Weil-Petersson metrics on deformation spaces

Document Type: Original Article

Authors

1 Department of Mathematics‎, ‎Lehigh University‎, ‎Bethlehem‎, ‎PA 18015‎, ‎USA.

2 Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA.

3 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.

4 Yau mathematical Sciences Center, Tsinghua University, Beijing, 100804, China.

Abstract

In this paper we survey various aspects of the classical wpm and its generalizations‎, ‎in particular on the moduli space of ke manifolds‎. ‎Being a natural $L^2$ metric on the parameter space of a family of complex manifolds (or holomorphic vector bundles) which admit some canonical metrics‎, ‎the wpm is well defined when the automorphism group of each fiber is discrete and the curvature of the wpm can be computed via certain integrals over each fiber‎. ‎We shall discuss the Fano case when these fibers may have continuous automorphism groups‎. ‎We also discuss the relation between the wpm on Teichm"uller spaces of K"ahler-Einstein manifolds of general type and energy of harmonic maps‎.

In this paper we survey various aspects of the classical wpm and its generalizations‎, ‎in particular on the moduli space of ke manifolds‎. ‎Being a natural $L^2$ metric on the parameter space of a family of complex manifolds (or holomorphic vector bundles) which admit some canonical metrics‎, ‎the wpm is well defined when the automorphism group of each fiber is discrete and the curvature of the wpm can be computed via certain integrals over each fiber‎. ‎We shall discuss the Fano case when these fibers may have continuous automorphism groups‎. ‎We also discuss the relation between the wpm on Teichm"uller spaces of K"ahler-Einstein manifolds of general type and energy of harmonic maps‎.

Keywords


L. Ahlfors, Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math. (2) 74 (1961) 171--191.
L. Ahlfors, Curvature properties of Teichmüller space. J. Analyse Math. 9 (1961/1962), 161--176.
S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic geometry, Sendai, 1985, 11--40, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.
T. Brönnle, Extremal Kähler metrics on projectivized vector bundles, Duke Math. J. 164 (2015), no. 2, 195--233.
E. Calabi, Extremal Kähler metrics. II. Differential geometry and complex analysis, 95--114, Springer, Berlin, 1985.
P. Candelas, P. S. Green, and T. Hübsch, Connected Calabi-Yau compactifications (other worlds are just around the corner), Strings'88 (College Park, MD, 1988), 155--190. World Sci. Publ., Teaneck, NJ, 1989.
P. Candelas, P. S. Green, and T. Hübsch, Rolling Among Calabi-Yau Vacua, Nucl. Phys. B 330 (1990), no. 1, 49--102.
H.-D. Cao, X. Sun, S.-T. Yau and Y. Zhang, On deformation of Fano manifolds, preprint.
T. Chu, The Weil-Petersson metric in the moduli space, PhD thesis, Columbia University, ProQuest LLC, Ann Arbor, MI, 1976. 47 pages.
S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-manifold topology, Fields Medallists' lectures, 384-403, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997.
S. K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis, No. 1, 29--75, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, 2008.
Y. Fan, A.Kanazawa and S.-T. Yau, Weil-Petersson geometry on the space of Bridgeland stability conditions, arXiv:1708.02161.
A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku Expositions 5 (1992), no. 2, 173--191.
J. Jost and S.-T. Yau, Harmonic mappings and moduli spaces of Riemann surfaces, Surveys in differential geometry, Vol. XIV, Geometry of Riemann surfaces and their moduli spaces, 171-196, Int. Press, Somerville, MA, 2009.
N. Koiso, Einstein metrics and complex structures, Invent. Math. 73 (1983), no. 1, 71-106.
H. Masur, The extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J. 43 (1976), no. 3, 623--635.
Y. Matsushima, Sur la structure du groupe d'homeomorphismes analytiques d'une certaine variete kaehlerienne, Nagoya Math. J. 11 (1957) 145--150.
A. Nannicini, Weil-Petersson metric in the moduli space of compact polarized Kahler-Einstein manifolds of zero first Chern class, Manuscripta Math. 54 (1986), no. 4, 405--438.
R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127--142.
G. Schumacher, The curvature of the Petersson-Weil metric on the moduli space of Kahler-Einstein manifolds, Complex analysis and geometry, 339--354, Univ. Ser. Math., Plenum, New York, 1993.
G. Schumacher and M. Toma, On the Petersson-Weil metric for the moduli space of Hermite-Einstein bundles and its curvature, Math. Ann. 293 (1992), no. 1, 101--107.
Y. T. Siu, Curvature of the Weil-Petersson metric in the moduli space of compact Kahler-Einstein manifolds of negative first Chern class, Contributions to several complex variables, 261--298, Aspects Math., E9, Friedr. Vieweg, Braunschweig, 1986.
X. Sun, Deformation of canonical metrics I, Asian J. Math. 16 (2012), no. 1, 141--155.
X. Sun and S.-T. Yau, Deformation of Kahler-Einstein -Einstein metrics, Surveys in geometric analysis and relativity, 467--489, Adv. Lect. Math. (ALM), 20, Int. Press, Somerville, MA, 2011.
G. Szekelyhidi, The Kähler -Ricci ow and K-polystability, Amer. J. Math. 132 (2010), no. 4, 1077--1090.
A. Todorov, The Weil-Petersson geometry of the moduli space of SU(n 3) (Calabi-Yau) manifolds, I. Comm. Math. Phys. 126 (1989), no. 2, 325--346.
D. Toledo, Hermitian curvature and plurisubharmonicity of energy on Teichmüller space, Geom. Funct. Anal. 22 (2012), no. 4, 1015--1032.
T. Trenner and P. M. H. Wilson, Asymptotic curvature of moduli spaces for Calabi-Yau threefolds, J. Geom. Anal. 21 (2011), no. 2, 409--428.
A. Tromba, Dirichlet's energy of Teichmüller moduli space is strictly pluri-subharmonic, Geometric analysis and the calculus of variations, 315--341, Int. Press, Cambridge, MA, 1996.
A. Tromba, Dirichlet's energy on Teichmüller 's moduli space and the Nielsen realization problem, Math. Z. 222 (1996), no. 3, 451--464.
A. Weil, Modules des surfaces de Riemann [MR0124485 (23 #A1797)] (French) [[Modules of Riemann surfaces]]
Seminaire Bourbaki, Vol. 4, Exp. No. 168, 413--419, Soc. Math. France, Paris, 1995.
P. M. H. Wilson, Sectional curvatures of Kahler moduli. Math. Ann. 330 (2004), no. 4, 631--664.
M. Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449--479.
S. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), no. 1, 119--145.
Y. Zhang, Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics. Thesis
(Ph.D.)Lehigh University, ProQuest LLC, Ann Arbor, MI, 2014. 85 pages. https://preserve.lehigh.edu/etd/
1689/