 7.9.

Finally, we proceed as in Section 6.5 to construct new transition functions. O
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The g-equivalence class of the Kuranishi structure with corners which is g-equivariant on the bound-
ary constructed in the above proof does not depend on various choices.

Now consider the case m = n = 0, and the virtual dimension
d=pu+ (N-3)(2—-29g—h)=0.
We define the Euler characteristic of M = M(g 1),(0,0) (X,L|B,9,p) to be

Xy (X, L, 0|8,7, 1) = deg[MZ] € Q,

where C is a Kuranishi structure with corners which is g-equivariant on the boundary, constructed in
the proof of Theorem 7.16. This number is well-defined by Proposition 7.14.

X(g,n) (X, L, 0|3,7, p) is an invariant for the equivariant pair (X, L, ¢), but not an invariant for the
pair (X, L). In other words, it is possible that

X(g,h)(X7L) Ql|67’77 M) 7é X(g,h)(Xa L, Q2|B>’77 M)

for two different admissible S'-actions p1, 02 on (X, L).

7.4. Multiple covers of the disc. We consider the special case studied in [24,26,33]. Let (z,u,v)
and (Z,1, 0) be the two charts of Opi(—1) ® Op1(—1), related by (Z,@,7) = (2, zu, 2v). Let X be the
total space of Op1(—1) ® Opi(—1). There is an antiholomorphic involution

A X — X
1
(z,u,v) +— (=,2z0,zu)
z

in terms of the first chart. The fixed locus L = X# is a special Lagrangian submanifold of the
noncompact Calabi-Yau 3-fold. For any integer a, let o, : ST x X — X be the S' action on X defined
by (€%, (z,u,v)) — (€2, e"* D0, e=9%) on the first chart. Then p, is an admissible S action on
(X,L). Let D? = {(2,0,0) | |z] < 1} be a disc in the first chart, oriented by the complex structure.
Then dD? C L. Let 8 = [D? € Hy(X,L;Z) = Hy(P',SY;Z) and v = [0D? C Hy(L;Z) = H,(S%; Z).

By Schwartz reflection principle (see e.g. [24, Section 3.3.2]), any nonconstant holomorphic map
f:(3,0%) = (X, L) can be extended to a nonconstant holomorphic map fc : 3¢ — X, whose image

must lie in P1. Thus we have
M = H(‘,‘,?,]—L)’(O,(_)') (Xa L ‘ dﬂv (n177 s 7nh7)7 O) = M(g’h)7(0’6) (P17 Sl | dﬁ? (nI/Ya cee 7nh’7)7 2d)

as topological spaces. Therefore, M(g 1),(0,6) (X, L|dp,(niv,...,np7v),0) is compact in the C*° topol-
ogy. Note that the virtual dimension of the Kuranishi structure corners is 0 for M( 9.0, (n.0) (X, L |
ds, (n17y,...,np7y),0) and 2(d+2g+h—2) for M(g B, (n.0) (P, S | dB, (n17,...,n47),0). In particular,

these two Kuranishi structures on M are not equivalent. The following numbers are defined:

C(g7h|d7 n, .. .,7’Lh|a) = X(g,h)(X7L> Qa | dﬁa (nlf}/a s ,TLh’}/),O) S Q7

where nq,...,ny are positive integers, and d = nj + - - - + ny.
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Let m:C — Mg,h be the universal family, w, be the relative dualizing sheaf, and s; : M%h — C be
the section corresponding to the ¢-th marked point. Let E = m.w,; be the Hodge bundle on ngh, and

Yi = c1(sjwr).
Conclusion 7.17. Let a be a positive integer. Then

(—1)4"¢(0; hld;ny, ..., npla) = C(0; hl|d;ny,...,npll —a)
h

n;a — 1 B
= (a(1 —a))" 1ZH1 1 dh=3.
For g > 0,
(-=1)4"C(g; hld; na, . .. ,npla) = C(g; hld;na, ... 0|l — a)
— (a(1 = a))*! f[ nie =1
iz \ me— L
/ cg(EY(N))eg(EY ((a — 1)A))eg (BY (—aX))A*" 3
(Mgn) ) IT) (A = naty) .
The above formulae for C(g; h|d;ni,...,npla) are calculated in [24] by localization techniques us-

ing the S'-action g,. Actually, the definition of X(g,n) (X, L, p | B,7, ) is inspired by R. Bott’s
interpretation of the computations in [24]. The localization formula, and in particular the proof of
Conjecture 7.17, is left to future work.

Finally, the assumption of the existence of an admissible S'-action is too restrictive. The S'-action
disappears when we perturb the almost complex structure J or the Lagrangian submanifold L, so the
invariant is not even defined for other almost complex structures, and it is not clear in which sense
X(g,n) (X, Ly p | B,7, ) is an “invariant” It is desirable to find a natural way to impose boundary

conditions for the general case.
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